PVK-Ht98

PVK--HT99

Contents

[Introduction O

[J Requirements Engineering [
Ul Design O

[J Project Management

[J Software Design

[Detailed Design and Coding
[Quality Assurance

Copyright © 1997-1999, jubo@cs.umu.se

PVK--HT99

[1Project Management

[Project Management Activities

0 Project Scheduling

[Cost Estimation

[Version- and Configuration Control
[0 Maintenance

Copyright © 1997-1999, jubo@cs.umu.se

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Typical Work-load Distribution

See lecture ...

Not yet available in Powerpoint

Copyright © 1997-1999, jubo@cs.umu.se

PVK--HT99

Project Management Activities

O Project acquisition
O Project planning

0 Resource assessment

0 Risk and option analysis
0 Cost estimation

O Project scheduling
0 Work breakdown structure
0 Effort distribution
O Resource assignment

O Project tracking and control
O Risk management
O Reporting

Copyright © 1997-1999, jubo@cs.umu.se

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Project Resources

O People
0 Required skills
O Availability
0 Duration of tasks
0 Start date
0 Hardware and software tools
0 Description
0 Availability
0 Duration of use
0 Delivery date

Copyright © 1997-1999, jubo@cs.umu.se

PVK--HT99

Risks and Option Analysis

0 Compare different development aternatives
O Evauate their risks
0 Select best dternative
0 Tools
O Polar graph
0 Decision tree

O Forms
O ...

Copyright © 1997-1999, jubo@cs.umu.se

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Top Ten Project Risks

0 Staff deficiencies

O Unredlistic schedules and budgets
O Developing the wrong functions
O Developing the wrong interface

O Over-engineering

0 Changing requirements

O Externally developed items

0 Externally performed tasks

O Performance problems

0 Assumptions on technol ogy

Copyright © 1997-1999, jubo@cs.umu.se

PVK--HT99

Polar Graphs

Reliability Schedule

Alternative A
Alternative B
Altemnative C

Reuse

Cost

Portabilty Efficiency

Copyright © 1997-1999, jubo@cs.umu.se

Umea universitet

11/22/99

PVK-Ht98

Analysis Example

Cost Relative Tools Schedule Staff utilization

Alternative (SEK) efficiency investment (years) (%) Risk
A 7.500.000 0.8 250.000 2 85 0.75
B 8.500.000 1 500.000 13 70 0.6
C 7.000.000 0.6 500.000 2 100 0.9

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 9
Cost Efficiency
Alternative A
Alternative B
Altemnative C .
\
. 229 Tools
Risk 0.5 investment
Staf? 00% Schedule
utilisation
PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 10

Umea universitet

11/22/99

PVK-Ht98

Anaysis Example (Forms)

Objectives Develop a software components catalogue

Constraints Within one year
Must support all existing component types
Must cost less than 1 MSEK

Alternatives Buy existing information retrieval (IR) software
Buy a database and develop the catalogue using the query language
Develop a special-purpose catalogue

Risks May be impossible within the given constraints
Catalogue functionality may be inappropriate

Risk resolution | Develop a prototype to clarify requirements

strategy Commission a consultants report on existing IR systems
Relax the time constraints
Results IR systems are too inflexible

Identified requirements cannot be met
The prototype using a DBMS may be enhanced to to a complete system
Special-purpose catalogue development is not cost effective

Plans Develop the catalogue usmg the existing DBMS by enhancing the
prototype and building a GUI

Commitment Fund further 12 months of development

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 11
Simple (0.3) 3.8 MSEK
Difficult (0.7) 4.5 MSEK
. 2.75 MSEK
Minor changes (0.4)
Simple (02) _ 3 1 \15EK
Goal: Major changes (0.6) 4.9 MSEK
Develop Complex (0.8)
SystemX Minor changes (03) _ 5 1 MSEK
Major changes (0.7) 4 MSEK
Contract Without changes (0.6) _ 3 5 5k
With changes (0.4) 5MSEK
PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 12

Umea universitet

11/22/99

PVK-Ht98

Risk Management

\

Risk identification

Risk assessment { Risk analys

/

Risk prioritisation

/

Risk management

\

Risk reduction
Risk control < Risk management planni ng/

Risk resolution ——8M83

|
1
|
|

Checklist
Decomposition
Assumption analysis
Decision driver analysis

System dynamics
Performance models
Cost models
Network analysis
Decision analysis
Quality risk factor analysis

Risk exposure
Compound risk reduction

Buying information
Risk avoidance

Risk transfer

Risk reduction leverage
Development process

Risk element planning
Risk plan integration

Risk mitigation
Risk monitoring and reporting
Risk reassessment

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 13
O Activity O Project function
O Major work unit O Continue throughout
0 Start date the project
0 Enddate O Not bound to specific
0 Consumes resources phases
O Resultsin work products
(and milestones) N
Step 1 Activity 1
Phase 1 Activity 2
Step 2 Activity 3
Activity 1
Project Phase 2 Step 1 Activity 2 Pst %
Ste p 2 N e asl
N : Task 3
Phase N Step1
Step 2
PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 14

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Schedule Activities

O Almost al activities depend on the completion
of some other activities
O Many activities can be performed in paralléel
O Track usage of resources
0 Organisation necessary to balance work-load,
costs, and duration
0 PERT chart (activity network/task graph)
O Critical path
O Project time-line (Gantt chart)
[0 Resource table

Copyright © 1997-1999, jubo@cs.umu.se

15

PVK--HT99

PERT Charts

Program Evaluation and Review Technique

0 Graph
0 Nodes = activities/tasks and estimated duration
0 Edges = dependencies

0 Compute
0 Slack time = available time - estimated duration
O Critical path

A path is critical when it contains an activity that, if
delayed, will cause a delay of the whole project.

