
Proptabl.doc:1998/03/27:page 1 of 23

Semantic Tableaux
for Propositional Logic

There are many techniques which may be used to
automate logical deduction.  Each has its
advantages and disadvantages.

The first technique to be studied is that of semantic
tableaux.

•  It differs from the other techniques which we will
study in that it does not generate a sequence of
conclusions from a set of hypotheses.

•  Rather, it conducts a direct search for models.

•  Thus, it is termed a semantic technique.

Proptabl.doc:1998/03/27:page 2 of 23

Problem solving using propositional logic:

Example: The following word problem is taken from
Example 2.4 of the textbook.  We start by assigning
symbols to the various assertions.

Assertion Symbolic
Representation

John will go to the party. J
Joyce will go to the party. Y
Clare will go to the party. C
Stephen will go to the party. S

Here is the argument in English, together with the
logical interpretations.

•  John or Joyce or both will go to the party.
(J  ∨  Y)

•  If Joyce goes to the party then Clare will go
unless Stephen goes.

(Y → (¬S → C))

•  Stephen will go if John does not go.
(¬J → S)

•   Therefore, Clare will go to the party.
C

Proptabl.doc:1998/03/27:page 3 of 23

Note that the English is somewhat ambiguous.  The
second and third assertions could also be
interpreted as

(Y → (¬S ≡ C))
(¬J ≡ S)

This is always a problem when writing natural-
language descriptions of formal problems, as
natural language is often ambiguous.

The premises of this problem thus consist of three
statements:
 Φ = {(J  ∨  Y), (Y → (¬S → C)), (¬J → S)}.
This may be represented as a single statement by
conjoining the formulas:

Φ∧  = (J  ∨  Y) ∧  (Y → (¬S → C)) ∧  (¬J → S)

The conclusion consists of a single statement:
ϕ = C.

It is desired to establish that
Φ ~ ϕ.

To do so, it suffices to show that
Φ∧  ∧  ¬ϕ

is unsatisfiable.

•  By definition,
Φ ~ ϕ holds iff Mod(Φ) ⊆  Mod(ϕ) does.

•  This inclusion can hold iff
Mod(Φ) ∩ Mod(¬ϕ ) = ∅ .

(This is just set theory – draw a Venn diagram.)

Proptabl.doc:1998/03/27:page 4 of 23

The naïve approach is to construct the truth table,
and to see if the formula is true for any
assignments.

Φ∧  ∧  (¬ϕ ) =
           (J  ∨  Y) ∧  (Y → (¬S → C)) ∧  (¬J → S) ∧  ¬C

J Y S C Φ∧ ∧  (¬ϕ )
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

Thus, out of 16 possible worlds, four are models.

If we are only interested in whether or not the
conclusion follows from the premises, then if this
table is constructed row-by-row, we could stop at
after generating the seventh.

This approach requires 2n steps for n proposition
letters, in the worst case.



Proptabl.doc:1998/03/27:page 5 of 23

However, it is easy to see that the search could be
performed more intelligently.  For example, since
¬C is a conjunct of the formula, only interpretations
for which C is false need be considered.  This
immediately cuts the number of cases to be tested
in half.

The method of semantic tableaux performs this
basic sort of search, but employs some selection
heuristics which reduce the size of the search in
many cases.

The ideas of this approach will now be developed.

Proptabl.doc:1998/03/27:page 6 of 23

Disjunctive Normal form:

Definitions:
•  A literal is either a proposition name or its

negation.
•  The complement of a literal is its logical negation.

Thus, the complement of A is ¬A, and the
complement of ¬A is A.

•  A pair of literals {�1, �2} is complementary if each
literal is the complement of the other.  Thus, a
complementary pair is of the form {A, ¬A}.

Observation: Let  ϕ = �1 ∧  �2 ∧  .. ∧  �n  be a wff which
is a conjunction of literals.  Then ϕ is satisfiable iff it
does not contain a complementary pair of literals. �

Definition: A wff ϕ is said to be in disjunctive normal
form (DNF) if it is of the form  ϕ1 ∨  ϕ2 ∨  .. ∨  ϕk, with
each ϕ i a conjunction of literals.

Example: The formula
ϕ = (A1 ∧  ¬A2 ∧  A3 ∧  ¬A4) ∨

       (¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4)
is in DNF.

