
Prop1.doc:1998/03/24: page 1 of 19

Propositional Logic

Definition: A propositional logic is a triple
/� ��3��&��$� in which:

• 3 is a set of proposition names.
• & = {¬ , →, ⊥ } is the set of logical

connectives.
• $ = { (,) } is the set of auxiliary symbols.
• Elements�3��∩��$�∪ �&�� �∅ .

Here Elements�3)�denotes the set of all characters
used in elements of P. For example, if the elements
of P are strings (as in the blocks-world example),
then Elements�3)�is the set of all characters making
up those strings.

L is said to be finite precisely when 3 is a finite set.

Notational convention: Uppercase letters, usually
from the beginning of the alphabet, as well as such
letters subscripted, are typically used to denote
proposition names. Examples: A, B, C, A1, C15.

The example of the previous section presents a
slight problem relative to this definition, since the
proposition names contain parentheses, which are
elements of $. This is easily remedied by using
square brackets instead. For example,
On_table(x,y) becomes On_table[x,y].

Prop1.doc:1998/03/24: page 2 of 19

Definition: The class of (strict) well-formed formulas
over / (denoted SWF(/)), is the smallest set of
strings over the alphabet 3 ∪ $�∪ �& which is
closed under the following rules:
(a) ⊥ ∈ SWF(/).
(b) A ∈ 3��implies�that�$�∈ �SWF(/).
(c) ϕ ∈ �SWF(/) implies that (¬ϕ) ∈ �SWF(/).
(d) ϕ1, ϕ2 ∈ �SWF(/) implies that

 (ϕ1 → ϕ2) ∈ �SWF(/).

Examples: Let 3 = {A, B, C}. The following are
strict well-formed formulas:

⊥ (¬A) (A → B)
A ((¬A) → B) (⊥ → B)
(¬⊥) ((A → B) → B) (A → (B → B))

Examples: The following are not strict well-formed
formulas:

¬A A → B ((A → B))
(A ∨ B) (A ∧ B) (A ≡ B)

Notes:

• The connectives ∨ , ∧ , and ≡ are not included
explicitly.

• Parentheses must be used in very specific ways.

We will relax these restrictions shortly.

Prop1.doc:1998/03/24: page 3 of 19

Truth and interpretations:

The truth values are the elements of {0,1}. 0 is
interpreted as false, and 1 as true. Numbers are
used, rather than the more conventional F and T,
because this use facilitates other definitions.

An interpretation defines a possible world for the
logic. More formally, an interpretation (or valuation)
for L is a function

v : 3 t {0,1}.
For A ∈ 3,

• v(A) = 1 if A is true in the interpretation.
• v(A) = 0 if A is false in the interpretation.

Interp(/) denotes the set of all interpretations for /.

Example: Let 3 = {A, B, C}. Then there are eight
distinct interpretations, identified in the table below.

v(A) v(B) v(C)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

In general, if there are n proposition letters, then
there are 2n distinct interpretations.

Prop1.doc:1998/03/24: page 4 of 19

P1
B1 B2

P2

Example:
Using the
propositional
logic of the
previous
section,
provide the
interpretation
describing the world above.

Predicate Interp. Predicate Interp.
Is_cube[B1] 1 On[B1,B1] 0
Is_cube[B2] 1 On[B1,B2] 0
Is_cube[P1] 0 On[B1,P1] 0
Is_cube[P2] 0 On[B1,P2] 0
Is_pyramid[B1] 0 On[B2,B1] 0
Is_pyramid[B2] 0 On[B2,B2] 0
Is_pyramid[P1] 1 On[B2,P1] 0
Is_pyramid[P2] 1 On[B2,P2] 0
On_table[B1] 1 On[P1,B1] 0
On_table[B2] 1 On[P1,B2] 0
On_table[P1] 1 On[P1,P1] 0
On_table[P2] 0 On[P1,P2] 0

On[P2,B1] 1
On[P2,B2] 0
On[P2,P1] 0
On[P2,P2] 0

Note that there are 228 possible interpretations, of
which only 13 represent reality. Clearly, the
constraints rule out most of the possibilities!

Prop1.doc:1998/03/24: page 5 of 19

Suppose that we eliminate those which are either
true or else false in all interpretations. We then get
the following list.

