
PVK-HT02 bella@cs.umu.se 1

Contents
Ø Introduction 4

Ø Requirements
Engineering 4

Ø Project Management 4

Ø Software Design 4

Ø Detailed Design and
Coding 4

ØQuality Assurance
Ø Maintenance

Analysis

Design

Testing

Coding

Operation and
Maintenance

Installation

Require-
ments

Requirements

Specification

Planning

PVK-HT02 bella@cs.umu.se 2

Quality Assurance

q Introduction
q Testing

ØTesting Phases and Approaches
ØBlack-box Testing
ØWhite-box Testing
ØSystem Testing

PVK-HT02 bella@cs.umu.se 4

What is Quality Assurance?

q Constructive vs analytic approaches to QA
q Qualitative vs quantitative quality standards
q Measurement

o Derive qualitative factors from measurable
quantitative factors

Ł Software Metrics

QA is the combination of planned and unplanned
activities to ensure the fulfillment of predefined quality
standards.

PVK-HT02 bella@cs.umu.se 5

Approaches to QA
q Constructive Approaches

o Syntax-directed editors
o Type systems
o Transformational programming
o Coding guidelines
o ...

q Analytic approaches

o Inspections
o Static analysis tools (e.g. lint)
o Testing
o ...

Usage of methods, languages, and tools that ensure the
fulfillment of some quality factors.

Usage of methods, languages, and tools to observe the
current quality level.

PVK-HT02 bella@cs.umu.se 6

Fault vs Failure

?!
human error fault failure

can lead to can lead to

q Different types of faults
Ł Different identification techniques
Ł Different testing techniques

Ł Fault prevention and -detection strategies
should be based on expected fault profile

PVK-HT02 bella@cs.umu.se 8

Specification/
requirements

Environment/
support

Documen-
tation OtherDesign Code

Fault origin: WHERE?

Missing Unclear Wrong Changed Better way

Fault mode: WHY?

F
au

lt
ty
pe
:
W
H
A
T
? Requirements

or
specifications

Functionality

HW interface

SW interface

User interface

Functional
description

Test HW

Test SW

Integration SW

Development
tools

Logic

Computation

Data handling

Module
interface/

implementation

Standards

(Inter-)Process
communications

Data definition

Module design

Logic
description

Error checking

Standards

HP´s Fault Classification

PVK-HT02 bella@cs.umu.se 9

Fault Profile of a HP Division

6%

19%

5%

4%

5%

32%

18%

11%

Data handling

Documentation

Requirements

Hardware

Process/interprocess

Logic

Computation

Other code
See [Pfleeger 98].

PVK-HT02 bella@cs.umu.se 10

Unit
test

Unit
test

Unit
test

Integration
test

Function
test

Performance
test

Acceptance
(α,β) test

Installation
test

C
om

po
ne

nt
co

de
C

om
po

ne
nt

co
de

.

.

.

Tested
com

ponent

Te
st

ed
co

m
po

ne
nt

Integrated
modules

Functioning
system

Verified
software

Accepted,
validated
system

SYSTEM
IN USE!

Design
specifications

System
functional
requirements

Other
software

requirements

Customer
requirements
specification

User
environment

Testing Phases

System
test

Pre-implementation
test

PVK-HT02 bella@cs.umu.se 11

Pre-Implementation Testing
q Inspections

o evaluation of documents and code prior to technical
review or testing

q Walkthrough
o In teams
o Examine source code/detailed design

q Reviews
o More informal
o Often done by document owners

q Advantages
o Effective
o High learning effect
o Distributing system knowledge

q Disadvantages
o Expensive

PVK-HT02 bella@cs.umu.se 13

Testing vs “Proofing”
Correctness

q Verification
o Check the design/code against the requirements
Ł Are we building the product right?

q Validation
o Check the product against the expectations of the customer
Ł Are we building the right product?

q Testing

Ł Testing can neither proof that a program is error free, nor that
it is correct

Testing is the process in which a (probably unfinished)
program is executed with the goal to find errors.

[Myers 76]

Testing can only show the presence of errors, never their
absence.