Proptabl.doc:1998/03/27:page 7 of 23

Proposition.  Let  ϕ = ϕ1 ∨  ϕ2 ∨  .. ∨  ϕk  be a wff in
DNF.  Then ϕ is satisfiable iff at least one of its
disjuncts is satisfiable. ¹

Example:  The formula
ϕ = (A1 ∧  ¬A2 ∧  A3 ∧  ¬A4) ∨

       (¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4)
is satisfiable since the first disjunct is.

Example: The formula
ϕ = (A1 ∧  ¬A2 ∧  A3 ∧  ¬A4

  ∧  A2) ∨
       (¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4).

is not satisfiable, since both of its conjuncts contain
complementary pairs of literals.

Testing for satisfiability of wff’s in DNF can be
performed very efficiently: Suppose that the truth
values of propositions are stored in a manner such
that a lookup of a single value takes constant time.
Then satisfiability for propositional formulas in DNF
can be determined in time O(m), where m is the
length of the formula (as a string). ¹

Unfortunately, the best known algorithm for
converting an arbitrary wff to DNF has complexity
Θ(2m), so this method is not particularly efficient in
general.

Proptabl.doc:1998/03/27:page 8 of 23

Conversion to DNF:

Clearly, not every wff is in DNF.  However, every
formula may be converted to one which is in DNF.

Example: ϕ = ¬ ((A1 → A2) ∧  (A3 ∨  ¬  (A3 ∨  ¬A1)))
Here is a step by step conversion:

1. Original formula:
¬ ((A1 → A2) ∧  (A3 ∨  ¬  (A3 ∨  ¬A1)))

2. Convert the implication to a disjunction:
¬ ((¬A1 ∨  A2) ∧  (A3 ∨  ¬  (A3 ∨  ¬A1)))

3. Apply de Morgan’s identity to the whole formula.
¬ (¬A1 ∨  A2) ∨  ¬ (A3 ∨  ¬ (A3 ∨  ¬A1))

4. Apply de Morgan’s identity to each of the
disjuncts.

(A1 ∧  ¬A2) ∨  (¬A3 ∧  (A3 ∨  ¬A1))

5. Apply the distributive identity to the second
disjunct.

(A1 ∧  ¬A2) ∨  ((¬A3 ∧  A3) ∨  (¬A3 ∧  ¬A1))

6. Remove excess parentheses:
(A1 ∧  ¬A2) ∨  (¬A3 ∧  A3) ∨  (¬A3 ∧  ¬A1)

This formula is thus satisfiable, since at least one
disjunct (e.g., the first) is.

•  Note that we always drop double negatives
(¬¬ψ  ≡ ψ) without an explicit step.



Proptabl.doc:1998/03/27:page 9 of 23

The general algorithm for conversion to DNF:

1. Remove all occurrences of ↔ (and ≡) using the
definition in terms of →.

2. Remove all occurrences of → using the definition

(ϕ1 → ϕ2)  ≡  (¬ϕ 1 ∨  ϕ2)

3. Use de Morgan’s identities to move the negation
signs in to the atoms.  Eliminate double
negations in the process.

4. Use the distributive identity to create a disjunction
of conjunctions of literals.

Proptabl.doc:1998/03/27:page 10 of 23

Semantic Tableaux:

Stripped of all of its fluff, the method of semantic
tableaux is basically one which tests an arbitrary wff
for satisfiability by converting it to DNF.  It adds
some useful computational features:

•  The expansion structure is represented using a
tree, rather than a sequence of formulas.

•  The expansion may be halted upon finding a
satisfiable disjunct.

Regarding the second point, the expansion on the
previous slide could have been stopped at step 4,
since a satisfiable disjunct was found.  Satisfiability
of the other disjuncts became irrelevant.  (It would
not even have been necessary to simplify the
second disjunct using de Morgan’s identity.)

Proptabl.doc:1998/03/27:page 11 of 23

Here are some examples of trees for semantic
tableaux.

Example: Let
 ϕ = (A1 ∧  ¬A2 ∧  A3 ∧  ¬A4) ∨
       (¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4).
The root of the tree is the original formula.  Each
child of the root node is a disjunct.  Since one of the
branches is satisfiable, the whole formula is.