Copyright © 1997-1999, jubo@cs.umu.se

16

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

A Gantt Chart (Project

TimeLine)

[

N CIC o s e dtis i L BARE

[|theas e W 1T |
[] Prspr Famisy s M —
| i T =
E O ==z
[R] ke o m———
:1.I - ™ | ——x
| e Hw W ¥ massuen
[Bwm L] | reashedasasasasinani
= I
e I

Copyright © 1997-1999, jubo@cs.umu.se

17

PVK--HT99

Another Gantt Chart

frmnms | | s e e Y B P el

| | Clyl pr PP HTh TTdd — — - _
1 Frjey Fiamaing [= = -

[l T ™ - - -
I T - n [
1 B i coma
T Pl - Pt
=] - —
| L] ity . B P
I] Er
T sam b s i LA B]
Il LacseH s o i T, o HI

n Foman Py ™ ™ X = -

- Brpreide b ams

o Far b I VUL A M
[[S—— L ™ e i],

n gt [===TT
(| S

£l E A i
.| s L e HP
I | - . oL
| . Hek BTN e
P e v - S
M| Py ™ ™

i) Py . E]

m Fre—p na T

iC] B - [reamamaa.

Copyright © 1997-1999, jubo@cs.umu.se

18

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Resource Tables

See lecture ...

Not yet available in Powerpoint

Copyright © 1997-1999, jubo@cs.umu.se

19

PVK--HT99

Cost Estimation

O Approach O Problems:
O Decompose problem 0 What are good measures?
0 Check for experiences/ O Do the estimates effect the
data on subproblems result?
0 Make qualified 0 Doesthe type of software effect
L the result?
estimations . .
O Does the project environment
0 (Makedt least two effect the result?

independent estimates) 0

0 Use empirical and historical data

O Algorithmic cost modelling
0 COCOMO (based on LOC)
0 FP (based on function points)

Copyright © 1997-1999, jubo@cs.umu.se

20

Umea universitet

11/22/99

1

PVK-Ht98

PVK--HT99

COCOMO

0 Constructive Cost Modeling [Boehm 81]
0 Based on publicly available historical data of 63
TRW projects
O Basic assumptions:
0 Reguirements change only slightly during the project
0 Thereis good project management
0 The historical datais representative
0 Assigning more resources to the project does NOT
result in linear decreasing development time
O Basic modd:
oEffort = a .(KDSI)P®

KDSI = Kilo Delivered Source Instructions (= LOC - comments)
The a and b factors vary depending on the type of project
Ef f or t is measured in PM(Person Months = 152h of work)

Copyright © 1997-1999, jubo@cs.umu.se 21

PVK--HT99

COCOMO Project Types

0 OM: Organic Mode projects

0 Small teams which are familiar with the type of
application

0 Development in afamiliar environment
0 EM: Embedded Mode projects

O Large and inexperienced teams
0 Many constraints

0 SDM: Semi Detached Mode projects
O Between OM- and EM projects

Copyright © 1997-1999, jubo@cs.umu.se 22

Umea universitet

11/22/99

PVK-Ht98

COCOMO Basic Modd

0 PM Person Months
= 2.4 (KDSI)®9 for OM projects
3 (KDsl)!12 for SDM projects
= 3.6 (KDSI)?®20 for EM projects
O TDEV: Time for DEV elopment
= 2.5 (PMO 38 for OM projects
= 2.5 (PM035 for SDM projects
= 2.5 (PM0.32 for EM projects
O N: Number of personnel
= PM/ TDEV

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se

23

a-Fl Thisis Too Simplistic!?
O There are many cost drivers that effect effort
O Programming language
0 Development methods
0 Tools and environments
0 Experience and capabilities of the development team
O Available time
O Requirements volatility
0..

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se

24

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

COCOMO Intermediate M odel

0 Takesinto account 15 cost drivers, which are
ranked on ascale from very low to extra high

0 Product attributes (e.g. required reliability)

0 Computer system attributes (e.g. time/space
constraints)

0 Personnel attributes (e.g. language experience)
O Project attributes (e.g. tools usage)
O PM Person Months
3.2 (KDSI) %0 x [1G for OM projects
3 (KDSI):12 x [1G for SDM projects
= 2.8 (KDSI)®20 x [1G for EM projects
o0 MNG O [0.09..9.42]
0 TDEV and N as before

Copyright © 1997-1999, jubo@cs.umu.se

25

PVK--HT99

Intermediate COCOMO Summary

0 Works quite well in practice

O TRW datais publicly available

O Needs KLOC as input

O Problems:
0 Estimating KLOC in early project stages
0 Comparison of projects using different LOC counts
0 Outdated metrics base (70s)