[Dijkstra 69]

PVK-HT02 bella@cs.umu.se 14

Goals of Testing

q Detect deviations from specifications
o Debugging
o Regression testing

q Establish confidence in software
o Operational testing

q Evaluate properties of software
o Reliability
o Performance
o Memory use/leakage
o Security
o Usability PVK-HT02 bella@cs.umu.se 15

Principles of Software
Testing*

q Complete testing is not possible
q Testing is creative and difficult
q A major objective of testing is defect

prevention
q Testing must be risk-based
q Testing must be planned
q Testing requires independence
* Hetzel, The Complete Guide to Software Testing

PVK-HT02 bella@cs.umu.se 16

Fundamental Steps of Software
Testing

q Understand requirements and
specifications

q Create the execution environment
q Select test cases
q Execute & evaluate test cases
q Evaluate test progress
q Information feedback & feedforward

PVK-HT02 bella@cs.umu.se 17

Unit Testing

Defn: Tests the smallest individually executable
code units.

Objective: Find faults in the units. Assure
correct functional behavior of units.

By: Usually programmers.
Tools:
q Test driver/harness
q Coverage evaluator
q Automatic test generator

PVK-HT02 bella@cs.umu.se 18

Test Methods
q Structural testing (white-box, glass-box)

o Uses code/detailed design is to develop test cases
o Typically used in unit testing
o Approaches:

• Coverage-based testing
• Symbolic execution
• Data flow analysis
• ...

q Functional testing (black-box)
o Uses function specifications to develop test cases
o Typically used in system testing
o Approaches:

• Equivalence partitioning
• Border case analysis
• ...

time

develop
black-box
test cases

develop
white-box
test cases

perform
white-box

testing

perform
black-box

testing

PVK-HT02 bella@cs.umu.se 19

Test Preparation

q Exhaustive testing is prohibited, because of
the combinatorial explosion of test cases

Ł Choose representative test data

for i := 1 to 100 do
if a = b then

X
else

Y;

i paths to test #tests

1 X, Y 2
2 XX, XY, YX, YY 4
3 XXX, XXY, ... 8

...
100 2100 2 ∗ 2100 - 2 > 2,5 ∗ 1030

With 106 tests/sec this would take 8∗ 1016 years
Choose test data (test cases)

PVK-HT02 bella@cs.umu.se 21

Test Case Development
q Problems:

o Systematic way to develop test cases
o Find a satisfying set of test cases

q Test case ≠≠≠≠ test data
q Test data: Inputs devised to test the system
q Test case:

o Situation to test
o Inputs to test this situation
o Expected outputs
Ł Test are reproducible

PVK-HT02 bella@cs.umu.se 22

Black-box Testing

q Test generation without knowledge of
software structure

q Also called specification-based or
functional testing

Ł Equivalence partitioning
Ł Boundary-value analysis

PVK-HT02 bella@cs.umu.se 23

Equivalence Partitioning

System

Input data

Output data

Inputs causing
anomalous
behaviour

Outputs which
reveal
the presence of
faults

Input- and output data can
be grouped into classes
where all members in the
class behave in a
comparable way.

Ł Define the classes
Ł Choose representatives

u Typical element
u Borderline cases

x ∈ [25 .. 100]
class 1: x < 25
class 2: x >= 25 and x <= 100
class 3: x > 100

PVK-HT02 bella@cs.umu.se 26

White-box Testing

Methods based on internal structure of
code

q Statement coverage
q Branch coverage
q Path coverage
q Data-flow coverage

if a then
b

else
c;

d

while a do
b;

c

a

b

d

c

b

c

a

PVK-HT02 bella@cs.umu.se 27

Statement coverage

1

3

2 4

5

6 7

8

2 test cases: 12467; 13567

q Every statement is at least executed
once in some test

PVK-HT02 bella@cs.umu.se 28

Branch Coverage

1

3

2 4

5

6 7

8

2 test cases: 12467; 1358

q For every decision point in the graph, each
branch is at least chosen once

PVK-HT02 bella@cs.umu.se 29

Condition Coverage

q Test all combinations of conditions in
boolean expressions at least once

Ł Why in boolean expressions only?

if (X or not (Y and Z) and ... then
b;

c := (d + e * f - g) div op(h, i, j);

PVK-HT02 bella@cs.umu.se 30

Path Coverage

Assure that all paths in the control-flow
graph are executed.

What is the definition of all paths?
q All loop-free paths
q All loop-free paths, plus all n-iterations

of loops
q A set of basis paths for the graph.

PVK-HT02 bella@cs.umu.se 31

Path Coverage

1

3

2 4

5

6 7

8

PVK-HT02 bella@cs.umu.se 32

Path Coverage

1

3

2 4

5

6 7

8

4 test cases: 12467; 1358; 1248; 13567

PVK-HT02 bella@cs.umu.se 35

Data-flow testing

Def of a variable v – assignment of value to v
Use of variable v – access of the value of v
A def-use association for variable v is a def, a

use and a path from the def to the use which
contains no intervening definition of v.