Notice that expansion need not proceed beyond
discovery of the first satisfiable node.  Thus, a
computational process could be halted once the
following partial tree is discovered.,

A1 ∧  ¬A2 ∧  A3 ∧  ¬A4 ¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4

(A1 ∧  ¬A2 ∧  A3 ∧  ¬A4) ∨  (¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4).

satisfiable unsatisfiable

A1 ∧  ¬A2 ∧  A3 ∧  ¬A4

(A1 ∧  ¬A2 ∧  A3 ∧  ¬A4) ∨  (¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4).

satisfiable

Proptabl.doc:1998/03/27:page 12 of 23

Example: Let
 ϕ = (A1 ∧  ¬A2 ∧  A3 ∧  ¬A4 ∧  A2) ∨
       (¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4).
This formula is unsatisfiable, as is determined once
the two children of the root are generated.

A1 ∧  ¬A2 ∧  A3 ∧  ¬A4 ∧  A2 ¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4

 (A1 ∧  ¬A2 ∧  A3 ∧  ¬A4 ∧  A2) ∨  (¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4)

unsatisfiable unsatisfiable



Proptabl.doc:1998/03/27:page 13 of 23

If the formula contains conjunctions and
disjunctions which are nested more deeply, these
rules may be applied recursively.

Example:
 ϕ = ((A1 ∧  ¬A2 ∧  A3 ∧  ¬A4 ∧  A2)
            ∨  (¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4))
            ∨   ((A3 ∧  ¬A3) ∨  (¬A3 ∧  A4 ∧  ¬A4))

((A1 ∧  ¬A2 ∧  A3 ∧  ¬A4 ∧  A2) ∨  (¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4))
            ∨   ((A3 ∧  ¬A3) ∨  (¬A3 ∧  A4 ∧  ¬A4))

(A1 ∧  ¬A2 ∧  A3 ∧  ¬A4 ∧  A2)
∨  (¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4)

(A3 ∧  ¬A3) ∨
(¬A3 ∧  A4 ∧  ¬A4)

 A1 ∧  ¬A2 ∧  A3 ∧  ¬A4 ∧  A2

¬A1 ∧  ¬A3 ∧  A3 ∧  ¬A4

 A3 ∧  ¬A3

¬A3 ∧  A4 ∧  ¬A4

unsatisfiableunsatisfiable

unsatisfiable unsatisfiable

Proptabl.doc:1998/03/27:page 14 of 23

The technique just sketched only works under the
following circumstances:

•  All negations (¬ ) are applied to atoms.
•  The only connectives are ∧  and ∨ .

To relax these restrictions, we make use of various
identities to place the formula in DNF.

Example: Let ϕ = ¬ (A1 ∨  ¬A2) ∧  ¬ (A2 ∧  A4).

In the first step, de Morgan’s identity was applied to
move the negations inwards to the atoms.

In the second step, the distributive identity was
applied to create a disjunction of conjunctions.

¬ (A1 ∨  ¬A2) ∧  ¬ (A2 ∧  A4)

(¬A1 ∧  A2) ∧  (¬A2 ∨  ¬A4)

(¬A1 ∧  A2 ∧  ¬A2) ∨  (¬A1 ∧  A2 ∧  ¬A4)

¬A1 ∧  A2 ∧  ¬A2 ¬A1 ∧  A2 ∧  ¬A4

unsatisfiable satisfiable

Proptabl.doc:1998/03/27:page 15 of 23

Now let us tackle the formula

ϕ = ¬ ((A1 → A2) ∧  (A3 ∨  ¬  (A3 ∨  ¬A1)))

from the DNF example.

Note that the expansion terminates once a
satisfiable node is found.

The rest of the formula need not be converted to
DNF.

¬ ((A1 → A2) ∧  (A3 ∨  ¬  (A3 ∨  ¬A1)))

¬ (A1 → A2) ∨  ¬ (A3 ∨  ¬  (A3 ∨  ¬A1))

(A1 ∧  ¬A2) ∨  ¬ (A3 ∨  ¬  (A3 ∨  ¬A1))

A1 ∧  ¬A2

satisfiable

¬ (¬A1 ∨  A2) ∨  ¬ (A3 ∨  ¬  (A3 ∨  ¬A1))

Proptabl.doc:1998/03/27:page 16 of 23

Example: Here is a solution of Example 2.1 from the
textbook.

ϕ = ¬ (A → B) ∧  (¬A ∨  B)

Here is our version of Figure 2.2 of the textbook.