Predicate Interp. Predicate Interp.
On_table[B1] 1 On[B1,B2] 0
On_table[B2] 1 On[B2,B1] 0
On_table[P1] 1 On[P1,B1] 0
On_table[P2] 0 On[P1,B2] 0

On[P2,B1] 1
On[P2,B2] 0

Here there are only 210 or about 1024
interpretations, many more than 13, but far fewer
than 228, which is about 256 million.

Moral (to be repeated many times): It pays to
choose your modelling tools carefully.

Prop1.doc:1998/03/24: page 6 of 19

Extending an interpretation to formulas:

The semantics of ¬ is quite obvious. It may be
represented on a basic level by using the following
truth table, with ϕ taken to be any strict wff
whatever.

ϕ (¬ϕ)
0 1
1 0

The semantics of → is represented in the table
below.

ϕ1 ϕ2 (ϕ1 → ϕ2)
0 0 1
0 1 1
1 0 0
1 1 1

This may seem a bit strange, since if ϕ1 is false, the
formula is always true. Call ϕ1 the antecedent and
ϕ2 the consequent. If the antecedent is false, it
does not mean that the consequent is true. Rather,
it means that the statement is true. Consider

"If we are in Umeå, then it must be cold."

Another way to say this is

"Either we are not in Umeå, or else it is cold."

Prop1.doc:1998/03/24: page 7 of 19

With the latter interpretation, things make more
sense.

Here is a more formal definition of the semantics.

Definition: Let v : 3 t {0,1} be an interpretation of

/. Define v-: SWF(L) t {0,1} as follows.

(a) v-(⊥) = 0.

(b) v-(A) = v(A), for A ∈ 3.

(c) v-((¬ϕ)) = 1 - v-(ϕ), for ϕ ∈ SWF(L).

(d) v-((ϕ1 → ϕ2)) = max(1 - v-(ϕ1), v-(ϕ2)),
 for ϕ1, ϕ2 ∈ SWF(L).

Note that this is an inductive definition.

Example: Suppose that 3 = {A, B, C}, and that
v : A x 1, B x0, C x 1. Then

v-((¬ (A → (B → (¬C)))))

= 1 - v-((A → (B → (¬C))))

= 1 - max(1 - v-(A), v-((B → (¬C))))

= 1 - max(0, max(1 - v-(B), v-((¬C))))

= 1 - max(0, max(1, 1 - v-(C)))
= 1 - max(0, max(1, 0))
= 1 - 1
= 0.

Prop1.doc:1998/03/24: page 8 of 19

Other logical connectives:

The other logical connectives (∨ , ∧ , ≡) are defined
as abbreviations of formulas using the connectives
¬ and →. Formally, we have the following.

Definition:
(ϕ1 ∨ ϕ2) is an abbreviation for ((¬ϕ 1) → ϕ2).
(ϕ1 ∧ ϕ2) is an abbreviation for (¬ (ϕ1 → (¬ϕ 2))).
(ϕ1 ≡ ϕ2) is an abbreviation for

 ((ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)).
® is an abbreviation for (¬⊥).

Do these abbreviations make sense? Yes.
The key thing to "believe" is that (ϕ1 → ϕ2) and
((¬ϕ 1) ∨ ϕ2) have the same meaning.

Let WF(/) denote the class of all well-formed
formulas over /. This class includes the elements
of SWF(/), as well as formulas involving the
abbreviations identified above. From now on, we
will use wff or wf as an abbreviation for well-formed
formula.

Facts: Let v : 3 t {0,1} be an interpretation of /.

Extend v-: WF(/) t {0,1} as follows.

(a) v-((ϕ1 ∨ ϕ2)) = max(v-(ϕ1), v-(ϕ2)).

(b) v-((ϕ1 ∧ ϕ2)) = min(v-(ϕ1), v-(ϕ2)).

(c) v-((ϕ1 ≡ ϕ2)) = 1 - abs(v-(ϕ1) - v-(ϕ2)).

(d) v-(®) = 1. ¹

Prop1.doc:1998/03/24: page 9 of 19

Models and Semantic Entailment:

Models:
• Given a wff ϕ,

 Mod(ϕ) = {v ∈ Interp(/)  v-(ϕ) = 1}.
• The notation v ~ ϕ is sometimes used to denote

that v ∈ Mod(ϕ).
• Given a set Φ of wff’s,
 Mod(Φ) =

 {v ∈ Interp(/)  v-(ϕ) = 1 for each ϕ ∈ Φ}.