All-defs – For each def d, test at least one path
from d to some use of d

All-uses – For each def d, and for each use ui of
d, test at least one path from d to ui

PVK-HT02 bella@cs.umu.se 36

Data Flow Coverage
All-uses coverage

x :=2

x :=1

z := 2*r

x :=3

z := 2*x-y

z :=x+y

y :=2
r :=4

Red path covers the defs y :=2; r :=4; x :=1

Blue path covers y :=2; x :=3. Does not
cover x :=2

PVK-HT02 bella@cs.umu.se 37

Coverage-based Testing
q Advantages

o Systematic way to develop test cases
o Simple model of underlying program
o Measurable results (the coverage)
o Extensive tool support

• Flow graph generators
• Test data generators
• Bookkeeping
• Documentation support

q Disadvantages
o Code must be available
o Does not (yet) work well for data-driven programs

PVK-HT02 bella@cs.umu.se 38

Integration Testing
Defn: Testing two or more units or components
Objectives

o Interface errors
o Functionality of combined units; look for

problems with functional threads
By: Developers or Testing group
Tools: Interface analysis; call pairs
Issues:
q Strategy for combining units
q Assuring compatibility and correctness of

externally-supplied components

PVK-HT02 bella@cs.umu.se 39

Integration Testing
How to integrate & test the system
q Top-down
q Bottom-up
q Critical units first
q Functionality-oriented (threads)
Implications of build order
q Top-down => stubs; more thorough top-level
q Bottom-up => drivers; more thorough bottom-

level
q Critical => stubs & drivers.

A

DCB

GFE Test E Test F Test G

Test B,E,F Test C Test D,G

Test all

PVK-HT02 bella@cs.umu.se 40

System Testing

Defn: Test the functionality, performance,
reliability, security of the entire system.

By: Separate test group.
Objective: Find errors in the overall system

behavior. Establish confidence in system
functionality. Validate that system achieves its
desired non-functional attributes.

Tools: User simulator. Load simulator

PVK-HT02 bella@cs.umu.se 41

Realities of System Testing

q Available time for testing is short
o Compressing development risks introducing problems
o Compressing testing risks missing critical problems

q Testers want to start testing early
q System testing requires an available system
q Developers resist testing until system is “ready”
To optimize use of the existing resources, use risk
analysis.

PVK-HT02 bella@cs.umu.se 42

Acceptance Testing

Defn: Operate system in user environment, with
standard user input scenarios.

By: End user
Objective: Evaluate whether system meets

customer criteria. Determine if customer will
accept system.

Tools: User simulator. Customer test
scripts/logs from operation of previous
system.

PVK-HT02 bella@cs.umu.se 43

Regression Testing

Defn: Test of modified versions of previously
validated system.

By: System or regression test group.
Objective: Assure that changes to system have

not introduced new errors.
Tools: Regression test base, capture/replay
Issues: Minimal regression suite, test

prioritization

PVK-HT02 bella@cs.umu.se 44

Test Automation

Automation has several meanings
q Test generation: Produce test cases by

processing of specifications, code, model.
q Test execution: Run large numbers of test

cases/suites without human intervention.
q Test management: Log test cases & results;

map tests to requirements & functionality;
track test progress & completeness

PVK-HT02 bella@cs.umu.se 45

Issues of Test Automation
Automating Test Execution
q Does the payoff from test automation justify the

expense and effort of automation?
q Learning to use the automation tool is non-trivial
q Testers become programmers
q All tests, including automated tests, have a finite

lifetime.
q Complete automated execution implies putting

the system into the proper state, supplying the
inputs, running the test case, collecting the
result, verifying the result.

PVK-HT02 bella@cs.umu.se 46

Best uses of automated test
execution

q Load/stress tests--Nearly impossible to have
1000 human testers simultaneously
accessing a database.

q Regression test suites--Tests collected from
previous releases; run to check that updates
don’t break previously correct operation.

q Sanity tests (smoke tests)--run after every
new system build to check for obvious
problems.

Test documentation

q Test plan: describes system and plan for
exercising all functions and characteristics

q Test specification and evaluation: details
each test and defines criteria for evaluating
each feature

q Test description: test data and procedures
for each test

q Test analysis report: results of each test

PVK-HT02 bella@cs.umu.se 48

The Key Problems of Software
Testing

q Selecting or generating the right test
cases.

q Knowing when a system has been
tested enough.

q Knowing what has been
discovered/demonstrated by execution
of a test suite.

