Substitutions and Unifiers in
 First-Order Predicate Logic

A motivating example:
Axioms: $(\forall \mathrm{x})(\operatorname{Bird}(\mathrm{x}) \rightarrow \mathrm{Flies}(\mathrm{x}))$
Bird(Tweety)
Goal: Flies(Tweety)
Convert to a clausal form database:
Axioms:
$\neg \operatorname{Bird}(\mathrm{x}) \vee$ Flies (x)
Bird(Tweety)
Negated goal:
\neg Flies(Tweety)
Without further operations, no resolution is possible.
The needed operation is substitution.

The notation Tweety/x means
"Substitute Tweety for x ."
To employ resolution for first-order logic, it is necessary to develop substitution in a systematic manner.

Unify1.doc:1998/05/11:page 1 of 25

The technique should also work if resolution is performed in another order.

Note that a substitution which is too specific can cause a problem.

A more complex example:
$\begin{array}{ll}\text { Axioms: } & (\forall \mathrm{x})(\forall \mathrm{y})(\mathrm{P}(\mathrm{f}(\mathrm{x}), \mathrm{h}(\mathrm{y})) \vee \mathrm{Q}(\mathrm{y})) \\ & (\forall \mathrm{x})(\neg \mathrm{Q}(\mathrm{g}(\mathrm{a}))) \\ \text { Goal: } & (\exists \mathrm{y})(\forall \mathrm{x}) \mathrm{P}(\mathrm{f}(\mathrm{x}), \mathrm{h}(\mathrm{g}(\mathrm{y})))\end{array}$
Note: a, b, c denote constants $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ denote variables.

Negate the goal and normalize all:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{f}(\mathrm{x}), \mathrm{h}(\mathrm{y})) \vee \mathrm{Q}(\mathrm{y}) \\
& (\neg \mathrm{Q}(\mathrm{~g}(\mathrm{a}))) \\
& \neg \mathrm{P}\left(\mathrm{f}\left(\mathrm{f}_{\mathrm{x}}(\mathrm{w})\right), \mathrm{h}(\mathrm{~g}(\mathrm{w}))\right)
\end{aligned}
$$

Now perform resolution:

Notice that some fairly complex decisions regarding which substitutions to make are necessary.

Unify1.doc:1998/05/11:page 2 of 25

Substitution and Unification:

- Unification is the operation which is applied to terms in order to make them "match" so that resolution can be performed.
- It is accomplished by applying substitutions to the clauses containing the atoms to be matched.

We now investigate these ideas in more detail.

Notational convention: Throughout this discussion, it is assumed that there is an extant first-order logic $L=(R, C, A, T)$, with $T=(V, K, F)$.

In general: $\mathrm{a}, \mathrm{b}, \mathrm{c}$ denote constants;
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ denote variables;
$\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ denote predicate letters;
$\mathrm{f}, \mathrm{g}, \mathrm{h}$ denote function symbols;
unless stipulated to the contrary.

Thus, it is necessary to investigate this substitution issue thoroughly.

Substitution:

Definition: A substitution is a finite set of specifications of the form t/v
in which t is a term and v is a variable.
Substitutions are usually written in set notation:

$$
\left\{\mathrm{t}_{1} / \mathrm{v}_{1}, \mathrm{t}_{2} / \mathrm{v}_{2}, \ldots, \mathrm{t}_{n} / \mathrm{v}_{\mathrm{n}}\right\}
$$

Substitutions are applied to terms, or to sets of terms.

Important: The semantics of a substitution is that all of its elements are applied simultaneously.

Example: The application of the substitution

$$
\{g(y) / x, h(z) / y, x / z\}
$$

to
is

$$
\begin{gathered}
f(x, y, g(z), w) \\
f(g(y), h(z), g(x), w) \\
f(g(h(x)), h(x), g(x), w)
\end{gathered}
$$

and not

The order of the elements in a substitution list is irrelevant.

