
39.�+W�� ��������

8PHn�XQLYHUVLWHW �

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 1

Contents
➩ Introduction ✔

➩Requirements Engineering ✔

➩UI Design ✔

➩3URMHFW�0DQDJHPHQW

➩Software Design

➩Detailed Design and Coding

➩Quality Assurance

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 2

➩Project Management
➩Project Management Activities

➩Project Scheduling

➩Cost Estimation

➩Version- and Configuration Control

➩Maintenance

39.�+W�� ��������

8PHn�XQLYHUVLWHW �

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 3

Typical Work-load Distribution

6HH�OHFWXUH����

1RW�\HW�DYDLODEOH�LQ�3RZHUSRLQW

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 4

Project Management Activities
◆ Project acquisition
◆ Project planning

❏ Resource assessment
❏ Risk and option analysis

◆ Cost estimation
◆ Project scheduling

❏ Work breakdown structure
❏ Effort distribution
❏ Resource assignment

◆ Project tracking and control
◆ Risk management
◆ Reporting

39.�+W�� ��������

8PHn�XQLYHUVLWHW �

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 5

Project Resources
◆ People

❏ Required skills
❏ Availability
❏ Duration of tasks
❏ Start date

◆ Hardware and software tools
❏ Description
❏ Availability
❏ Duration of use
❏ Delivery date

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 6

Risks and Option Analysis
◆ Compare different development alternatives

◆ Evaluate their risks

◆ Select best alternative

➨ Tools
❏ Polar graph

❏ Decision tree

❏ Forms

❏ ...

39.�+W�� ��������

8PHn�XQLYHUVLWHW �

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 7

Top Ten Project Risks
◆ Staff deficiencies
◆ Unrealistic schedules and budgets
◆ Developing the wrong functions
◆ Developing the wrong interface
◆ Over-engineering
◆ Changing requirements
◆ Externally developed items
◆ Externally performed tasks
◆ Performance problems
◆ Assumptions on technology

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 8

Polar Graphs

Portabilty Efficiency

ScheduleReliability

CostReuse

$OWHUQDWLYH�$

$OWHUQDWLYH�%

$OWHUQDWLYH�&

39.�+W�� ��������

8PHn�XQLYHUVLWHW �

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 9

Analysis Example

$OWHUQDWLYH

A

B

C

5HODWLYH

HIILFLHQF\

0.8

1

0.6

7RROV

LQYHVWPHQW

250.000

500.000

500.000

6FKHGXOH

�\HDUV�

2

1.3

2

6WDII�XWLOL]DWLRQ

���

85

70

100

5LVN

0.75

0.6

0.9

&RVW

�6(.�

7.500.000

8.500.000

7.000.000

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 10

Analysis Example (Polar Graph)

Staff
utilisation

Schedule

EfficiencyCost

Tools
investment

Risk

$OWHUQDWLYH�$

$OWHUQDWLYH�%

$OWHUQDWLYH�&

���

��\

��0

�

�

�

�

����

���.

��\

���.

39.�+W�� ��������

8PHn�XQLYHUVLWHW �

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 11

Analysis Example (Forms)
2EMHFWLYHV

&RQVWUDLQWV

$OWHUQDWLYHV

5LVNV

5LVN�UHVROXWLRQ

VWUDWHJ\

5HVXOWV

3ODQV

&RPPLWPHQW

'HYHORS�D�VRIWZDUH�FRPSRQHQWV�FDWDORJXH

Within one year
Must support all existing component types
Must cost less than 1 MSEK

Buy existing information retrieval (IR) software
Buy a database and develop the catalogue using the query language
Develop a special-purpose catalogue

May be impossible within the given constraints
Catalogue functionality may be inappropriate

Develop a prototype to clarify requirements
Commission a consultants report on existing IR systems
Relax the time constraints

IR systems are too inflexible
Identified requirements cannot be met
The prototype using a DBMS may be enhanced to to a complete system
Special-purpose catalogue development is not cost effective

Develop the catalogue using the existing DBMS by enhancing the
prototype and building a GUI

Fund further 12 months of development

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 12

Analysis Example (Decision Tree)

*RDO�

'HYHORS

6\VWHP;

3.8 MSEK

4.5 MSEK

2.75 MSEK

3.1 MSEK

4.9 MSEK

2.1 MSEK

4 MSEK

3.5 MSEK

5 MSEK

%XLOG

5HXVH

%X\

&RQWUDFW

6LPSOH������

'LIILFXOW������

0LQRU�FKDQJHV������

0DMRU�FKDQJHV������

6LPSOH������

&RPSOH[������

0LQRU�FKDQJHV������

0DMRU�FKDQJHV������

:LWKRXW�FKDQJHV������

:LWK�FKDQJHV������

39.�+W�� ��������

8PHn�XQLYHUVLWHW �

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 13

Risk Management

5LVN�PDQDJHPHQW

Risk assessment

Risk control

Risk identification

Risk analysis

Risk prioritisation

Checklist
Decomposition
Assumption analysis
Decision driver analysis

System dynamics
Performance models
Cost models
Network analysis
Decision analysis
Quality risk factor analysis

Risk exposure
Compound risk reduction

Buying information
Risk avoidance
Risk transfer
Risk reduction leverage
Development process

