
Paramod.doc:1998/05/19:page 1 of 27

First-Order Resolution with Equality

Motivating example: Suppose that we are given the
following clauses:

ϕ1 := P(a)
ϕ2 := a=b

It should be possible to derive the clause

ϕ := P(b)

via a simple substitution of b for a.

However, basic resolution provides no way to
achieve this.

While the equality relation = is a simple binary
relation:

• (a=b) might be written =(a,b) in a more formal
way;

it does not enjoy any special status unless the proof
system is augmented to provide this.

A simple example will illustrate this limitation.

Paramod.doc:1998/05/19:page 2 of 27

Example:

Siblings have the same mother:
(∀ x)(∀ y)(∀ u)(∀ w)
 (Sibling(x,y) ∧ Mother(u,x) ∧ Mother(w,y)) → (u=w)

Normalized and in clausal form:
¬Sibling(x,y) ∨
 ¬Mother(u,x) ∨ ¬Mother(w,y) ∨ (u=w)

Everyone has a mother:
 (∀ x)(∃ y)Mother(y,x)

In clausal form:
Mother(m(x),x)

Database of given facts:
Sibling(Tweety,Spike)
Mother(Olive,Tweety)

Goal:
Mother(Olive,Spike)

Negated goal:
¬Mother(Olive,Spike)

Let us try to construct a proof of the goal from the
hypotheses.

Paramod.doc:1998/05/19:page 3 of 27

Here is a first attempt at proving that Olive is the
mother of Spike. Note that it fails, since we cannot
unify c with Olive. The information that the two are
the same is embodied in

¬Mother(w,Spike) ∨ (Olive=w)
but the proof process does not provide a means to
extract it.

¬Sibling(x,y) ∨ ¬Mother(u,x) ∨ ¬Mother(w,y) ∨ (u=w)

Sibling(Tweety,Spike)

Mother(Olive,Tweety)

¬Mother(Olive,Spike)

¬Mother(u,Tweety) ∨ ¬Mother(w,Spike) ∨ (u=w)

¬Mother(w,Spike) ∨ (Olive=w)

Mother(m(y),y)

{Tweety/x, Spike/y }

{Olive/u}

?

Paramod.doc:1998/05/19:page 4 of 27

The idea behind paramodulation:

Paramodulation is a resolution-based technique
which allows full use of the information represented
by statements of equality.

A Simple example:
Let ϕ1 := P(a) ∨ Q(c) ∨ (b=a)

ϕ2 := R(a)
ϕ := P(a) ∨ Q(c) ∨ R(b)

Then {ϕ1, ϕ2} ~ ϕ.

Indeed, let J be any valuation for which J ~ {ϕ1, ϕ2}.
There are two cases to consider, reflecting the two
ways in which ϕ1 may be true.

• If (b=a) is false, then since J ~ {ϕ1},
J ~ P(a) ∨ Q(c), and so J ~ ϕ.

• If (b=a) is true, then R(b) ↔ R(a), so
since J ~ {ϕ2}, J ~ R(b).

Hence J ~ ϕ in either case.

Thus, in paramodulation, instead of resolving on
literals, we “resolve” (paramodulate) on an equality.

Note that it is not correct to substitute a for b in
P(b). We cannot conclude that

{ϕ1, ϕ2} ~ P(b) ∨ Q(c) ∨ R(b)
If (b=a) is false, this may not hold.

Paramod.doc:1998/05/19:page 5 of 27

This is how it may be depicted graphically.

The equality relation which is used in the
substitution, as well as the term(s) which are
substituted for, are underlined.

P(a) ∨ Q(c) ∨ (b=a) R(a)

P(a) ∨ Q(c) ∨ R(b)

{ PM }

Paramod.doc:1998/05/19:page 6 of 27

A more complex example:

Unifiers may be applied to create matching
components.

Let ϕ1 := P(g(f(x))) ∨ Q(x)
ϕ2 := (f(g(b))=a) ∨ R(g(c))
ϕ := P(g(a)) ∨ Q(g(b)) ∨ R(g(c))

Then {ϕ1, ϕ2} ~ ϕ.

To see this, apply the unifier {g(b)/x} to ϕ1 and ϕ2,
 yielding:

P(g(f(g(b))) ∨ Q(g(b))
(f(g(b))=a) ∨ R(g(c))

Reasoning as above, we may now deduce that
{ϕ1, ϕ2} ~ ϕ.

P(g(f(x))) ∨ Q(x) (f(g(b))=a) ∨ R(g(c))

P(g(a)) ∨ Q(g(b)) ∨ R(g(c))

{ PM: g(b)/x }

Paramod.doc:1998/05/19:page 7 of 27

The general technique of paramodulation:

Definition: Let
ϕ1 := �[t] ∨ ψ1

ϕ2 := (r=s) ∨ ψ2

where:
�[t] is a literal containing term t;
r and s are any terms.

Suppose that t and r have an mgu σ.

The clause
�σ[sσ] ∨ ψ1σ ∨ ψ2σ

is called a binary paramodulant of ϕ1 and ϕ2.