Note also that the substitution need not specify a replacement for each variable in the formula. Variables not listed in the substitution are left unchanged.

Composition of substitutions:

Substitutions may be composed.
Example: Let

$$
\begin{aligned}
& \sigma_{1}=\{f(a) / x, g(b, z) / y, x / z\} \\
& \sigma_{2}=\{w / x, h(z) / y, a / z\}
\end{aligned}
$$

Then $\sigma_{1} \sigma_{2}=\{f(a) / x, g(b, a) / y, w / z\}$

Note that

- Substitution composition occurs from left to right. Thus, $\sigma_{1} \sigma_{2}$ means that first σ_{1} should be applied, and then σ_{2}.
- Application of substitution respects composition. That is:

$$
\varphi\left(\sigma_{1} \sigma_{2}\right)=\left(\varphi \sigma_{1}\right) \sigma_{2}
$$

Example: Let $\varphi=P(x, y, z)$, and let σ_{1} and σ_{2} be as above.

$$
\begin{array}{ll}
\text { Then } & \varphi \sigma_{1}=P(f(a), g(b, z), x) \\
& \left(\varphi \sigma_{1}\right) \sigma_{2}=P(f(a), g(b, a), w)=\varphi\left(\sigma_{1} \sigma_{2}\right)
\end{array}
$$

Note, however, that composition is not commutative:

$$
\sigma_{2} \sigma_{1}=\{\mathrm{w} / \mathrm{x}, \mathrm{~h}(\mathrm{x}) / \mathrm{y}, \mathrm{a} / \mathrm{z}\} \neq \sigma_{1} \sigma_{2}
$$

Notation: The symbol σ (and subscripted versions threreof) are typically used to represent substitutions. The application of a substitution σ to a term t is denoted to.

Substitutions may also be applied to atoms. In that case, the substitution is applied to each term in the atom.

$$
\begin{aligned}
\text { Example: Let } & \varphi=P(f(x, y), g(h(y)), z, w) \\
& \sigma=\{h(y) / x, a / y, w / z\}
\end{aligned}
$$

Then $\varphi \sigma=\mathrm{P}(\mathrm{f}(\mathrm{h}(\mathrm{y}), \mathrm{a}), \mathrm{g}(\mathrm{h}(\mathrm{a})), \mathrm{w}, \mathrm{w})$
Substitutions may furthermore be applied to entire clauses. In this case, the substitution is applied to each atom of the clause.

Example: Let $\quad \varphi=P(f(x, y), g(h(y)), z, w) \vee Q(y, z)$

$$
\sigma=\{\mathrm{h}(\mathrm{y}) / \mathrm{x}, \mathrm{a} / \mathrm{y}, \mathrm{w} / \mathrm{z}\}
$$

Then $\varphi \sigma=P(f(h(y), a), g(h(a)), w, w) \vee Q(a, w)$.
Note particularly the "right" notation, which differs from the more traditional mathematical $\sigma(\varphi)$.

Unify1.doc:1998/05/11:page 6 of 25

Also note that a substitution is not necessarily the composition of its components.

Example: Let $\sigma_{1}=\{f(a) / x, g(b, z) / y, x / z\}$ as above.
Let $\sigma_{11}=\{f(\mathrm{a}) / \mathrm{x}\} ; \sigma_{12}=\{\mathrm{g}(\mathrm{b}, \mathrm{z}) / \mathrm{y}\} ; \sigma_{13}=\{\mathrm{x} / \mathrm{z}\}$.
Then $\sigma_{11} \sigma_{12} \sigma_{13}=\{\mathrm{f}(\mathrm{a}) / \mathrm{x}, \mathrm{g}(\mathrm{b}, \mathrm{x}) / \mathrm{y}, \mathrm{x} / \mathrm{z}\} \neq \sigma_{1}$.
The result even depends upon the ordering:

$$
\sigma_{13} \sigma_{12} \sigma_{11}=\{f(a) / z, g(b, z) / y\} \neq \sigma_{11} \sigma_{12} \sigma_{13} .
$$

Ordering of substitutions:

Definition: Let σ_{1} and σ_{2} be substitutions. Write

$$
\sigma_{1} \preccurlyeq \sigma_{2}
$$

just in case there is a substitution σ such that

$$
\sigma_{1}=\sigma_{2} \sigma .
$$

In this case, it is said that σ_{2} is more general than σ_{1}.