Risk element planning
Risk plan integration

Risk mitigation
Risk monitoring and reporting
Risk reassessment

Risk reduction

Risk management planning

Risk resolution

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 14

Define Work Breakdown Structure
◆ 3URMHFW�IXQFWLRQ

❏ Continue throughout
the project

❏ Not bound to specific
phases

◆ $FWLYLW\
❏ Major work unit
❏ Start date
❏ End date
❏ Consumes resources
❏ Results in work products

(and milestones)

3URMHFW

Phase 1

Phase 2

Phase N

Step 1

Step 2

Step 1

Step 2

Step 1

Step 2

Activity 1
Activity 2
Activity 3

Activity 1
Activity 2 Task 1

Task 2
Task 3

39.�+W�� ��������

8PHn�XQLYHUVLWHW �

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 15

Schedule Activities
◆ Almost all activities depend on the completion

of some other activities
◆ Many activities can be performed in parallel
◆ Track usage of resources
➨ Organisation necessary to balance work-load,

costs, and duration
❏ PERT chart (activity network/task graph)
➨Critical path
➨Project time-line (Gantt chart)
➨Resource table

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 16

PERT Charts
3rogram (valuation and 5eview 7echnique
◆ Graph

❏ Nodes = activities/tasks and estimated duration
❏ Edges = dependencies

◆ Compute
❏ Slack time = available time - estimated duration
❏ Critical path

A path is critical when it contains an activity that, if
delayed, will cause a delay of the whole project.

39.�+W�� ��������

8PHn�XQLYHUVLWHW �

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 17

A Gantt Chart (Project Time Line)

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 18

Another Gantt Chart

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 19

Resource Tables

6HH�OHFWXUH����

1RW�\HW�DYDLODEOH�LQ�3RZHUSRLQW

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 20

Cost Estimation
◆ Approach

❏ Decompose problem

❏ Check for experiences/
data on subproblems

❏ Make qualified
estimations

❏ (Make at least two
independent estimates)

◆ Problems:
❏ What are good measures?
❏ Do the estimates effect the

result?
❏ Does the type of software effect

the result?
❏ Does the project environment

effect the result?
❏ ...

➨ Use empirical and historical data
➨ Algorithmic cost modelling

❑ COCOMO (based on LOC)
❑ FP (based on IXQFWLRQ�SRLQWV)

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 21

COCOMO
◆ &onstructive &ost 0odeling [Boehm 81]
◆ Based on publicly available historical data of 63

TRW projects
◆ Basic assumptions:

❏ Requirements change only slightly during the project
❏ There is good project management
❏ The historical data is representative
❏ Assigning more resources to the project does NOT

result in linear decreasing development time
◆ Basic model:

❏ Effort = a •(KDSI)b

KDSI = Kilo Delivered Source Instructions (≈ LOC - comments)
The a and b factors vary depending on the type of project
Effort is measured in PM (Person Months = 152h of work)

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 22

COCOMO Project Types
◆ OM: Organic Mode projects

❏ Small teams which are familiar with the type of
application

❏ Development in a familiar environment

◆ EM: Embedded Mode projects
❏ Large and inexperienced teams
❏ Many constraints

◆ SDM: Semi Detached Mode projects
❏ Between OM- and EM projects

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 23

COCOMO Basic Model
◆ PM: Person Months

= 2.4 (KDSI)1.05 for OM projects
= 3 (KDSI)1.12 for SDM projects
= 3.6 (KDSI)1.20 for EM projects

◆ TDEV: Time for DEVelopment
= 2.5 (PM)0.38 for OM projects
= 2.5 (PM)0.35 for SDM projects
= 2.5 (PM)0.32 for EM projects

◆ N: Number of personnel
= PM / TDEV

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 24

This is Too Simplistic!?
◆ There are many FRVW�GULYHUV that effect effort

❏ Programming language

❏ Development methods

❏ Tools and environments

❏ Experience and capabilities of the development team

❏ Available time

❏ Requirements volatility

❏ ...

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 25

COCOMO Intermediate Model
◆ Takes into account 15 cost drivers, which are

ranked on a scale from YHU\�ORZ to H[WUD�KLJK
❏ Product attributes (e.g. required reliability)
❏ Computer system attributes (e.g. time/space

constraints)
❏ Personnel attributes (e.g. language experience)
❏ Project attributes (e.g. tools usage)

◆ PM: Person Months
= 3.2 (KDSI)1.05 × ΠCi for OM projects

= 3 (KDSI)1.12 × ΠCi for SDM projects

= 2.8 (KDSI)1.20 × ΠCi
 for EM projects

◆ ΠCi ∈ [0.09..9.42]
◆ TDEV and N as before

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 26

Intermediate COCOMO Summary
◆ Works quite well in practice
◆ TRW data is publicly available
◆ Needs KLOC as input
◆ Problems:

❏ Estimating KLOC in early project stages
❏ Comparison of projects using different LOC counts
❏ Outdated metrics base (70s)

◆ Solutions:
❏ Cross-check using an other estimation technique
❏ Standardised LOC counts
❏ Continuos model calibration