0 Solutions:
0 Cross-check using an other estimation technique
0 Standardised LOC counts
0 Continuos model calibration

Copyright © 1997-1999, jubo@cs.umu.se

26

Umea universitet

11/22/99

PVK-Ht98

4Bl COCOMO

0 Recent new version of COCOMO

0 Three stage estimation

0 Stage 1: Application Composition
0 Estimation base: Object points
0 Single standard project type
0 No cost drivers

O Stage 2: Early Design
0 Estimation base: Function points
0 Six project type factors
0 Few cost drivers (6)

0 Stage 3: Postarchitecture
0 Estimation base: Function points or KLOC
0 Six project type factors
O Co%t ecljrivers (16) similar to origina COCOMO intermediate

mol

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 27

Function (Feature) Points

O Estimate functionality captured in requirements

User inputs X (346) =

User outputs X @457 =

User inquiries X (346) =

Files X (7,10,15) =

External interfaces (5,7100 =

(# Algorithms X (346) =)— points oy
Count-total

FP = Count-total x [0.65+ 0.01x 2F;]

Adjustment factors
(FO...5%i=1.14)

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 28

Umea universitet

11/22/99

PVK-Ht98

Cost Estimation Results

“Today, a software cost estimation model is doing well if it can
estimate development costs within 20% of actual costs, 70% of the

Ty

time, and on its own turf (that is, within the class of projects to which
has been calibrated)This is not as precise as we might like, but it i
accurate enough to provide a good deal of help in software engineeri
economic analysis and decision making.”
[Boehm 81]
PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 29
1 Introduction 4 Technical Process
1.1 Project overview 4.1 Methods, tools and techniques
1.2 Project deliverables 4.2 Software documentation
1.3 Evolution of the SPMP 4.3 Project support functions
1.4 Reference Materials
1.5 Definitions and acronyms 5 Work Packages, Schedule, and
Budget
2 Project Organisation 5.1 Work packages
2.1 Process model 5.2 Dependencies
2.2 Organisational structure 5.3 Resource requirements
2.3 Organisational boundaries and interfaces 5.4 Budget and resource allocation
2.4 Project responsibilities 5.5 Schedule
3 Managerial Process
3.1 Management objectives and priorities
3.2 Assumptions, dependencies and constraints
3.3. Rlsk_me}nagement _ _ According to
3.4 Monitoring and controlling mechanisms KSA PSS-05-0
3.5 Staffing plan (see [1SA 96])
PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 30

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Version and Configuration Control

0 Systems change over time
O Different versions over time
O Systems are used
O ... indifferent environments
O ... for different purposes

O ... by different kinds of users
O ... together with various other systems

O Different versions at the same time

O Different sets of consistent versions
(configurations)

Copyright © 1997-1999, jubo@cs.umu.se 31

PVK--HT99

Versioning Problems

0 Double Maintenance Problem
0 Shared Data Problem
O Simultaneous Update Problem

Copyright © 1997-1999, jubo@cs.umu.se 32

Umea universitet

11/22/99

1

PVK-Ht98

PVK--HT99

Storing Versions

0 Naive: Separate files for each version

0 Version handling by numbering schemes

00 Double Maintenance Problem

0 Solution: One origina version plus deltas
0 Forward deltas

0 Backward deltas
0 Forward and backward deltas

0 Shared Data Problem
0 Simultaneous Update Problem

0 Solution: Check-in/check-out mechanism
0 Still aproblem: Merging versions

Copyright © 1997-1999, jubo@cs.umu.se

33

PVK--HT99

Merging Versions

See lecture for an example ...

Not yet available in Powerpoint

Copyright © 1997-1999, jubo@cs.umu.se

34

Umea universitet

11/22/99

PVK-Ht98

Toolsfor Verson and
Configuration Control

0 General: _
0 History- and log-files 0 File comparators
0 Hierarchical file systems 0 Patch generators
o ..
0 Version Control: 0 Configuration control:
0 Modification tracking
O Dependency management
O Control of development an?jpcontro(lzy ag
branches .
0 System creation
O Efficient storage and retrieva > . : .
O Integration with version
O Access control control
O Merging versions 0.
Jo O Make, makefile
D SCCS, RCS, CVS, generdors’
PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 35
Malntenance

The most expensive part of the software lifecycle!

e | change Regues |
ment +=> Change Request
E Impact Analysis
Release Planning

Change Design
Implementation

e Release Change

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 36

Umea universitet

11/22/99

1

PVK-Ht98

PVK--HT99

Change Request Forms

See lecture for an example ...

Not yet available in Powerpoint

Copyright © 1997-1999, jubo@cs.umu.se

37

PVK--HT99

M alntenance

O Kinds of maintenance
O Corrective
O Adaptive
O Perfective
0 Preventive

O Promoters of maintenance
O Modular or oo design
0 Clear interfaces
0 Readable code
0 Good documentation
O..

Copyright © 1997-1999, jubo@cs.umu.se

38

Umea universitet

11/22/99

1

PVK-Ht98

PVK--HT99

Types of Maintenance

80
0 69 organizations
70 [LST 78]*
60 (LS 80]**
50
40 W 487 data
30 processing org.
[LS 81]***
20 B 25 org, (IBM
10 mainframe)
0 . L m [DiNardo 88]

Corrective Adaptive Perfective Preventive

*See [Schach 97].
**See [Somm 96/.
***See [Pfleeger 98].