Example: Let $\quad \sigma_{1}=\{f(a) / x, a / y\}$.

$$
\sigma_{2}=\{f(a) / x\}
$$

Then $\sigma_{1} \preccurlyeq \sigma_{2}$ since $\sigma_{1}=\sigma_{2} \sigma$ for

$$
\sigma=\{a / y\}
$$

has the property that

$$
\sigma_{1}=\sigma_{2} \sigma
$$

Caution: This definition can be misleading.
Example: Let $\quad \sigma_{1}=\{f(a) / x\}$

$$
\sigma_{2}=\{f(y) / x\} .
$$

It might appear at first that

$$
\sigma_{1} \preccurlyeq \sigma_{2}
$$

with $\sigma=\{a / y\}$ yielding $\sigma_{1}=\sigma_{2} \sigma$.
This is not the case! Try it on the formula $P(x, y)$
and see what happens.

Unification:

Definition: Let ψ_{1} and ψ_{2} be atoms. A unifier for ψ_{1} and ψ_{2} is a substitution σ such that

$$
\psi_{1} \sigma=\psi_{2} \sigma
$$

Example: Let

$$
\begin{aligned}
& \psi_{1}=\operatorname{Bird}(x) \\
& \psi_{2}=\operatorname{Bird}(\text { Tweety }) .
\end{aligned}
$$

Then $\sigma=\{$ Tweety $/ x\}$ is a unifier for these atoms.
Example: Let

$$
\begin{aligned}
& \psi_{1}=P(a, x, f(g(y)) \\
& \psi_{2}=P(z, f(z), f(w))
\end{aligned}
$$

Then $\sigma=\{a / z, f(a) / x, g(y) / w\}$ is a unifier for ψ_{1} and ψ_{2}.

Definition: A unifier for atoms ψ_{1} and ψ_{2} is a most general unifier (mgu) if it is a most general substitution which unifies ψ_{1} and ψ_{2}.

Example: Both examples above are mgu's.
Theorem: If two atoms ψ_{1} and ψ_{2} have a unifier, then they have a most general unifier. Furthermore, there is an algorithm which can determine whether or not two atoms are unifiable, and, if so, deliver an mgu for them.

Some further useful ideas, without proof:

Definition: A substitution σ is a renaming if it defines a permutation of the some set of variables. For example, $\{x / y, z / x, y / z\}$ is a renaming.

Definition: Two substitutions σ_{1} and σ_{2} are equivalent if there is a renaming σ such that

$$
\sigma_{1}=\sigma_{2} \sigma .
$$

In this case, there must also be a renaming σ^{\prime} such that $\sigma_{2}=\sigma_{1} \sigma^{\prime}$.

Fact: If

$$
\begin{gathered}
\sigma_{1} \preccurlyeq \sigma_{2} \\
\text { and } \\
\sigma_{2} \preccurlyeq \sigma_{1}
\end{gathered}
$$

both hold, then there are renamings σ and σ^{\prime} such that

$$
\begin{gathered}
\sigma_{1}=\sigma_{2} \sigma \\
\text { and } \\
\sigma_{2}=\sigma_{1} \sigma^{\prime} .
\end{gathered}
$$

The mgu algorithm:

Before presenting the algorithm formally, it will be illustrated on some examples.