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 27

COCOMO II
◆ Recent new version of COCOMO
◆ Three stage estimation

❏ Stage 1: Application Composition
❍ Estimation base: Object points
❍ Single standard project type
❍ No cost drivers

❏ Stage 2: Early Design
❍ Estimation base: Function points
❍ Six project type factors
❍ Few cost drivers (6)

❏ Stage 3: Postarchitecture
❍ Estimation base: Function points or KLOC
❍ Six project type factors
❍ Cost drivers (16) similar to original COCOMO intermediate

model

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 28

Function (Feature) Points
◆ Estimate functionality captured in requirements

User inputs x (3,4,6) =
User outputs x (4,5,7) =
User inquiries x (3,4,6) =
Files x (7,10,15) =
External interfaces x (5,7,10) =
(# Algorithms x (3,4,6) =)

Count-total

Feature
points only

FP = Count-total x [0.65 + 0.01 x ΣFi]

Adjustment factors
(Fi ∈ {0,...,5}; i = 1..14)

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 29

Cost Estimation Results

“Today, a software cost estimation model is doing well if it can
estimate development costs within 20% of actual costs, 70% of the
time, and on its own turf (that is, within the class of projects to which it
has been calibrated)This is not as precise as we might like, but it is
accurate enough to provide a good deal of help in software engineering
economic analysis and decision making.”

[Boehm 81]

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 30

The Project Plan
� ,QWURGXFWLRQ

1.1 Project overview
1.2 Project deliverables
1.3 Evolution of the SPMP
1.4 Reference Materials
1.5 Definitions and acronyms

� 3URMHFW�2UJDQLVDWLRQ
2.1 Process model
2.2 Organisational structure
2.3 Organisational boundaries and interfaces
2.4 Project responsibilities

� 0DQDJHULDO�3URFHVV
3.1 Management objectives and priorities
3.2 Assumptions, dependencies and constraints
3.3. Risk management
3.4 Monitoring and controlling mechanisms
3.5 Staffing plan

� 7HFKQLFDO�3URFHVV
4.1 Methods, tools and techniques
4.2 Software documentation
4.3 Project support functions

� :RUN�3DFNDJHV��6FKHGXOH��DQG
%XGJHW
5.1 Work packages
5.2 Dependencies
5.3 Resource requirements
5.4 Budget and resource allocation
5.5 Schedule

$FFRUGLQJ�WR

(6$�366�����

�VHH�>(6$���@�

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 31

◆ Systems change over time

➨ Different versions over time

◆ Systems are used
❏ ... in different environments
❏ ... for different purposes
❏ ... by different kinds of users
❏ ... together with various other systems

➨ Different versions at the same time

➨ Different sets of consistent versions
(configurations)

Version and Configuration Control

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 32

◆ Double Maintenance Problem

◆ Shared Data Problem

◆ Simultaneous Update Problem

Versioning Problems

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 33

◆ Naive: Separate files for each version
◆ Version handling by numbering schemes
➨ Double Maintenance Problem
◆ Solution: One original version plus GHOWDV

❏ Forward deltas
❏ Backward deltas
❏ Forward and backward deltas

➨ Shared Data Problem
➨ Simultaneous Update Problem

◆ Solution: Check-in/check-out mechanism

◆ Still a problem: Merging versions

Storing Versions

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 34

Merging Versions

6HH�OHFWXUH�IRU�DQ�H[DPSOH����

1RW�\HW�DYDLODEOH�LQ�3RZHUSRLQW

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 35

Tools for Version and
Configuration Control
◆ General:

❏ History- and log-files
❏ Hierarchical file systems
❏ ...

◆ Version Control:
❏ Modification tracking
❏ Control of development

branches
❏ Efficient storage and retrieval
❏ Access control
❏ Merging versions
❏ ...

➨ SCCS, RCS, CVS, ...

❏ File comparators
❏ Patch generators

◆ Configuration control:

❏ Dependency management
and control

❏ System creation
❏ Integration with version

control
❏ ...

➨ Make, makefile
generators, ...

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 36

Maintenance
The most expensive part of the software lifecycle!

Require-
ments Change Request

Impact Analysis

Release Planning

Change Design

Implementation

Test

Release Change

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 37

Change Request Forms

6HH�OHFWXUH�IRU�DQ�H[DPSOH����

1RW�\HW�DYDLODEOH�LQ�3RZHUSRLQW

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 38

Maintenance
◆ Kinds of maintenance

❏ Corrective

❏ Adaptive

❏ Perfective

❏ Preventive

◆ Promoters of maintenance
❏ Modular or oo design

❏ Clear interfaces

❏ Readable code

❏ Good documentation

❏ ...