Copyright © 1997-1999, jubo@cs.umu.se 39

PVK--HT99

M al ntenance Buzzwords

O Software restructuring

0 Code reorganisation
0 Design recovery

0 Reconstruct the design from existing code
O Reengineering/ reverse engineering

0 Restore and enhance missing documents

Copyright © 1997-1999, jubo@cs.umu.se 40

Umea universitet

11/22/99

2

PVK-Ht98

Reverse Engineering

Unstructured code

Structured code

_— Regenerate ™

structured
code

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 41
Reengineering
Unstructured code Specification Structured code
JE— J— Design J—
Reverse| STEP 1
W
f— Update internal =
= 039} specification %Q:?’:o = op&:o
= and design =
PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 42

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Contents

[Introduction O

[J Requirements Engineering [
Ul Design O

[Project Management [

[] Software Design

[Detailed Design and Coding
[Quality Assurance

Copyright © 1997-1999, jubo@cs.umu.se 43

PVK--HT99

[1Software Design

O Introduction

[J Modularization and Metrics

[Classical Design Approaches

[0 (Module Interconnection Languages)

Copyright © 1997-1999, jubo@cs.umu.se 44

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Des gn Activities

Transform the logical model (O RE) into a physical model,
in sufficient detail to permit its physical realization.

O Architectural design
O ldentify the systems components
O Structure the system components
0 Assign functionality to components
0 Assign datato components
0 Plan for future changes
0 Define the structure of the implementation

0 Detalled design
0 Refine the (architectural) components
0 Choose specific data structures
0 Choose specific algorithms
0 Define the logic of the implementation

Copyright © 1997-1999, jubo@cs.umu.se 45

PVK--HT99

Design Principles

O Abstraction

0 Encapsulation

O Information Hiding
O Structuring

[J Modularization

Copyright © 1997-1999, jubo@cs.umu.se 46

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Characterisation of Modules

O Logic entities which fulfil certain tasks

0 Simple entities, i.e. their tasks can be described
clearly and briefly

O Units containing data and/or operations

O Provide resources usable by other modules
O Thelr redisation is encapsulated

O May use resources from other modules

Copyright © 1997-1999, jubo@cs.umu.se 47

PVK--HT99

Modules...

O ... arereplaceable

O ... arefree of side-effects

O ... can be tested separately

O ... can be compiled separately

O ... can be developed independently

[J Modules are abstract/virtual machines

Copyright © 1997-1999, jubo@cs.umu.se 48

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Advantages of Modular Systems

O Easier to understand

0 Only few modules must be studied
O Easier to develop and to test

O Independence
O More portable

0 System dependencies reside in a few dedicated
modules

O Easier to maintain

0 Changes can be traced to few modules
O Easier to reuse

0 Clear dependencies

Copyright © 1997-1999, jubo@cs.umu.se 49

PVK--HT99

Measuring Module Quality

Reliable and early data with significant impact on quality.

0 Classical metrics: 0 More useful:
O LOC O Coupling
0 Cyclomatic number 0 Cohesion
(McCabe) 0 Ean-inff t
0 Control variable an-inflan-ou _
complexity (McClure) O Graph-oriented metrics
O Software science O Weighted methods per
(Halstead) class
0 “Wrong” understanding of 0 Depth/width of
module inheritance trees
O Late applicability o ..
Copyright © 1997-1999, jubo@cs.umu.se 50

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Coupling

O Measures the degree of independence between
different modules
0 Content coupling bad
0 Common coupling
O (External coupling)
0 Stamp coupling
0 Data coupling good

O Each module should communicate with as few
as possible other module

0 Communicating modules should exchange as
few as possible data

0 All communication must be explicit

Copyright © 1997-1999, jubo@cs.umu.se 51

PVK--HT99

How to Uncouple Modules

0 Data coupling
0 Exchange only necessary information
0 Do not pass data through several modules
O Stamp coupling
0 Do not encapsulate unrelated data
0 Control coupling
0 Limit control information in interfaces
0 Common/External coupling
0 Pass data explicitly as parameters

0 Divide complex data into independent parts that can
be exclusively used of different modules

0 Hide data

0 Con Ing usca

Copyright © 1997-1999, jubo@cs.umu.se 52

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Cohesion

0 Measures “relatedness” of the resources
encapsulated in one module
0 Coincidental cohesion bad
O Logical cohesion
0 Temporal cohesion
0 Procedural cohesion
0 Communicational cohesion
0 Sequential cohesion
0 Functional/informational cohesion gld

O Each element in a module should be a necessafy
and essential part of one and only task

Copyright © 1997-1999, jubo@cs.umu.se 53

PVK--HT99

Coupling / Cohesion Summary

0 The modules of a system should be highly
cohesive and loosely coupled

0 Good modularization

Problem:
How can coupling or cohesion be measured?