Example: Let $\psi_{1}=P(a, x, f(g(y)))$

$$
\psi_{2}=P(z, f(z), f(w))
$$

Step 1: Make sure that the predicate symbols match. Atoms with different predicate symbols can never be unified.

Step 2: Attempt to unify each pair of terms.

- The first pair is (a, z). Since one of the elements is a variable, they can be unified by substituting the other term for this variable. The appropriate substitution is a / z. So, set

$$
\mathrm{mgu} \leftarrow\{\mathrm{a} / \mathrm{z}\}
$$

This substitution must also be applied to both clauses yielding

$$
\begin{aligned}
& P(a, x, f(g(y))) \\
& P(a, f(a), f(w))
\end{aligned}
$$

- The second pair is ($x, f(a)$). Again, since one term is a variable, substitute the other for it: $f(a) / x$. The new value of mgu is the old value, composed with this new substitution.

$$
\mathrm{mgu} \leftarrow \operatorname{mguo}\{f(\mathrm{a}) / \mathrm{x}\}=\{\mathrm{a} / \mathrm{z}, \mathrm{f}(\mathrm{a}) / \mathrm{x}\}
$$

This substitution must also be applied to both
clauses yielding

$$
\begin{aligned}
& P(a, f(a), f(g(y))) \\
& P(a, f(a), f(w))
\end{aligned}
$$

- The third and final pair is $(f(g(y)), f(w))$. Neither is an atom, so we check to see whether the function symbols are the same. They are, so we strip them and unify each pair of sub-terms. (In this case, there is just one such pair.) The new pair is $(g(y), w)$. This pair may be unified with the substitution $\mathrm{g}(\mathrm{y}) / \mathrm{w}$. Thus,
$\mathrm{mgu} \leftarrow \operatorname{mgu} \circ \mathrm{g}(\mathrm{y}) / \mathrm{w}\}=\{\mathrm{a} / \mathrm{z}, \mathrm{f}(\mathrm{a}) / \mathrm{x}, \mathrm{g}(\mathrm{y}) / \mathrm{w})\}$
This substitution must also be applied to both clauses yielding

$$
P(a, f(a), f(g(y)))
$$

$P(a, f(a), f(g(y)))$
The clauses match, and an mgu has been found.

Not all pairs of atoms unify, of course. Here are some examples of failure.

Example:

$$
\begin{aligned}
& \psi_{1}=Q(f(a), g(x)) \\
& \psi_{2}=Q(y, y)
\end{aligned}
$$

To unify the first pair, $(f(a), y)$, the substitution $f(a) / y$ is used. The atoms become

$$
Q(f(a), g(x))
$$

$$
Q(f(a), f(a))
$$

Now, the second pair is $(g(x), f(a))$. Since the function symbols are different, unification fails.

Suppose that we try to unify the second pair first. In that case, the pair is $(\mathrm{g}(\mathrm{x}), \mathrm{y})$, which is unifiable with $\mathrm{g}(\mathrm{x}) / \mathrm{y}$. The atoms become
$Q(f(a), g(x))$
$Q(g(x), g(x))$
Fact: If unification fails for one order of the pairs, then it will fail for all orders. The order of attempt will not affect the result.

Note: The order in which the terms are unified does not matter.

Starting with $\quad \psi_{1}=P(a, x, f(g(y)))$
$\psi_{2}=P(z, f(z), f(w))$
again, let us unify the second pair of terms first.
This yields $\{f(z) / x\}$, with resulting atoms

$$
\begin{aligned}
& P(a, f(z), f(g(y))) \\
& P(z, f(z), f(w))
\end{aligned}
$$

Now unify the third pair of terms. The mgu is $\{g(y) / w\}$, so after this step the unifier is $\{f(z) / x, g(y) / w\}$, and the atoms are

$$
\begin{aligned}
& P(a, f(z), f(g(y))) \\
& P(z, f(z), f(g(y)))
\end{aligned}
$$

Finally, we unify the first pair of terms, using a / z. The final mgu is $\{f(z) / x, g(y) / w, a / z\}$, and the final terms match, as before:

$$
P(a, f(a), f(g(y)))
$$

$$
P(a, f(a), f(g(y)))
$$

The occurs check:

There is a rather subtle but nonetheless important point which must be observed.