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 39

Types of Maintenance

�

��

��

��

��

��

��

��

��

&RUUHFWLYH $GDSWLYH 3HUIHFWLYH 3UHYHQWLYH

���RUJDQL]DWLRQV

>/67���@

>/6���@

����GDWD

SURFHVVLQJ�RUJ�

>/6���@

���RUJ���,%0

PDLQIUDPH�

>'L1DUGR���@

6HH�>6FKDFK���@�

6HH�>6RPP���@�

6HH�>3IOHHJHU���@�

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 40

Maintenance Buzzwords
◆ Software restructuring

❏ Code reorganisation

◆ Design recovery
❏ Reconstruct the design from existing code

◆ Reengineering/ reverse engineering
❏ Restore and enhance missing documents

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 41

Unstructured code Structured code

Simplify
internal

representation

Regenerate
structured

code

Reverse Engineering

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 42

8QVWUXFWXUHG�FRGH 6WUXFWXUHG�FRGH

Reverse
engineer

Regenerate
new

system

67(3��

6SHFLILFDWLRQ

Design

Update internal
specification
and design

67(3��

67(3��

Reengineering

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 43

Contents
➩ Introduction ✔

➩Requirements Engineering ✔

➩UI Design ✔

➩Project Management ✔

➩6RIWZDUH�'HVLJQ

➩Detailed Design and Coding

➩Quality Assurance

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 44

➩Software Design
➩ Introduction

➩Modularization and Metrics

➩Classical Design Approaches

➩ (Module Interconnection Languages)

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 45

Design Activities

◆ Architectural design
❏ Identify the systems components
❏ Structure the system components
❏ Assign functionality to components
❏ Assign data to components
❏ Plan for future changes
➨ Define the structure of the implementation

◆ Detailed design
❏ Refine the (architectural) components
❏ Choose specific data structures
❏ Choose specific algorithms
➨ Define the logic of the implementation

Transform the logical model (➔ RE) into a physical model,
in sufficient detail to permit its physical realization.

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 46

Design Principles
◆ Abstraction

◆ Encapsulation

◆ Information Hiding

◆ Structuring

➨Modularization

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 47

Characterisation of Modules
◆ Logic entities which fulfil certain tasks

◆ Simple entities, i.e. their tasks can be described
clearly and briefly

◆ Units containing data and/or operations

◆ Provide resources usable by other modules

◆ Their realisation is encapsulated

◆ May use resources from other modules

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 48

Modules ...
◆ ... are replaceable

◆ ... are free of side-effects

◆ ... can be tested separately

◆ ... can be compiled separately

◆ ... can be developed independently

➨Modules are abstract/virtual machines

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 49

Advantages of Modular Systems
◆ Easier to understand

❏ Only few modules must be studied

◆ Easier to develop and to test
❏ Independence

◆ More portable
❏ System dependencies reside in a few dedicated

modules

◆ Easier to maintain
❏ Changes can be traced to few modules

◆ Easier to reuse
❏ Clear dependencies

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 50

Measuring Module Quality

◆ Classical metrics:
❏ LOC
❏ Cyclomatic number

(McCabe)
❏ Control variable

complexity (McClure)
❏ Software science

(Halstead)
➨ “Wrong” understanding of

module
➨ Late applicability

Reliable and early data with significant impact on quality.

◆ More useful:
❏ Coupling

❏ Cohesion

❏ Fan-in/fan-out

❏ Graph-oriented metrics

❏ Weighted methods per
class

❏ Depth/width of
inheritance trees

❏ ...

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 51

Coupling
◆ Measures the degree of independence between

different modules
❏ Content coupling

❏ Common coupling

❏ (External coupling)

❏ Stamp coupling

❏ Data coupling

➨ Each module should communicate with as few
as possible other module

➨ Communicating modules should exchange as
few as possible data

➨ All communication must be explicit

bad

good

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 52

How to Uncouple Modules
◆ Data coupling

❏ Exchange only necessary information
❏ Do not pass data through several modules

◆ Stamp coupling
❏ Do not encapsulate unrelated data

◆ Control coupling
❏ Limit control information in interfaces

◆ Common/External coupling
❏ Pass data explicitly as parameters
❏ Divide complex data into independent parts that can

be exclusively used of different modules
❏ Hide data

◆ Content coupling 86&+�

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 53

Cohesion
◆ Measures “relatedness” of the resources

encapsulated in one module
❏ Coincidental cohesion

❏ Logical cohesion

❏ Temporal cohesion

❏ Procedural cohesion

❏ Communicational cohesion

❏ Sequential cohesion

❏ Functional/informational cohesion

➨ Each element in a module should be a necessary
and essential part of one and only task

bad

good

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 54

Coupling / Cohesion Summary
◆ The modules of a system should be highly

cohesive and loosely coupled
➨ Good modularization

3UREOHP�
How can coupling or cohesion be measured?

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 55

Fan-in vs Fan-out

M1

M3

M16M15M14M13M12M11M10

M18M17 M19

M4M2

M9M8M7M6M5

M9: Fan-in = 2, fan-out = 4

Depth

Width

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 56

Fan-in vs Fan-out Rules
◆ Minimise structures with high fan-out
◆ Strive for fan-in as depth increases

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 57

Structured Design
◆ Evolved from top-down design, modularity, and

structured programming
❏ Stevens, Myers, Constantine (74)
❏ Yourdon, Constantine (79)
❏ Page-Jones (80)

◆ Systematic development of a design (VWUXFWXUH
FKDUW) from a DFD
❏ Transform analysis
❏ Transaction analysis

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 58

Structure Charts

6HH�OHFWXUH�IRU�DQ�H[DPSOH����

1RW�\HW�DYDLODEOH�LQ�3RZHUSRLQW

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 59

Transform Analysis
◆ One or more inputs are transformed into one or

more outputs (“and” semantics)

')'

