
Hilbert.doc:1998/03/27:page 1 of 16

The Hilbert Proof System

In secondary school, you probably took a course in
plane geometry in which you were required to
construct formal, step-by-step proofs which
established things such as “triangle A is congruent
to triangle B.” A proof system for a logic has the
same flavor, but is focused on logic rather than
geometry.

Example: Let / be the propositional logic with 3 =
{A, B, C}. Let

Φ = {A, (A → B), (B → C)};
ϕ = C.

Suppose that it is desired to establish that Φ ~ ϕ
holds. A (yet to be formalized) “proof” might run as
follows:

1. A (hypothesis)
2. (A → B) (hypothesis)
3. B (2 applied to 1)
4. (B → C) (hypothesis)
5. C (4 applied to 3)

Generally, proofs have this linear form, in which
each statement is either given, or else is a
consequence of previous statements.

Here is how that idea is formalized.

Hilbert.doc:1998/03/27:page 2 of 16

Definition: Let /� ��3��$��&� be a propositional
logic. A proof system for / consists of the
following:

(a) a set of proof rules for deducing new
statements from existing ones, and

(b) a set of axiom schemata for generating
tautologies.

This really is not much of a definition, because the
meaning of proof rule and axiom schema have not
been given. A formal definition is possible, but
tedious, so we will illustrate with the key examples
instead.

The most famous proof rule is modus ponens,
denoted MP. It is written as follows:

α1, (α1 → α2)
 α2

The formulas above the line are patterns to be
matched for the rule to apply. The formula below
the line is the result. Thus, this rule says that if α1

and α2 are any two formulas whatever, and if it is
known that both α1 and (α1 → α2) are true, then it
may be concluded that α2 is true. The patterns α1

and (α1 → α2) are called the premises, and α2 is
called the conclusion.

In the “proof” on the previous slide, it was modus
ponens which was applied at steps 3 and 5.

Hilbert.doc:1998/03/27:page 3 of 16

An axiom schema is a pattern which yields a wff
when wff’s are subsitituted for its parameters. For
example,

(α1 → (α2 → α1))

is an axiom schema. When any wff’s whatever are
substituted for α1 and α2, an instantiation of the
axiom schema is obtained. To be useful, an axiom
schema should always yield instantiations which are
tautologies. Notice that since any wff may be
substituted for α1 and for α2, this schema will
generate an infinite number of distinct formulas.

Formally, an axiom schema may be viewed as a
special case of a proof rule; that is, one with no
premises. With that interpretation, one might write
the above axiom schema as

(α1 → (α2 → α1))
 or

∅
(α1 → (α2 → α1))

Hilbert.doc:1998/03/27:page 4 of 16

To see what axiom schemata are all about, let us
modify the previous example a bit. Now let / be the
propositional logic with 3 = {A, B, C, D}, and let

Φ = {A, (A → B), (B → C)};
ψ = ((¬D) → C).

It should be clear that Φ ~ ψ. Indeed, ψ ≡ (D ∨ C),
which is a weaker conclusion than ϕ = C. However,
a proof using only modus ponens is not possible.
The use of the above axiom schema is necessary.

1. A (hypothesis)
2. (A → B) (hypothesis)
3. B (modus ponens on 1,2)
4. (B → C) (hypothesis)
5. C (modus ponens on 3,4)
6. (C → ((¬D) → C)) (axiom schema)
7. ((¬D) → C) (modus ponens on 5,6) ¹

Hilbert.doc:1998/03/27:page 5 of 16

A proof system is a pair Γ = (6�5) in which S is a
(possibly empty) finite set of axiom schemata and R
is a finite set of proof rules.

A proof in Γ= (6�5) of the wff ϕ from the set of wffs
Φ is a sequence ϕ1, ϕ2, .., ϕn of wff’s, with the
following properties.
(a) Each ϕi is either:

(i) A member of Φ;
(ii) An instantiation of a member of S;, or
(iii) The consequent of an instantiation of a

proof rule ρ ∈ R for which each
instantiation of its premises is one of the
ϕj, with j < i.

(b) ϕn = ϕ.

Φ dΓ ϕ denotes that ϕ is provable from Φ in Γ.

Definition: The Hilbert System (denoted +) for
propositional logic consists of the following three
axiom schemata

Ax1: ((α1 → (α2
 → α1))

Ax2: ((α1 → (α2
 → α3)) → ((α1 → α2) → (α1

 → α3)))
Ax3: (((¬α 1) → (¬α 2)) → (α2

 → α1))

together with the single proof rule modus ponens,
repeated below.

α1, (α1 → α2)
 α2

Hilbert.doc:1998/03/27:page 6 of 16

Here is the proof within the Hilbert system, from a
previous slide, with the correct justifications listed.