Semantic entailment:

• Write Φ ~ ϕ to denote that Mod(Φ) ⊆ Mod(ϕ).

• Write ~ ϕ to denote that all interpretations
belong to Mod(ϕ). (In terms of the definition
below, ϕ is a tautology.)

Definitions:

• If Mod(ϕ) ≠ ∅ , ϕ is satisfiable.

• If Mod(ϕ) = ∅ , ϕ is unsatisfiable.

• If Mod(ϕ) = Interp(/), ϕ is called a tautology.

• ϕ1 and ϕ2 are logically equivalent if Mod(ϕ1) =
Mod(ϕ2).

Prop1.doc:1998/03/24: page 10 of 19

Some logical equivalences:

The following equivalences are all a consequence
of the fact that the truth system of propositional
logic forms a Boolean algebra.

Zero of ⊥ :
(ϕ ∧ ⊥) ≡ ⊥

Identity of ⊥ :
(ϕ ∨ ⊥) ≡ ϕ

Identity of complements:
(ϕ ∧ (¬ϕ)) ≡ ⊥

Idempotence:
(ϕ ∧ ϕ) ≡ ϕ

Associative identity:
((ϕ1 ∧ ϕ2) ∧ ϕ3) ≡ ((ϕ1 ∧ (ϕ2 ∧ ϕ3))

Commutative identity:
(ϕ1 ∧ ϕ2) ≡ (ϕ2 ∧ ϕ1)

Distributive identity:
((ϕ1 ∧ (ϕ2 ∨ ϕ3)) ≡ ((ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3))

Absorbtion identity:
((ϕ1 ∧ (ϕ1 ∨ ϕ2)) ≡ ϕ1

de Morgan’s identity:
(¬ (ϕ1 ∧ ϕ2)) ≡ ((¬ϕ 1) ∨ (¬ϕ 2))

Prop1.doc:1998/03/24: page 11 of 19

 Duals of logical equivalences:

Meta-rule: Every one of the logical equivalences on
the previous slide has an equally valid dual,
obtained by replacing each connective by its dual,
as summarized in the table below.

Connective Dual
∧ ∨
∨ ∧
⊥ ®
® ⊥
≡ ≡
¬ ¬

Examples:

The dual of de Morgan’s identity:
 (¬ (ϕ1 ∨ ϕ2)) ≡ ((¬ϕ 1) ∧ (¬ϕ 2))

The dual of the identity of complements:
(ϕ ∨ (¬ϕ)) ≡ ®.

The dual of the zero of ⊥ :
(ϕ ∨ ®) ≡ ®

This should perhaps be called the “unit of ®”
identity.

Exercise: Identify the duals of the other identities,
and understand their meanings.

Prop1.doc:1998/03/24: page 12 of 19

Further notational conveniences:

• Because ∧ and ∨ are associative, it is convenient
to drop parentheses surrounding cascades of
these operations.

Example: ((ϕ1 ∧ ϕ2) ∧ ϕ3) and ((ϕ1 ∧ (ϕ2 ∧ ϕ3))
 may each be written as just (ϕ1 ∧ ϕ2 ∧ ϕ3).

• Because ∧ and ∨ are commutative, it is
convenient to consider pairs differing only in the
order of the elements to be the same.

Example: (ϕ1 ∧ ϕ2) and (ϕ2 ∧ ϕ1) are the same.

• Parentheses surrounding negated atoms may be
omitted.

Example: ((¬ϕ 1) ∧ ϕ2) may be written (¬ϕ 1 ∧ ϕ2).

Prop1.doc:1998/03/24: page 13 of 19

Precedence:

The most common precedence schedule is as
follows:

Symbol Arity Precedence Meaning
∧ 2 2 Logical conjunction (and)
∨ 2 3 Logical disjunction (or)
¬ 1 1 Logical negation (not)
→ 2 4 Logical implication (implies)

↔ ≡ 2 4 Logical equivalence (iff)

However it is not a good idea to omit parentheses
in formulas involving distinct binary operations.
These precedences are not well known, and it is
very easy to make a mistake.

Example: (ϕ1 ∧ ϕ2 ∨ ϕ3) has the “official” meaning
((ϕ1 ∧ ϕ2) ∨ ϕ3), but these precedences are not well
known, and it is very easy to be misunderstood. Do
not use them in this course.