Transform flowIncoming flow Outgoing flow

6WUXFWXUH�&KDUW

Main controller

Incoming flow
controller

Outgoing flow
controller

Transform flow
controller

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 60

Transform Analysis Example

6HH�OHFWXUH�IRU�DQ�H[DPSOH����

1RW�\HW�DYDLODEOH�LQ�3RZHUSRLQW

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 61

Transaction Analysis
◆ Dataflow splits into alternatives (“or” semantics)

Transaction
centreReception path Alternative flows

6WUXFWXUH�&KDUW

Main controller

Reception path
controller

Dispatcher

')'

Further analysis

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 62

Transaction Analysis Example

6HH�OHFWXUH�IRU�DQ�H[DPSOH����

1RW�\HW�DYDLODEOH�LQ�3RZHUSRLQW

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 63

Structured Design Summary
◆ Systematic approach to derive a design from the

analysis results
◆ DFDs as input
◆ Transform- and transaction analysis
◆ Factoring and refinement (rules exist)

✚ Good support for
functional decomposition

✚ Systematic approach
✚ Incorporates metrics
✚ Uses design heuristics
✚ Tool support

0No support for data
abstraction

0Data spread over the whole
system

0Only sequential systems
0Metrics and heuristics are

mainly of syntactic nature
0No design “decisions”

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 64

The (Architectural) Design
Document

6OLJKWO\�DGDSWHG�IURP�(6$¶V�6RIWZDUH�(QJLQHHULQJ�6WDQGDUGV�366�������VHH�>(6$���@�

6HUYLFH�,QIRUPDWLRQ
a Abstract
b TOC
c Document status and history

� ,QWURGXFWLRQ
1.1 Purpose
1.2 Scope
1.3 Glossary
1.4 References
1.5 Overview

� 6\VWHP�2YHUYLHZ

� 6\VWHP�'HVLJQ
4.1 Design method
4.2 Decomposition description �YLHZV�

� 6\VWHP�&RQWH[W
3.i External interface i

� &RPSRQHQW�GHVFULSWLRQ
5.i Component i

5.i.1 Type
5.i.2 Purpose
5.i.3 Function
5.i.4 Subordinates
5.i.5 Dependencies
5.i.6 Interfaces
5.i.7 Resources
5.i.8 References
5.i.9 Processing
5.i.10 Data

� 6RIWZDUH�5HTXLUHPHQWV�9V�
&RPSRQHQWV�7UDFHDELOLW\�0DWUL[

�)HDVLELOLW\�DQG�5HVRXUFH�(VWLPDWHV

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 65

A Traceability Matrix
◆ Relates requirements to design artefacts

➨ Shows dependencies
➨ Supports change management

➨ Useful for other traceability purposes

Module 1 Module 2 Module 3 Module 4 Module ...

Requ 1

Requ 2

Requ 3

Requ 4

Requ ...

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 66

Contents
➩ Introduction ✔

➩Requirements Engineering ✔

➩UI Design ✔

➩Project Management ✔

➩Software Design ✔

➩'HWDLOHG�'HVLJQ�DQG�&RGLQJ

➩Quality Assurance

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 67

➩Detailed Design and Coding
➩Detailed Design Activities

➩Approaches to Detailed Design

➩Coding Style and Guidelines

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 68

Detailed Design Activities

◆ Choose specific data structures and algorithms
◆ Refine the components from architectural design
◆ Define HOW
◆ Comments are NOT enough:

Give sufficient information, so that the implementation
teams can do a good job.

SURFHGXUH replaceText(YDU text: TextFile; oldWords, newWords: WordList);
(* Replace in the text WH[W all occurrences of the i-th word in ROG:RUGV by *)
(* the i-th word in QHZ:RUGV; ROG:RUGV�and�QHZ:RUGV�must have the same *)
(* length *)

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 69

Open Questions
◆ What are the word delimiters?

❏ blank, EOL, EOF, TAB
❏ `.´, `,´, `;´, `:´, ...
❏ `_´, `&´, ...

◆ Is the matching case sensitive?
◆ Must replacements have the same length?
◆ How to solve conflicts?

❏ Several different replacements for the same old word
❏ Some words in QHZ:RUGV appear also in ROG:RUGV
❏ Assume the following:

WH[W: ... ABC ...; ROG:RUGV: AB, BC; QHZ:RUGV: X, Y
alternative1: ... XC ...
alternative2: ... AY ...

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 70

Approaches to Detailed Design
◆ Informal

❏ Structured Egnlish

◆ Semi-formal
❏ Program Design Languages (PDLs)

❏ Diagrammatical techniques

◆ Formal
❏ Formal Specifications (e.g. Z, VDM, ...)

❏ Pre-/postconditions & invariants (sometimes called
SURJUDPPLQJ�E\�FRQWUDFWLQJ)

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 71

Programming by Contracting
Clients and servers of services “sign” contracts, i.e. servers
guarantee the effects of their services offered, if and only if
clients use these services correctly.