Copyright © 1997-1999, jubo@cs.umu.se 54

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Fan-in vs Fan-out

Depth

Mg: Fan-in = 2, fan-out = 4

Copyright © 1997-1999, jubo@cs.umu.se 55

PVK--HT99

Fan-in vs Fan-out Rules

O Minimise structures with high fan-out
O Strivefor fan-in as depth increases

Copyright © 1997-1999, jubo@cs.umu.se 56

Umea universitet

11/22/99

2

PVK-Ht98

PVK--HT99

Structured Design

O Evolved from top-down design, modularity, and
structured programming
O Stevens, Myers, Constantine (74)
0 Yourdon, Constantine (79)
0 Page-Jones (80)
O Systematic development of a design (structure
chart) froma DFD
O Transform analysis
O Transaction analysis

Copyright © 1997-1999, jubo@cs.umu.se 57

PVK--HT99

Structure Charts

See lecture for an example ...

Not yet available in Powerpoint

Copyright © 1997-1999, jubo@cs.umu.se 58

Umea universitet

11/22/99

2!

PVK-Ht98

Transform Analysis

0 One or more inputs are transformed into one or
more outputs (“and” semantics)

Incoming flow E Transform flow E Outgoing flow

OO O

D

M
B Main controller
Structure Chart % é H
Incoming flow Transform flow Outgoing flow
controller controller controller

A A YA

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 59
Transform Analysis Example
See lecture for an example ...
Not yet available in Powerpoint
PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 60

Umea universitet

11/22/99

3

PVK-Ht98

PVK--HT99

Transaction Analysis

O Dataflow splits into alternatives (“or” semantics)

Transaction
Reception path | centre
:
—

Alternative flows
DD | ©<Q—Q—(}

Reception path » | Dispatcher
controller
A A" """
Copyright © 1997-1999, jubo@cs.umu.se 61

PVK--HT99

Transaction Analysis Example

See lecture for an example ...

Not yet available in Powerpoint

Copyright © 1997-1999, jubo@cs.umu.se 62

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Structured Design Summary

O Systematic approach to derive adesign from the
analysis results

0 DFDsasinput
O Transform- and transaction analysis
0 Factoring and refinement (rules exist)

0 Good support for - No support for data
functional decomposition abstraction
O Systematic approach - Data spread over the whole

. system
O Incorporates metrics — Only sequential systems

D Uses design heuristics — Metrics and heuristics are
0 Tool support mainly of syntactic nature

- No design “decisions”

Copyright © 1997-1999, jubo@cs.umu.se 63

PVK--HT99

The (Architectural) Design

Document

Service Information 5 Component description
a Abstract 5. Component i
b TOC 5.1 Type
¢ Document status and history 5..2 Purpose

1 Introduction 5..3 Function
1.1 Purpose 5.4 Subordinates
1.2 Scope 5.5 Dependencies
1.3 Glossary 5.6 Interfaces
1.4 References 5..7 Resources
15 Overview 5.8 References

2 System Overview 2:5190 B?tgessmg

3 System Context
3. External interface i

4 System Design 7 Software Requirements Vs.
4.1 Design method Components Traceability Matrix

4.2 Decomposition description (views)

6 Feasibility and Resource Estimates

Slightly adapted from ESA’s Software Engineering Standards PSS-05-0 (see [I-SA 96])
Copyright © 1997-1999, jubo@cs.umu.se 64

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

A Traceability Matrix

O Relates requirements to design artefacts

[0 Shows dependencies
0 Supports change management

Modulel Module2 Module3 Module4 Module ...
Requ 1 X X X
Requ 2 X X X
Requ 3 X
Requ 4 X
Requ ... X

0 Useful for other traceability purposes

Copyright © 1997-1999, jubo@cs.umu.se

65

PVK--HT99

Contents

[Introduction O

[J Requirements Engineering [
Ul Design O

[Project Management [

[] Software Design [

[J Detailed Design and Coding
[Quality Assurance

Copyright © 1997-1999, jubo@cs.umu.se

66

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

[1Detailed Design and Coding

[Detailed Design Activities
[0 Approachesto Detailed Design
[0 Coding Style and Guidelines

Copyright © 1997-1999, jubo@cs.umu.se

67

PVK--HT99

Detailed Design Activities

Give sufficient information, so that the implementation
teams can do a good job.
0 Choose specific data structures and algorithms
O Refine the components from architectural design
0 Define HOW
0 Comments are NOT enough:

procedure replaceText(var text: TextFile; oldWords, newWords: WordList);

(* Replace in the text text all occurrences of the i-th word in oldWords by~ *)

(* the i-th word in newWords; oldWords and newWords must have the same *)
(*length *)

Copyright © 1997-1999, jubo@cs.umu.se

68

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Open Questions

0 What are the word delimiters?
0 blank, EOL, EOF, TAB
o>,y
Y A
O |sthe matching case sensitive?
O Must replacements have the same length?
O How to solve conflicts?
O Several different replacements for the same old wordl
O Some words imewWords appear also inldWords
0 Assume the following:
text.... ABC ...; oldWords. AB, BC, newWords: X, Y

alternativel:. .. XC ...
alternative2: . .. AY ...

Copyright © 1997-1999, jubo@cs.umu.se 69

PVK--HT99

Approaches to Detailed Design

O Informal
0 Structured Egnlish
O Semi-formal
0 Program Design Languages (PDLS)
0 Diagrammatical techniques
O Formal
0 Formal Specifications (e.g. Z, VDM, ...)