¬ (A → B) ∧  (¬A ∨  B)

 ¬ (¬A ∨  B) ∧  (¬A ∨  B)

 (A ∧  ¬B) ∧  (¬A ∨  B)

 (A ∧  ¬B ∧  ¬  A) ∨  (A ∧  ¬B ∧  B)

 A ∧  ¬B ∧  ¬  A  A ∧  ¬B ∧  B

unsatisfiable unsatisfiable



Proptabl.doc:1998/03/27:page 17 of 23

Here is the same example with the first expansion
from the textbook (Figure 2.1).

¬ (A → B) ∧  (¬A ∨  B)

 (¬ (A → B) ∧  ¬A) ∨  (¬ (A → B) ∧  B)

 (¬ (A → B) ∧  ¬A)

 (¬ (¬A ∨  B) ∧  ¬A)

 ((A ∧  ¬B) ∧  ¬  A))  ((A ∧  ¬B) ∧  B))

unsatisfiable unsatisfiable

(¬ (A → B) ∧  B)

 (¬ (¬A ∨  B) ∧  B)

 A ∧  ¬B ∧  ¬  A  A ∧  ¬B ∧  B

Proptabl.doc:1998/03/27:page 18 of 23

Example: This is a restatement of Example 2.2 from
the textbook.  Suppose that it is desired to prove
ϕ = (¬A ∨  D) from the following set of axioms:

Φ = { (¬A ∨  B), ¬ (B ∧  ¬C), (C→ D) }.

In other words, it is desired to establish that
Φ ~ ϕ holds.  As noted earlier, if we define

Φ∧  = (¬A ∨  B) ∧  ¬ (B ∧  ¬C) ∧  (C→ D)

then Φ ~ ϕ holds  iff  (Φ∧  ∧  ¬ϕ )  is unsatisfiable.

We may use the method of semantic tableaux to
show satisfiability and unsatisfiability.  The formula
which we will start with is thus

(Φ∧  ∧  ¬ϕ ) =
   (¬A ∨  B) ∧  ¬ (B ∧  ¬C) ∧  (C→ D) ∧  ¬ (¬A ∨  D).

The graph on the next page follows the general plan
of Figures 2.2 – 2.9 of the textbook.

Proptabl.doc:1998/03/27:page 19 of 23

(¬A ∨  B) ∧  ¬ (B ∧  ¬C) ∧  (C→ D) ∧  ¬ (¬A ∨  D)

¬A ∧  ¬ (B ∧  ¬C) ∧  (C→ D) ∧  (A ∧  ¬D)

(¬A ∨  B) ∧  ¬ (B ∧  ¬C) ∧  (C→ D) ∧  (¬¬ A ∧  ¬D)

(¬A ∨  B) ∧  ¬ (B ∧  ¬C) ∧  (C→ D) ∧  (A ∧  ¬D)

unsatisfiable B ∧  ¬ (B ∧  ¬C) ∧  (C→ D) ∧  (A ∧  ¬D)

B ∧  (¬B ∨  ¬¬ C) ∧  (C→ D) ∧  (A ∧  ¬D)

B ∧  ¬B ∧  (C→ D) ∧  (A ∧  ¬D)

B ∧  ¬¬ C ∧  (C→ D) ∧  (A ∧  ¬D)

B ∧  C ∧  (C→ D) ∧  (A ∧  ¬D)

B ∧  C ∧  (¬C ∨  D) ∧  (A ∧  ¬D)

B ∧  C ∧  ¬C ∧  (A ∧  ¬D) B ∧  C ∧  D ∧  (A ∧  ¬D)

B ∧  C ∧  D ∧  A ∧  ¬D

unsatisfiable

unsatisfiable

unsatisfiable

¬A ∧  A ∧  ¬D ∧  ¬ (B ∧  ¬C) ∧  (C→ D)

Proptabl.doc:1998/03/27:page 20 of 23

Example: We now solve Example 2.4 of the text
(solved earlier using a simple truth-table
construction.) using semantic tableaux.

The formula to be checked is

Φ∧  ∧  ¬ϕ   =
           (J  ∨  Y) ∧  (Y → (¬S → C)) ∧  (¬J → S) ∧  ¬C

A semantic tableau for this problem is shown on the
next slide.  In this slide, it is attempted to follow the
pattern of Figure 2.12 of the textbook as closely as
possible.