IXQFWLRQ getPosition(a: DUUD\�RI Element; el: Element) UHWXUQ LQWHJHU;
(* Returns the relative position of HO in D *)
SUHFRQGLWLRQ ∃ i ∈ [a‘First..a‘Last]: a[i] = el (* such an element exists *)
SRVWFRQGLWLRQ�a[getPosition(a, el)] = el DQG a = a.old

(* JHW3RVLWLRQ really returns the position of HO in D and D is unchanged *)

You could even specify that the array must be sorted in
ascending order to allow for a faster algorithm by adding
the following to the precondition:

DQG�∀ i,j ∈ [a‘First..a‘Last]: i < j ⇒ a[i] < a[j]

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 72

The Detailed Design Document

6OLJKWO\�DGDSWHG�IURP�(6$¶V�6RIWZDUH�(QJLQHHULQJ�6WDQGDUGV�366�������VHH�>(6$���@�

6HUYLFH�,QIRUPDWLRQ
a Abstract
b TOC
c Document status and history

3$57��³*HQHUDO�'HVFULSWLRQ

� 3URMHFW�6WDQGDUGV��&RQYHQWLRQV
DQG�3URFHGXUHV

� 2.1 Design standards
2.2 Documentation standards
2.3 Naming conventions
2.4 Programming standards
2.5 Software development tools

� ,QWURGXFWLRQ
1.1 Purpose
1.2 Scope
1.3 Glossary
1.4 References
1.5 Overview

, &RPSRQHQW�L��LWV�QDPH�
I.1 Type
I.2 Purpose
I.3 Function
I.4 Subordinates
I.5 Dependencies
I.6 Interfaces
I.7 Resources
I.8 References
I.9 Processing
I.10 Data

$SSHQGL[�%� 6RIWZDUH�5HTXLUHPHQWV
9V��&RPSRQHQWV
7UDFHDELOLW\�0DWUL[

$SSHQGL[�$� 6RXUFH�&RGH�/LVWLQJV

3$57��³&RPSRQHQW�'HVLJQ
6SHFLILFDWLRQV

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 73

Implementation
◆ Transform the detailed design into concrete

programming language code

◆ Ensure that this code correctly implements the
detailed design

OOPS! Many modern programming languages
contain detailed design elements, e.g. Eiffel

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 74

Programming Style
◆ Strive for simplicity and clarity
◆ Use significant names and consistent typing
◆ Describe each component through a prologue

❏ General functionality
❏ Interface
❏ All important data and restrictions
❏ History

◆ Commit to effective coding and commenting guidelines
◆ Use simple statement constructions and program layout
◆ Encode input and output to simplify data transfer and

error recovery
◆ Strive for efficient code, but not at the cost of readability

and simplicity (Jackson´s optimisation rules)
❏ Don´t do it
❏ For experts: Don´t do it now, first produce a complete, correct,

and clear non-optimised version

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 75

Programming Guidelines
◆ Use separate files for each module, class, macro,

inline, ... definition
◆ Use separate files for the definition/specification

and implementation when possible
◆ Call operations only when all preconditions are

satisfied (this is the caller´s responsibility)
◆ Separate policy and implementation (e.g. the

scaling itself and setting the scaling factor)
◆ Don´t use modes (provide separate operations)
◆ Don´t (over-) use typecasting
◆ Avoid pointers to pointers
◆ Commit to effective naming conventions

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 76

Contents
➩ Introduction ✔

➩Requirements Engineering ✔

➩UI Design ✔

➩Project Management ✔

➩Software Design ✔

➩Detailed Design and Coding ✔

➩4XDOLW\�$VVXUDQFH

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 77

➩Quality Assurance
➩ Introduction

➩Testing Phases and Approaches

➩Black-box Testing

➩White-box Testing

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 78

What is Quality Assurance?

◆ Constructive vs analytic approaches to QA
◆ Qualitative vs quantitative quality standards
◆ Measurement

❏ Derive qualitative factors from measurable
quantitative factors

➨ Software Metrics

QA is the combination of planned and unplanned
activities to ensure the fulfillment of predefined quality
standards.

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 79

Approaches to QA
◆ Constructive Approaches

❏ Syntax-directed editors
❏ Type systems
❏ Transformational programming
❏ Coding guidelines
❏ ...

◆ Analytic approaches

❏ Inspections
❏ Static analysis tools (e.g. OLQW)
❏ Testing
❏ ...

Usage of methods, languages, and tools that ensure
the fulfillment of some quality factors.

Usage of methods, languages, and tools to observe the
current quality level.

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 80

Fault vs Failure

"�
KXPDQ�HUURU IDXOW IDLOXUH

FDQ�OHDG�WR FDQ�OHDG�WR

◆ Different types of faults
➨ Different identification techniques
➨ Different testing techniques

➨ Fault prevention and -detection strategies should
be based on expected fault profile

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 81

Specification/
requirements

Environment/
support

Documen-
tation OtherDesign Code

)DXOW�RULJLQ��:+(5("

Missing Unclear Wrong Changed Better way

)DXOW�PRGH��:+<"

)
DX
OW
�W
\S
H�
�:

+
$
7
" Requirements

or
specifications

Functionality

HW interface

SW interface

User interface

Functional
description

Test HW

Test SW

Integration SW

Development
tools

Logic

Computation

Data handling

Module
interface/

implementation

Standards

(Inter-)Process
communications

Data definition

Module design

Logic
description

Error checking

Standards

HP´s Fault Classification

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 82

Fault Profile of a HP Division

��

���

��

��

��

���

���

���

'DWD�KDQGOLQJ

'RFXPHQWDWLRQ

5HTXLUHPHQWV

+DUGZDUH

3URFHVV�LQWHUSURFHVV

/RJLF

&RPSXWDWLRQ

2WKHU�FRGH

6HH�>3IOHHJHU���@�

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 83

Unit
test

Unit
test

Unit
test

Integration
test

Function
test

Performance
test

Acceptance
(α,β) test

Installation
test

C
om

po
ne

nt
 c

od
e

C
om

po
ne

nt
 c

od
e

�

�

�

Tested com
ponent

Te
st

ed
 c

om
po

ne
nt

Integrated
modules

Functioning
system

Verified
software

Accepted,
validated
system

6<67(0

,1�86(�

Design
specifications

System
functional

requirements

Other
software

requirements

Customer
requirements
specification

User
environment

Testing Phases

System
test

Pre-implementation
test

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 84

Pre-Implementation Testing
◆ Inspections

❏ See guest lecture
◆ Walkthrough

❏ In teams
❏ Examine source code/detailed design

◆ Reviews
❏ More informal
❏ Often done by document owners

◆ Advantages
❏ Effective
❏ High learning effect
❏ Distributing system knowledge

◆ Disadvantages
❏ Expensive

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 85

Integration Testing
◆ Different strategies affect

❏ Design strategy
❏ Time to first working prototype
❏ Amount of parallelism
❏ Additional work for test drivers/-stubs

◆ Bottom-up integration

◆ Top-down integration
◆ Big-bang integration
◆ Sandwich integration (combined td/bu)

A

DCB

GFE Test E Test F Test G

Test B,E,F Test C Test D,G

Test all

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 86

Testing vs “Proofing” Correctness
◆ Verification

❏ Check the design/code against the requirements
➨ Are we building the product right?

◆ Validation
❏ Check the product against the expectations of the

customer
➨ Are we building the right product?

◆ Testing

➨ Testing can neither proof that a program is error free,
nor that it is correct

Testing is the process in which a (probably unfinished)
program is executed with the goal to find errors.

[Myers 76]

Testing can only show the presence of errors, never
their absence. [Dijkstra 6?]

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 87

Testing Principles
◆ Construction of test suites

❏ Plan tests under the assumption to find errors
❏ Try typical and untypical inputs
❏ Build classes of inputs and choose representatives of

each class
◆ Carrying out tests

❏ Testers ≠ implementers
❏ Define the expected results before running a test
❏ Check for superfluous computation
❏ Check test results thoroughly
❏ Document test thoroughly

◆ Simplify test
❏ Divide programs in separately testable units
❏ Develop programs test friendly

◆ Each test must be reproducible

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 88

Test Methods
◆ Structural testing (white-box, glass-box)

❏ Uses code/detailed design is to develop test cases
❏ Typically used in unit testing
❏ Approaches:

❍ Coverage-based testing
❍ Symbolic execution
❍ Data flow analysis
❍ ...

◆ Functional testing (black-box)
❏ Uses function specifications to develop test cases
❏ Typically used in system testing
❏ Approaches:

❍ Equivalence partitioning
❍ Border case analysis
❍ ...

WLPH

develop
black-box
test cases

develop
white-box
test cases

perform
white-box

testing

perform
black-box

testing

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 89

Test Preparation
◆ Exhaustive testing is prohibited, because of the

combinatorial explosion of test cases
➨ Choose representative test data

IRU i := 1 WR 100 GR
���LI a = b WKHQ
������X
 HOVH
������Y;

i paths to test #tests

1 X, Y 2
2 XX, XY, YX, YY 4
3 XXX, XXY, ... 8

���

100 2100

2 ∗ 2100 - 2 > ����∗�����

➨ With 106 tests/sec this would take 8∗1016 years
➨ Choose test data (WHVW�FDVHV)

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 90

How to Choose Test Data
◆ Example 1

➨ Both paths must be tested!

◆ Example 2

➨How can I know there is a “path”?

LI ((x + y + z)/3 = x) WKHQ
���writeln(“x, y, z are equal”)
HOVH
���writeln(“x, y, z are unequal”);

Test case 1: x=1, y=2, z=3
Test case 2: x=y=z=2

LI (d = 0) WKHQ
���writeln(“division by zero”)
HOVH
���x = y/n;
(*-----------------------------*)
x = y/n;

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 91

Test Case Development
◆ Problems:

❏ Systematic way to develop test cases
❏ Find a satisfying set of test cases

◆ Test case ≠ test data
◆ Test data: Inputs devised to test the system
◆ Test case:

❏ Situation to test
❏ Inputs to test this situation
❏ Expected outputs
➨ Test are reproducible

➨ Equivalence partitioning
➨ Coverage-based testing

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 92

Equivalence Partitioning

System

Input data

Output data

Inputs causing
anomalous behaviour

Outputs which reveal
the presence of faults

Input- and output data can be
grouped into classes where
all members in the class
behave in a comparable way.