O Pre-/postconditions & invariants (sometimes called
programming by contracting)

Copyright © 1997-1999, jubo@cs.umu.se 70

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Programming by Contracting

Clients and servers of services “sign” contracts, i.e. servers
guarantee the effects of their services offered, if and only if
clients use these services correctly.

function getPosition(a: array of Element; el: Element) return integer;
(* Returns the relative position of el in a *)
precondition i [J [a'First..a'Last]: a[i] = el (* such an element exists *)
postcondition a[getPosition(a, el)] = el and a = a.old
(* getPosition really returns the position of e/ in a and a is unchanged *)

You could even specify that the array must be sorted in
ascending order to allow for a faster algorithm by adding
the following to the precondition:

and Oi,j O [a'First..a'Last]: i <j O afi] < alj]

Copyright © 1997-1999, jubo@cs.umu.se 71

PVK--HT99

The Detailed Design Document

Service Information PART 2—Component Design
a Abstract Specifications
b TOC | Component i (its name)
¢ Document status and history 1 Type
PART 1—General Description 1.2 Purpose
1 Introduction 13 Function

I.4 Subordinates

T oomose 1.5 Dependencies
1.2 Scope o e
1.3 Glossary 7 Rﬂe aces
1.4 References I'8 Refources
1.5 Overview . ererences
. . 1.9 Processing
2 Project Standards, Conventions 110 Data

and Procedures . -
2.1 Design standards Appendix A: Source Code Listings

2.2 Documentation standards ~ Appendix B: Software Requirements
2.3 Naming conventions Vs. Com?ionents

2.4 Programming standards Traceability Matrix
2.5 Software development tools
Slightly adapted from ESA’s Software Engineering Standards PSS-05-0 (see [I-SA 96])
Copyright © 1997-1999, jubo@cs.umu.se 72

Umea universitet

11/22/99

3

PVK-Ht98

PVK--HT99

| mplementation

O Transform the detailed design into concrete
programming language code

O Ensure that this code correctly implements the
detailed design

OOPS! Many modern programming languages
contain detailed design elements, e.g. Eiffel

Copyright © 1997-1999, jubo@cs.umu.se 73

PVK--HT99

Programming Style

O Strive for simplicity and clarity
0 Use significant names and consistent typing
0 Describe each component through a prologue
0 General functionality
O Interface

O All important data and restrictions
O History

0 Commit to effective coding and commenting guidelines

0 Use simple statement constructions and program layout

0 Encode input and output to ssimplify data transfer and
error recovery

0 Strive for efficient code, but not at the cost of readability
and simplicity (Jackson’s optimisation rules)
0 Don‘tdo it
O For experts: Don’t do it now, first produce a complete, correct,
and clear non-optimised version

Copyright © 1997-1999, jubo@cs.umu.se 74

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Programming Guidelines

0 Use separate files for each module, class, macro,
inling, ... definition

0 Use separate files for the definition/specification
and implementation when possible

0 Cal operations only when all preconditions are
satisfied (this is the caller’s responsibility)

O Separate policy and implementation (e.g. the

scaling itself and setting the scaling factor)

0 Don’t use modes (provide separate operations)

0 Don’t (over-) use typecasting
O Avoid pointers to pointers
0 Commit to effective naming conventions

Copyright © 1997-1999, jubo@cs.umu.se

75

PVK--HT99

Contents

[Introduction O

[J Requirements Engineering [
Ul Design O

[Project Management [

[] Software Design [

[Detailed Design and Coding [
[] Quality Assurance

Copyright © 1997-1999, jubo@cs.umu.se

76

Umea universitet

11/22/99

3.

PVK-Ht98

PVK--HT99

[1Quality Assurance

[Introduction

[Testing Phases and Approaches
[J Black-box Testing

[J White-box Testing

Copyright © 1997-1999, jubo@cs.umu.se 7

PVK--HT99

What is Quality Assurance?

QA is the combination of planned and unplanned
activities to ensure the fulfillment of predefined quality
standards.

O Constructive vs analytic approaches to QA
O Qualitative vs quantitative quality standards

0 Measurement

O Derive qualitative factors from measurable
guantitative factors

0 Software Metrics

Copyright © 1997-1999, jubo@cs.umu.se 78

Umea universitet

11/22/99

3!

PVK-Ht98

Umea universitet

4Bl Approachesto QA

0 Constructive Approaches

Usage of methods, languages, and tools that ensure
the fulfillment of some quality factors.

0 Syntax-directed editors
0 Type systems
0 Transformational programming

0 Coding guidelines
0

O Analytic approaches
Usage of methods, languages, and tools to observe the
current quality level.
O Inspections
0 Static analysistools (e.g. lint)
O Testing
o ...
PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 79

Fault vs Failure

—» 52 —» D
can lead to P

can lead to

human error fault failure

O Different types of faults
0 Different identification techniques
0 Different testing techniques
0 Fault prevention and -detection strategies should
be based on expected fault profile

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 80

11/22/99

4

PVK-Ht98

PVK--HT99

HP’s Fault Classification

Fault origin: WHERE?

ecification/ : Environment/ | Documen-
rse%ui rements Design | | Code | support tation | | Other |

Requirements HW interface (Inter-)ProoessJ Logic Test HW
‘; or communication
< specifications SW interface Computation Test SW
T Data definition
a Functionality User interface Data handling || Integration SW

Module design
o Functional Module Devel opment
e description Logic interface/ tools
z description implementation
-
§ Error checking Standards
=
Standards

Missing Unclear Wrong Changed Better way

Fault mode: WHY?
Copyright © 1997-1999, jubo@cs.umu.se

81

PVK--HT99

Fault Profile of aHP Division

11%

6%

32%

See [Pfleeger 98].