1. A (hypothesis)
2. (A → B) (hypothesis)
3. B (modus ponens on 1,2)
4. (B → C) (hypothesis)
5. C (modus ponens on 3,4)
6. (C → ((¬D) → C)) (axiom schema Ax1 on

C, ((¬D) → C))
7. ((¬D) → C) (modus ponens on 5,6) ¹

Note that the instantiation of the axiom schema
need not be by axioms; any wff may be used.

The order is not critical, as long as the premises of
each application of an inference rule precede the
use of that rule. Here an alternate proof.

1. (C → ((¬D) → C)) (axiom schema Ax1 on
 C,((¬D) → C)))

2. A (hypothesis)
3. (B → C) (hypothesis)
4. (A → B) (hypothesis)
5. B (modus ponens on 2,4)
6. C (modus ponens on 5,3)
7. ((¬D) → C) (modus ponens on 6,1) ¹

Hilbert.doc:1998/03/27:page 7 of 16

It is sometimes convenient to represent the
proof with a directed acyclic graph (DAG), rather
than with a linear list. This makes transparent the
actual dependencies amongst the elements of the
proof. Any linearization of the graph will provide a
sequential proof. Shown below is the graph for this
example.

A

(A → B)

B

(B → C)

(C → ((¬D) → C))

C

((¬D) → C)

Hilbert.doc:1998/03/27:page 8 of 16

Proofs in the Hilbert System:

Example: (This is (Meta-)Theorem 4.1 of the
textbook.) Establish that for any wff ϕ,

dΓ (ϕ → ϕ).
From a semantic point of view, this is obvious. That
is, we know that

~ (ϕ → ϕ).
However, we want to show that it is provable in the
Hilbert system. This task is surprisingly nontrivial.
No hypotheses are given, so the only alternative to
obtain a wff to begin the proof is to use an
instantiation of one of the axiom schemata. The
following proof is the same as that in the textbook,
except for names. Note that ψ can be any wff
whatever in this proof including ϕ.

1. ((ϕ → ((ψ → ϕ) → ϕ))
[Ax1: α1 ← ϕ; α2 ← (ψ → ϕ)]

2. ((ϕ → ((ψ → ϕ) → ϕ)) →
((ϕ → (ψ → ϕ) → (ϕ → ϕ)))

[Ax2: α1 ← ϕ; α2 ← (ψ → ϕ); α3 ← ϕ]

3. (((ϕ → (ψ → ϕ)) → (ϕ → ϕ))
[MP: α1 ← (1.); α2 ← (2.)]

4. (ϕ → (ψ → ϕ))
[Ax1: α1 ← ϕ; α2 ← (ψ → ϕ)]

5. (ϕ → ϕ) [MP: α1 ← (4.); α2 ← (3.)] ¹

Hilbert.doc:1998/03/27:page 9 of 16

Some FAQ’s about the Hilbert system:

Q: How does one know which axiom schemata to
use, and which substitutions to make? Since there
are infinitely many possibilities, it is not possible to
try them all, even in princple.

A: There is no algorithm; at least no simple one.
Rather, one has to be clever. In pure mathematics,
this is not viewed as a problem, since one is most
concerned about the existence of a proof.
However, in computer science applications, one is
interested in automating the deduction process, so
this is a fatal flaw. The Hilbert system is not
normally used in automated theorem proving.

Q: So, why do people care about the Hilbert
system?

A: With modus ponens as its single deductive rule,
it provides a palatable model of how humans devise
mathematical proofs. As we shall see, methods
which are more amenable to computer
implementation produce proofs which are less
“human like.”

Hilbert.doc:1998/03/27:page 10 of 16

Despite these shortcomings, it is possible to simplify
proof in the Hilbert system somewhat by generating
meta-theorems which may later be used in proofs.

(Meta-)Theorem 4.3 of the textbook:
{(ϕ1 → ϕ2), (ϕ2 → ϕ3)} d+ (ϕ1 → ϕ3)

Proof:
1. (ϕ2 → ϕ3) [hypothesis]

2. ((ϕ2 → ϕ3) → (ϕ1 → (ϕ2 → ϕ3)))
[Ax1: α1 ← (ϕ2 → ϕ3); α2 ← ϕ1]

3. (ϕ1 → (ϕ2 → ϕ3))
 [MP: α1 ← (1.); α2 ← (2.)]

4. ((ϕ1 → (ϕ2 → ϕ3)) → ((ϕ1 → ϕ2) → (ϕ1 → ϕ3)))
[Ax2: α1 ←ϕ1; α2 ←ϕ2; α3 ←ϕ3]

5. ((ϕ1 → ϕ2) → (ϕ1 → ϕ3))
[MP: α1 ← (3.); α2 ← (4.)]