Notes:

•  The author applies the conversion of
(¬  J → S)  to two branches at once.  This is not
necessary, and in this example, it turns out to be
superfluous.

•  Once a satisfiable branch is found, no further
computation is necessary, since the question of
whether or not other branches are satisfiable is
irrelevant.

•  The model defining the satisfiability may be read
off from the satisfiable node.

•  Nodes generated in the text example, but not
needed, are shown in dashed lines.



P
ro

pt
ab

l.d
oc

:1
99

8/
03

/2
7:

pa
ge

 2
1 

of
 2

3

(J
  ∨

 Y
) 

∧ 
(Y

 →
 (

¬
S

 →
 C

))
 ∧

 (
¬

J 
→

 S
) 

∧ 
¬

C

J 
 ∧

 (
Y

 →
 (

¬
S

 →
 C

))
 ∧

 (
¬

J 
→

 S
) 

∧ 
¬

C
Y

 ∧
 (

Y
 →

 (
¬

S
 →

 C
))

 ∧
 (

¬
J 

→
 S

) 
∧ 

¬
C

J 
 ∧

 (
Y

 →
 (

¬
S

 →
 C

))
 ∧

 (
¬¬

J 
∨ 

S
) 

∧ 
¬

C

J 
 ∧

 (
Y

 →
 (

¬
S

 →
 C

))
 ∧

 (
J 

∨ 
S

) 
∧ 

¬
C

J 
 ∧

 ¬
Y

 ∧
 J

 ∧
 ¬

C

J 
 ∧

 ¬
Y

 ∧
 (

J 
∨ 

S
) 

∧ 
¬

C

J 
 ∧

 (
¬

Y
 ∨

 (
¬

S
 →

 C
))

 ∧
 (

J 
∨ 

S
) 

∧ 
¬

C

Y
 ∧

 (
Y

 →
 (

¬
S

 →
 C

))
 ∧

 (
¬¬

J 
∨ 

S
) 

∧ 
¬

C
Y

(Y
(

S
C

))
(

J
S

)
C

Y
 ∧

 (
Y

 →
 (

¬
S

 →
 C

))
 ∧

 (
J 

∨ 
S

) 
∧ 

¬
C

sa
tis

fia
bl

e

J 
 ∧

 (
¬

S
 →

 C
) 

∧ 
(J

 ∨
 S

) 
∧ 

¬
C

J 
 ∧

 ¬
Y

 ∧
 S

 ∧
 ¬

C

Proptabl.doc:1998/03/27:page 22 of 23

Summary of rules for semantic tableaux:

Leaf nodes:

•  A wff may represent a terminal node iff it is of the
form

ϕ1 ∧  ϕ2 ∧  .. ∧  ϕk,
with each ϕi a wff.

•  A terminal node represented by the above
formula is unsatisfiable iff there is some pair

{ ϕp, ϕq }
of conjuncts from that formula which forms a
complementary pair of literals.  The forms of the
other ϕi’s are irrelevant.

•  A terminal node represented by the above
formula is satisfiable iff each ϕi is a literal, and no
two of those literals forms a complementary pair.

Rules for satisfiablity:

•  To show that a formula is satisfiable, it suffices to
find one leaf node which is satisfiable.

•  To show that a formula is unsatisfiable, it must be
shown that all leaf nodes are unsatisfiable.

Proptabl.doc:1998/03/27:page 23 of 23

Some general remarks on the method of
semantic tableaux:

Let ϕ be a propositional formula.  A graph with ϕ as
the root, and constructed as shown in the examples
on these slides, is called a semantic tableau for ϕ.

Theorem: Let  ϕ be a propositional formula.  Then ϕ
is satisfiable iff every semantic tableau for ϕ may be
extended to one which contains a path from the root
to a node consisting of the conjunction of a
satisfiable set of literals. ¹

This result will not be proven formally, although
from the discussion about DNF, it should not be
difficult to believe.  Furthermore, the process is
algorithmic, as stated below.

Observation: Every semantic tableau for ϕ may be
extended to one for which every path leads to a leaf
which is labelled with a conjunction of literals. ¹

Theorem: The process of constructing a semantic
tableau for ϕ is a finite one.  It will always terminate.


	Semantic Tableaux �for Propositional Logic