Example: $\quad \psi_{1}=Q(x, x)$

$$
\psi_{2}=Q(y, f(y))
$$

Unifying the first pair using y / x, we get

$$
\begin{aligned}
& Q(y, y) \\
& Q(y, f(y))
\end{aligned}
$$

The second pair, $(y, f(y))$, is strange in that both components involve y. Unless they are identical, it is impossible to unify them.

To detect this situation requires a special test called the occurs check, which tests whether or not a given variable occurs in a given term.

The formal algorithm:

Basic data types:
Term:
Substitution:
List_of_terms: $\left\langle\mathrm{t}_{1}, \mathrm{t}_{2}, . ., \mathrm{t}_{\mathrm{n}}\right\rangle$
Logical_atom: Something like $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{g}(\mathrm{a}, \mathrm{x}))$
Basic functions:
Is_variable(x: term): Returns Boolean. True if the term is a variable.

Is_constant(x: term): Returns Boolean. True if the term is a constant symbol

Is_functional_term(x: term): Returns Boolean. True if the term is of the form $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.

Function_symbol(x: term): Returns the function symbol of a functional term: $f\left(t_{1}, t_{2}, . ., t_{n}\right) \mapsto f$.

Term_list(x: term): Returns list_of_terms.

$$
f\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right) \mapsto\left\langle\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right\rangle
$$

Compose_substitutions $\left(\sigma_{1}, \sigma_{2}\right)$:
Returns substitution.
First(x:list_of_terms): $\left\langle\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right\rangle \mapsto \mathrm{t}_{1}$
Rest(x$)$: Returns list_of_term.
$\left\langle\mathrm{t}_{1}, \mathrm{t}_{2}, . ., \mathrm{t}_{\mathrm{n}}\right\rangle \mapsto\left\langle\mathrm{t}_{2}, . ., \mathrm{t}_{\mathrm{n}}\right\rangle$
Arglist(x:Logical_atom): Returns: list_of_term $P\left(t_{1}, t_{2}, . ., t_{n}\right) \mapsto\left\langle t_{1}, t_{2}, . ., t_{n}\right\rangle$

Unify1.doc:1998/05/11:page 17 of 25

Procedure Variable_mgu
(s: variable; t: term: σ : substitution);
Returns: substitution;
--- If s does not occur in t, returns $\sigma \circ\{t / s\}$.
--- If s occurs in t, returns FAIL.
Begin
If Includes_check(s,t)
Then return FAIL;
Else return
Compose_substitutions($\sigma,\{t / \mathrm{s}\}$)
End Procedure; \{Variable_mgu\}

Procedure Term_list_mgu
(s, t: list_of_terms; σ : substitution);
Returns: substitution;
--- If there is an mgu τ for the lists s and t , returns
$---\sigma \tau$. Returns FAIL otherwise.
Begin
If $s=\langle \rangle$
then return σ;
else return
Term_list_mgu_aux(
Rest(s),
Rest(t),
Term_mgu(first(s), first(t), $\varnothing)$),
σ)
End if;
End Procedure; \{Term_list_mgu\}

Procedure Term_mgu (s, t: term; σ : substitution); Returns: substitution;
--- If s and t are unifiable,
--- returns the composition of σ with their unifier.
--- If s and t are not unifiable, returns FAIL.
Begin
Do_first_true_conditional:
Is_variable(s): Return variable_mgu(s, t, σ);
Is_variable(t):
Return variable_mgu(t, s, σ);
Is_constant(s): If (ls_constant $(\mathrm{t}) \wedge \mathrm{s}=\mathrm{t}$) then return σ else return FAIL;
Is_functional_term(s):
If (Is_functional_term(t) ^
function_symbol(s) = function_symbol(t))
then return
Term_list_mgu (Term_list(s), Term_list $(\mathrm{t}), \sigma$);
else return FAIL; End Do_first_true_conditional;
End Procedure; \{Term_mgu\}