O Data handling
H Documentation
B Requirements
B Hardware

B Logic
B Computation
B Other code

O Process/interprocess

Copyright © 1997-1999, jubo@cs.umu.se

82

Umea universitet

11/22/99

PVK-Ht98

Umea universitet

Testing Phases

Pre-implementation
test

Design System Other Customer
specifications functional software requirements
requirements requirements specification

Component code\
c
S

_User
environment

test \g
: Integration Function Performance Acceptance
: test [7| test [7| test [7| (af)test

Installation
test

System
test

Component code

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se

system

Integrated Functioning Verified Accepted,
modules system software validated

SYSTEM
IN USE!

83

Pre-Implementation Testing

O Inspections

0 See guest lecture
0 Walkthrough

0 Inteams

0 Examine source code/detailed design
O Reviews

0 Moreinformal

0 Often done by document owners

O Advantages O Disadvantages

O Effective O Expensive
O High learning effect
O Distributing system knowledge

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se

84

11/22/99

PVK-Ht98

PVK--HT99

Integration Testing

O Different strategies affect

0 Design strategy

O Timeto first working prototype

0 Amount of parallelism

0 Additional work for test drivers/-stubs
O Bottom-up integration

Testall

TestBEF TestC TestD,G

TestE TestF TestG

O Top-down integration
O Big-bang integration
O Sandwich integration (combined td/bu)

Copyright © 1997-1999, jubo@cs.umu.se

85

PVK--HT99

Testing vs “Proofing” Correctness

O Veification
0 Check the design/code against the requirements
0 Are we building the product right?

O Vaidation

0 Check the product against the expectations of the
customer

0 Are we building the right product?
O Testing

Testing is the process in which a (probably unfinished)

program is executed with the goal to find errors.

[Myers 76]

Testing can only show the presence of errors, never

their absence. [Dijkstra 67?]

0 Testing can neither proof that a program is error free,

nor that it is correct

Copyright © 1997-1999, jubo@cs.umu.se

86

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Testing Principles

0 Construction of test suites
0 Plan tests under the assumption to find errors
O Try typica and untypical inputs

O Build classes of inputs and choose representatives of
each class

O Carrying out tests
O Testers # implementers
0 Define the expected results before running a test
0 Check for superfluous computation
0 Check test results thoroughly
0 Document test thoroughly
0 Simplify test
O Divide programsin separately testable units
0 Develop programs test friendly
O Each test must be reproducible

Copyright © 1997-1999, jubo@cs.umu.se 87

PVK--HT99

Test Methods

O Structural testing (white-box, glass-box)
0 Uses code/detailed design isto develop test cases
O Typically used in unit testing

O Approaches:
a Coveragebased teStI ng develop develop perform perform
0 Symbolic execution B Gaeot cases ey s
o Dataflow analysis
L Lo,
O Functional testing (black-box)
0 Uses function specifications to develop test cases
O Typically used in system testing
O Approaches:
0 Equivalence partitioning
0 Border case analysis
e Copyright © 1997-1999, jubo@cs.umu.se 88

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Test Preparation

0 Exhaustive testing is prohibited, because of the
combinatorial explosion of test cases

00 Choose representative test data

for i := 1 to 100 do i pathstotest #tests
if a = b then 1 Xy 2
X 2 XXV, VXYY 4
else 3 XXX, XXY, ... 8
Y,
100 2100

20210 -2 > 2,5 010%

O With 106 tests/sec this would take 811016 years
0 Choose test data (fest cases)

Copyright © 1997-1999, jubo@cs.umu.se 89

PVK--HT99

How to Choose Test Data

0 Example 1

if ((x +y + 2z)/3 = xX) then
writel n(“x,y, z are equal”)
else
writeln(“x, y, z are unequal”);

Test case 1: x=1,y=2, z=3
Test case 2: X=y=z=2
0 Both paths must be tested!
0 Example 2
if (d=0) then
writeln(“division by zero”)
else
x =y/n;
)
x =yln;

0 How can | know there is a “path”?

Copyright © 1997-1999, jubo@cs.umu.se 90

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Test Case Development

O Problems:
0 Systematic way to develop test cases
0 Find a satisfying set of test cases

0 Test case # test data
O Test data: Inputs devised to test the system

0 Test case:
0 Situation to test
O Inputs to test this situation
O Expected outputs
0 Test are reproducible

0 Equivaence partitioning
00 Coverage-based testing

Copyright © 1997-1999, jubo@cs.umu.se 91

PVK--HT99

Equivalence Partitioning

Input data Input- and output data can be
grouped into classes where
al membersin the class

\ \ /‘ behave in a comparable way.
| i .
\ anomalovsbenavour 0 Define the classes
0 Choose representatives
0 Typica element
@

Outputs which reveal 0 Borderline cases
the presence of faults

Output data

class 1: x < 25
x 0 [25 .. 100] <class 2: x >= 25 and x <= 100
class 3: x > 100

Copyright © 1997-1999, jubo@cs.umu.se 92

Umea universitet

11/22/99

4

PVK-Ht98

PVK--HT99

Equivalence Partitioning Example

See lecture ...