➨ Define the classes
➨ Choose representatives

◆ Typical element
◆ Borderline cases

x ∈ [25 .. 100]
class 1: x < 25
class 2: x >= 25 and x <= 100
class 3: x > 100

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 93

Equivalence Partitioning Example

6HH�OHFWXUH����

1RW�\HW�DYDLODEOH�LQ�3RZHUSRLQW

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 94

Coverage-based Testing
◆ Derive test cases from the structure of the code

❏ Build the flow graph of the code
❏ Cover the graph with tests as densely as possible

◆ Flow graphs:
LI a WKHQ
 b
HOVH
 c;
d

ZKLOH a GR
 b;
c

a

b

d

c

b

c

a

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 95

Statement Coverage
◆ Every statement is at least executed once in

some test

➨ With a=true all statements are executed, but
a=false is never tested!

LI a WKHQ
 b;
c

a

b

c

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 96

Branch Coverage
◆ For every decision point in the graph, each

branch is at least chosen once

➨ With a=true and a=false all paths are
executed, but all combinations of conditions are
never tested!

LI (X RU�QRW��Y DQG�Z) DQG ...�WKHQ

 b;
c

= a

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 97

Condition Coverage
◆ Test all combinations of conditions in boolean

expressions at least once

➨ Why in boolean expressions only?

LI (X RU�QRW��Y DQG�Z) DQG ...�WKHQ
 b;
c := (d + e * f - g) GLY op(h, i, j);

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 98

Expression Coverage
◆ Each expression must take so many values that

it cannot be replaced by a simpler one where the
test still produces the same results

➨ Only feasible with tool support

c := d + e - f;

test with e=f ⇒ could be simplified to c := d;
test with d=f ⇒ could be simplified to c := e;

➨ Choose d≠e≠f

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 99

Coverage-based Testing
◆ Advantages

❏ Systematic way to develop test cases
❏ Simple model of underlying program
❏ Measurable results (the coverage)
❏ Extensive tool support

❍ Flow graph generators
❍ Test data generators
❍ Bookkeeping
❍ Documentation support

◆ Disadvantages
❏ Code must be available
❏ Does not (yet) work well for data-driven programs

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 100

Branch Coverage Example

6HH�OHFWXUH����

1RW�\HW�DYDLODEOH�LQ�3RZHUSRLQW

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 101

Further Testing Techniques
◆ Data flow analysis

◆ Symbolic execution

◆ Mutation analysis

◆ Regression testing

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 102

Testing Tools / Support
◆ Test data generators

❏ Input: Program + testing strategy
❏ Output: Sets of input data

◆ Profilers
❏ Instrument code to collect run-time data

❍ Time spent in operations
❍ Number of calls to operations
❍ Number of loop iterations
❍ ...
➨Find bottle-necks
➨ Indicate dead code

◆ Simulators
❏ Common in hard-/software systems and/or real-time

systems
❏ Emulate critical parts by software

39.�+W�� ��������

8PHn�XQLYHUVLWHW ��

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 103

Testing Tools / Support
◆ Debuggers

❏ Manual code instrumentation
❏ Inspect/trace variables
❏ ...

◆ File comparators
❏ E.g. for regression testing

◆ Test-stub/-driver generators
❏ Simulate client or server components, which are not

yet available

Client

Server

PVK--HT99 Copyright © 1997-1999, jubo@cs.umu.se 104

References

[Somm 96] I. Sommerville: 6RIWZDUH�(QJLQHHULQJ, Addison-Wesley, 1996.

[Yourdon 92] E. Yourdon, 'HFOLQH�DQG�)DOO�RI�WKH�$PHULFDQ�3URJUDPPHU, Prentice
Hall, 1992. Critical Software Engineering textbook.

[Boehm 81] B.W. Boehm, 6RIWZDUH�(QJLQHHULQJ�(FRQRPLFV, Prentice Hall, 1981.
“Classical.”

>3IOHHJHU���@ 6�/��3IOHHJHU��6RIWZDUH�(QJLQHHULQJ��7KHRU\�DQG�3UDFWLFH��3UHQWLFH

+DOO��������&RXUVH�WH[WERRN�

[Schach 97] S.R. Schach, 6RIWZDUH�(QJLQHHULQJ�ZLWK�-DYD, Irwin, 1997.

[BuRa 70] J.N. Buxton, B. Randell, 3URFHHGLQJV�RI�WKH������1$72�&RQIHUHQFH�RQ
6RIWZDUH�(QJLQHHULQJ, NATO Science Committee, 1970. “Historical.”

[GoRu 95] A. Goldberg, K.S. Rubin, 6XFFHHGLQJ�ZLWK�2EMHFWV, Addison-Wesley,
1995. Object-Oriented Software Engineering.

[Hump 95] W.S. Humphrey, $�'LVFLSOLQH�IRU�6RIWZDUH�(QJLQHHULQJ, Addison-
Wesley, 1995. Main PSP textbook.

[Myers 79] G.J. Myers, 7KH�$UW�RI�6RIWZDUH�7HVWLQJ, Wiley, 1979. “Classical.”

[ESA 96] C. Mazza, J. Fairclough, B. Melton, D. de Pablo, A. Scheffer, R. Stevens,
M. Jones, G. Alvisi, 6RIWZDUH�(QJLQHHULQJ�*XLGHV, Prentice Hall, 1996.
“Guide to ESA Standards.”