6. (ϕ1 → ϕ2) [hypothesis]

7. (ϕ1 → ϕ3) [MP: α1 ← (6.); α2 ← (5.)] ¹

Hilbert.doc:1998/03/27:page 11 of 16

(Meta-)Theorem 4.2 of the textbook:
dH ((¬ϕ 1) → (ϕ1 → ϕ2))

The textbook provides two proofs of this statement.
One is a pure proof, using only the axiom schemata
and modus ponens. The second, which is much
shorter, makes use of (Meta-)Theorem, which is
proven above. Here is the second proof:

1. ((¬ϕ 1) → ((¬ϕ 2)
 → (¬ϕ 1)))
[Ax1: α1 ← (¬ϕ 1); α2 ← (¬ϕ 2)]

2. (((¬ϕ 2) → (¬ϕ 1)) → (ϕ1
 → ϕ2))

[Ax3: α1 ← ϕ2; α2 ← ϕ1]

3. ((¬ϕ 1) → (ϕ1 → ϕ2))
[Th. 4.3 on (1.) and (2.)]

Several other (Meta-)Theorems are presented in
the textbook, the most important of which is the
following:

The Deduction Theorem:

Φ ∪ {ϕ1} dH ϕ2 iff Φ dH (ϕ1 → ϕ2)

The proof is an induction on the length of the proof.
It will not be reproduced here.

You should read through, and understand the
statements of, the other meta-theorems in Chapter
4 of the textbook.

Hilbert.doc:1998/03/27:page 12 of 16

Remark on notation: The deduction theorem may
also be written as

Φ ∪ {ϕ1} dH ϕ2 ⇔ Φ dH (ϕ1 → ϕ2)

provided that ⇔ is interpreted as a meta-symbol.
The textbook author is inconsistent in his notation
on such issues. Note, however, that it is not correct
to write

Φ ∪ {ϕ1} dH ϕ2 ↔ Φ dH (ϕ1 → ϕ2).

In the notation used in the text and these notes, ↔
is a logical connective (an alternate to ≡). It is not a
meta-symbol.

Hilbert.doc:1998/03/27:page 13 of 16

Properties of proof systems:

Soundness: A proof system Γ is sound if, for any wff
ϕ,

dΓ ϕ implies ~ ϕ.

In words, a proof system is sound if everything
which can be proven is true. To be useful, a proof
system should always be sound.

Completeness: A proof system Γ is complete if, for
any wff ϕ,

~ ϕ implies dΓ ϕ.

In words, a proof system is sound if everything
which is true can be proven. This is a very
desirable, although it may be compromised in the
name of efficiency.

Theorem: The Hilbert proof system + is both sound
and complete. ¹

Hilbert.doc:1998/03/27:page 14 of 16

Decidability:

• Decidability is a property of the logic, not of the
proof system. (The textbook is unclear on this
issue.)

An algorithm is a program which always halts. It
never loops forever looking for an answer.

A logic / is decidable if there is an algorithm which
takes as input an arbitrary wff ϕ in the logic and
provides as output the answer to the question:

“Does ~ ϕ hold?”

Theorem: Propositional logic is decidable.
Proof: If the number of propositions in the logic is
finite, this is trivial. All one need do is construct a
truth table. Suppose that the number of
propositions is infinite. Even in this case, if we are
asked to determine whether or not ~ ϕ holds, the
formula ϕ can contain only a finite number of
proposition names. Restricting the truth table to
these proposition names is sufficient, so the truth
table method may be employed in this case as well.
¹

Hilbert.doc:1998/03/27:page 15 of 16

Algorithms for deduction:

• The truth-table method, and often even the
semantic-tableaux method, can be very inefficient
in certain circumstances. One of the principal
reasons that one employs a proof system is to
obtain a more efficient proof procedure.

• Unfortunately, the Hilbert proof system fails to
provide an algorithm for generating proofs. It is
clear that if “intelligent” control on the application
of the axiom schemata is not imposed, the
process of generating new elements in a proof
sequence can proceed endlessly.

• Next, we will examine another proof system
(resolution), which overcomes this difficulty.

Hilbert.doc:1998/03/27:page 16 of 16

Deduction of non-tautologies:

It might seem restrictive that attention is paid solely
to establishing that a formula is a tautology; that is,
to establishing that

~ ϕ.
For general theorem proving, the more general
situation

Φ ~ ϕ
must be established. However, as demonstrated in
the notes on semantic tableaux, Φ ~ ϕ holds iff
(Φ∧ ∧ (¬ϕ)) is unsatisfiable, where Φ∧ is the
conjunction of all formulas in Φ. However,
(Φ∧ ∧ (¬ϕ)) is unsatisfiable iff (¬ (Φ∧ ∧ (¬ϕ))) is a
tautology. However, the latter is equivalent to
(¬Φ∧ ∨ ϕ) and so to (Φ∧ → ϕ). Thus,

Φ ~ ϕ
is equivalent to

~ (Φ∧ → ϕ).

Notice that the deduction theorem is a syntactic
version of this idea.

	The Hilbert Proof System