Not yet available in Powerpoint

Copyright © 1997-1999, jubo@cs.umu.se

93

PVK--HT99

Coverage-based Testing

O Derive test cases from the structure of the code
O Build the flow graph of the code
0 Cover the graph with tests as densely as possible

O Flow graphs:
if 3 then /@Q\
else @\ @
C, @/
d

while a do @?_\,@
b;
©

c

Copyright © 1997-1999, jubo@cs.umu.se

94

Umea universitet

11/22/99

PVK-Ht98

4Bl Statement Coverage

O Every statement is at least executed oncein
some test

@
if a then
b; (b)
C
O

O With a=t r ue all statements are executed, but
a=f al se isnever tested!

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 95

Branch Coverage

O For every decision point in the graph, each
branch is at |east chosen once

if (X or not (Y and Z) and ... then

b: = a

0 Witha=t r ue and a=f al se al pathsare
executed, but all combinations of conditions are
never tested!

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 96

Umea universitet

11/22/99

4

PVK-Ht98

4Bl Condition Coverage

0 Test al combinations of conditions in boolean
expressions at least once

if (X or not (Y and Z) and ... then
b;
c:=(d+e*f - g) divop(h, i, j);

0 Why in boolean expressions only?

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 97

ﬁ Bl Expression Coverage

0 Each expression must take so many values that
it cannot be replaced by a simpler one where the
test still produces the same results

c:=d+e - f;

test with e=f 0 could besimplifiedto c :
test with d=f O could besimplifiedto c :

0 Choose dze#f

0 Only feasible with tool support

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 98

Umea universitet

11/22/99

4!

PVK-Ht98

PVK--HT99

Coverage-based Testing

O Advantages
O Systematic way to develop test cases
0 Simple model of underlying program
0 Measurable results (the coverage)
0 Extensive tool support
0 Flow graph generators
0 Test data generators
0 Bookkeeping
0 Documentation support
O Disadvantages
0 Code must be available
0 Does not (yet) work well for data-driven programs

Copyright © 1997-1999, jubo@cs.umu.se 99

PVK--HT99

Branch Coverage Example

See lecture ...

Not yet available in Powerpoint

Copyright © 1997-1999, jubo@cs.umu.se 100

Umea universitet

11/22/99

S

PVK-Ht98

PVK--HT99

Further Testing Techniques

O Dataflow analysis
0 Symbolic execution
O Mutation analysis
O Regression testing

Copyright © 1997-1999, jubo@cs.umu.se 101

PVK--HT99

Testing Tools/ Support

O Test data generators
O Input: Program + testing strategy
O Output: Sets of input data

O Profilers
0 Instrument code to collect run-time data
0 Time spent in operations
0 Number of callsto operations
o0 Number of loop iterations
O..
O Find bottle-necks
O Indicate dead code

0 Simulators

0 Common in hard-/software systems and/or real-time
systems

0 Emulate critical parts by software

Copyright © 1997-1999, jubo@cs.umu.se 102

Umea universitet

11/22/99

PVK-Ht98

PVK--HT99

Testing Tools/ Support

O Debuggers
O Manual code instrumentation
O Inspect/trace variables

O..

O File comparators
O E.g. for regression testing
O Test-stub/-driver generators

0 Simulate client or server components, which are not
yet available

Copyright © 1997-1999, jubo@cs.umu.se 103

PVK--HT99

References

[Boehm 81]
[BuRa70]

[ESA 96]

[GoRu 95]
[Hump 95]

[Myers 79]
|Pfleeger 98|

[Schach 97]
[Somm 96]
[Yourdon 92]

B.W. Boehm, Sofiware Engineering Economics, Prentice Hall, 1981.
“Classical.”

J.N. Buxton, B. Randell, Proceedings of the 1969 NATO Conference on
Software Engineering, NATO Science Committee, 1970. “Historical.”

C. Mazza, J. Fairclough, B. Méelton, D. de Pablo, A. Scheffer, R. Stevens,
M. Jones, G. Alvisi, Software Engineering Guides, Prentice Hall, 1996.
“Guide to ESA Standards.”

A. Goldberg, K.S. Rubin, Succeeding with Objects, Addison-Wesley,
1995. Object-Oriented Software Engineering.

W.S. Humphrey, 4 Discipline for Software Engineering, Addison-
Wesley, 1995. Main PSP texthook.

G.J. Myers, The Art of Software Testing, Wiley, 1979. “Classical.”

S.L. Pfleeger, Software Engineering, Theory and Practice, Prentice
Hall, 1998. Course textbook.

S.R. Schach, Software Engineering with Java, Irwin, 1997.
|. Sommerville: Software Engineering, Addison-Wes ey, 1996.

E. Yourdon, Decline and Fall of the American Programmer, Prentice
Hall, 1992. Critical Software Engineering textoook.

Copyright © 1997-1999, jubo@cs.umu.se 104

Umea universitet

11/22/99