Unify1.doc:1998/05/11:page 18 of 25

Procedure Term_list_mgu_aux
(s, t : list_of_terms; τ, σ : substitution);
Returns: substitution;
--- Auxiliary function to support Term_list_mgu.
Begin Term_list_mgu(

Apply_substitution_to_list(s, τ),
Apply_substitution_to_list((t, τ),
Compose_substitutions (σ, τ))
End Procedure; \{Term_list_mgu_aux\}

Procedure Apply_substitution_to_list
(x : list_of_terms, σ : substitution);
--- Applies the substitution σ to every term in the list
--- x.
Procedure Atom_mgu
(ψ_{1}, ψ_{2} : logical_atom);
Returns: substitution;
--- If ψ_{1} and ψ_{2} have the same relation name,
--- and if the corresponding lists of terms are
--- unifiable, returns σ composed with the mgu
--- for those lists.
--- Returns FAIL otherwise.
Begin
If Relation_name $\left(\psi_{1}\right)=$ Relation_name $\left(\psi_{2}\right)$
Then
Term_list_mgu(arg_list(A), arg_list(B), \varnothing);
Else Return FAIL;
End Procedure; \{Atom_mgu\}

- The overall algorithm is invoked with a call to Atom_mgu.
- Note that this algorithm is tail recursive. Once an instance of a procedure calls another procedure, the calling instance may be discarded.
- This implies that the entire algorithm may be implemented iteratively, without a deep stack.
- The sequence of calls for the running example is shown on the next slide.

Unify1.doc:1998/05/11:page 21 of 25

A simple resolution example:

Suppose that we are given the following clauses:

$$
\begin{gathered}
P(a, x, f(g(y))) \\
\neg P(z, f(z), f(w)) \vee Q(w, z) \\
\neg Q(g(u), u)
\end{gathered}
$$

Here is a resolution refutation:

- Note that the unifying substitutions are applied to entire clauses, and not just to the atoms to be matched.

The tail-recursive call graph for the processing of ψ_{1} and ψ_{2} is shown below. Only the most significant procedure calls are shown:

Unify1.doc:1998/05/11:page 22 of 25

Renaming of variables and re-use of clauses:

Consider the problem of showing that the following set of clauses is unsatisfiable.

$$
\begin{aligned}
\Phi= & \{L(a, b), \\
& L(f(x, y), g(z)) \vee \neg L(y, z), \\
& \neg L(f(x, f(c, f(d, a))), w)\}
\end{aligned}
$$

Since the clauses contain variable names in common, the first step is to rename variables.

$$
\begin{aligned}
\Phi^{\prime}= & \{\mathrm{L}(\mathrm{a}, \mathrm{~b}), \\
& \mathrm{L}\left(\mathrm{f}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{g}\left(\mathrm{z}_{2}\right)\right) \vee \neg \mathrm{L}\left(\mathrm{y}_{2}, \mathrm{z}_{2}\right), \\
& \left.\neg \mathrm{L}\left(\mathrm{f}\left(\mathrm{x}_{3}, \mathrm{f}(\mathrm{c}, \mathrm{f}(\mathrm{~d}, \mathrm{a}))\right), \mathrm{w}_{3}\right)\right\}
\end{aligned}
$$

Here is a first attempt at a refutation proof using resolution.

Is it possible to proceed and shown that the set is unsatisfiable?

Yes. To proceed, it is necessary to employ clause
re-use.

- Notice that variable renaming "on the fly" is required to avoid collision of variable names.

Unify1.doc:1998/05/11:page 25 of 25