Rather, assume that the following simpler
precedence rules hold, and use parentheses to
resolve all ambiguities.

Symbol Arity Precedence Meaning
∧ 2 2 Logical conjunction (and)
∨ 2 2 Logical disjunction (or)
¬ 1 1 Logical negation (not)
→ 2 2 Logical implication (implies)

↔ ≡ 2 2 Logical equivalence (iff)

Prop1.doc:1998/03/24: page 14 of 19

Complete sets of connectives:

We have already seen that all logical connectives
may be realized with combinations of the elements
of {→, ¬ }. Call such a set complete. It is easy to
see that {¬ , ∨ } and {¬ , ∧ } are also complete sets.

Interestingly, there are two single operations which
form complete sets by themselves.

NAND (not and) or Sheffer stroke:

ϕ1 ϕ2 (ϕ1  ϕ2)
0 0 1
0 1 1
1 0 1
1 1 0

NOR (not or) or Pierce arrow:

ϕ1 ϕ2 (ϕ1 ↓ ϕ2)
0 0 1
0 1 0
1 0 0
1 1 0

These operations have application in combinational
circuit design, as we shall see shortly.

Exercise: Show these to be complete.

Prop1.doc:1998/03/24: page 15 of 19

Truth functions and combinational logic:

In the design of computer hardware, one is often
presented with the problem of designing a circuit
which realizes a logical function

g: {0,1}n t {0,1}.

This can be envisioned as a problem in which one
must build a circuit with n input lines and one output
line, as illustrated below. Such devices are called
combinational logic circuits.

Every wff which contains at most the propositions
{A1, A2, .., An} defines the behavior of such a circuit.

For example, suppose n=3, and that

ϕ = (A1 ∧ (A3 → A2))

The truth table of ϕ defines the behavior of the
circuit.

Combinational
Logic Circuit�

A1

A2

An

B

Prop1.doc:1998/03/24: page 16 of 19

A1 A2 A3 (A1 ∧ (A3 → A2))
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

An extremely important question, from an
engineering point of view, is that which asks which
functions of the form

g: {0,1}n t {0,1}

may be realized via a wff ϕ, as in the preceding
example. Amazingly, the answer is that all such
functions may be so realized.

To illustrate this, let us reverse engineer the above
design. We start with the following truth table.

Prop1.doc:1998/03/24: page 17 of 19

A1 A2 A3 B
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

For each row of the table which generates a 1
result, write down the conjunction (“and”) of
propositions and their negations which produces
that result. The fifth row of the table yields:

(A1 ∧ ¬A2 ∧ ¬A3)

The seventh and eight yield:

(A1 ∧ A2 ∧ ¬A3)

(A1 ∧ A2 ∧ A3)

To complete the solution, we just form the
disjunction (“or”) of these results.

(A1 ∧ ¬A2 ∧ ¬A3) ∨ (A1 ∧ A2 ∧ ¬A3) ∨ (A1 ∧ A2 ∧ A3)

It is easy to see that this formula is equivalent to

(A1 ∧ (A3 → A2)).

Prop1.doc:1998/03/24: page 18 of 19

Combinational logic circuit elements:

The following types of logic gates are commonly
used in the design of combinational logic circuits for
computers.

• NAND and NOR gates are the most commonly
used, because of their completeness, and
because such “inverting” circuits are the easiest
to realize with a minimum number of transistors.

• A buffer is used just to amplify a weak signal. It is
shown here as the complement of an inverter.

• Often, these gates are available with more than
two inputs. Here is an example of a three-input
NOR gate:

AND gate

NOR gateOR gate

NAND gate

Inverter
(NOT gate)

Buffer

Prop1.doc:1998/03/24: page 19 of 19

Here is a realization of
(A1 ∧ ¬A2 ∧ ¬A3) ∨ (A1 ∧ A2 ∧ ¬A3) ∨ (A1 ∧ A2 ∧ A3)

using AND and OR gates (with three inputs),
together with inverters.

Here is a simpler realization of the same function,
but based upon (A1 ∧ (A3 → A2))

• Formulating a realization of such a circuit using
NAND and/or NOR gates, and in particular with a
minimum number of such gates, is a special
science, which is studied in courses for computer
hardware design (datorteknik).

A1

A2

A3

B

A1
A2
A3

B

	Propositional Logic