Here �σ[sσ] is obtained by
• Applying σ to all of �;
• Replacing one occurrence of tσ by sσ.

In the previous example:

r := f(g(b)) ψ1 := Q(x)
s := a ψ2 := R(g(c))
t := f(x) σ := {g(b)/x}
�[t] := P(g(f(x))) �σ := P(g(f(g(b))))

�σ[sσ] := P(g(a))

Fact: Binary paramodulation, together with
resolution, forms a sound and complete refutation
mechanism for clauses with equality. ¹

Note: Some technical details are omitted.

Paramod.doc:1998/05/19:page 8 of 27

It is not necessary to limit the substitution to just
one literal.

Example: ϕ1 := P(a) ∨ (b=a)
ϕ2 := R(a) ∨ S(a)
ϕ := P(a) ∨ R(b) ∨ S(b)

Then {ϕ1, ϕ2} ~ ϕ may be established using
paramodulation. The constant b may be substituted
for a in ϕ2 in one step.

It is easy to justify this sort of operation, which will
be called full paramodulation:

P(a) ∨ (b=a) R(a) ∨ S(a)

P(a) ∨ R(b) ∨ S(b)

{ PM }

P(a) ∨ (b=a) R(a) ∨ S(a)

P(a) ∨ R(b) ∨ S(a)

{ PM }

P(a) ∨ R(b) ∨ S(b)

{ PM }

Paramod.doc:1998/05/19:page 9 of 27

Return to the running example:

Now we can prove that Olive is the mother of Spike.

¬Sibling(x,y) ∨ ¬Mother(u,x) ∨ ¬Mother(w,y) ∨ (u=w)

Sibling(Tweety,Spike)

Mother(Olive,Tweety)

¬Mother(Olive,Spike)

¬Mother(u,Tweety) ∨ ¬Mother(w,Spike) ∨ (u=w)

¬Mother(w,Spike) ∨ (Olive=w) Mother(m(y),y)

¬Mother(m(y),Spike) ∨ Mother(Olive,y)

{Tweety/x, Spike/y }

{Olive/u}

{ PM m(y)/w }

Mother(Olive,Spike)

⊥

{ }

{Spike/y, Spike/z}¬Mother(m(z),Spike) ∨ Mother(Olive,z)

{z/y}

Paramod.doc:1998/05/19:page 10 of 27

Answer extraction and paramodulation:

To see how the answer extraction process behaves
in the running example, let us replace the goal

Mother(Olive,Spike)
with

 (∃ x)Mother(x,Spike)

The negate goal becomes:
¬Mother(x,Spike)

Satisfaction of the goal is now trivial.

However, it provides little information. By
generating a longer and more informative proof, we
may determine the identity of the mother of Spike.

¬Mother(x,Spike)

Mother(m(y),y)

⊥

{ Spike/y, m(Spike)/x }

Paramod.doc:1998/05/19:page 11 of 27

Here is a more elaborate proof, providing the
answer that Olive is the mother of Spike. It is the
same as the previous proof of Mother(Olive,Spike),
except for the last step.

Thus, it may be necessary to direct the search to
extract informative answers.

¬Sibling(x,y) ∨ ¬Mother(u,x) ∨ ¬Mother(w,y) ∨ (u=w)

Sibling(Tweety,Spike)

Mother(Olive,Tweety)

¬Mother(u,Tweety) ∨ ¬Mother(w,Spike) ∨ (u=w)

¬Mother(w,Spike) ∨ (Olive=w) Mother(m(y),y)

{Tweety/x, Spike/y }

{Olive/u}

{ PM m(y)/w }

{ Olive/x}¬Mother(x,Spike)

¬Mother(m(y),Spike) ∨ Mother(Olive,y)

Mother(Olive,Spike)

⊥

{Spike/y,
 Spike/z}

¬Mother(m(z),Spike) ∨ Mother(Olive,z)

{z/y}

Paramod.doc:1998/05/19:page 12 of 27

Solution of a blocks-world problem:

In the slides on propositional resolution, a proof was
given that if B2 is atop B1, then either P1 or else P2
must be on the table.

Here we will give a proof of a more general result:

The goal is to establish that if one cube is stack
atop the other, then at least one pyramid must be
on the table. The possibilities for such a state are
depicted below. There are two arrangements, with
a total of six possible states.

Paramod.doc:1998/05/19:page 13 of 27

Thus, this problem is somewhat more general than
the one solved earlier. Here is an expression of the
goal, in first-order logic.

((∃ x)(∃ y)(Is_cube(x) ∧ Is_cube(y) ∧ On(x,y)) →
(∃ z)(Is_pyramid(z) ∧ On_table(z)))

The first step is to express this constraint as a set of
normalized clauses.

As a resolvent in a resolution proof, the goal is
negated.

¬ ((∃ x)(∃ y)(Is_cube(x) ∧ Is_cube(y) ∧ On(x,y))) →
(∃ z)(Is_pyramid(z) ∧ On_table(z)))

The first step is to remove the implication:

¬ (¬ (∃ x)(∃ y)((Is_cube(x) ∧ Is_cube(y) ∧ On(x,y))) ∨
(∃ z)(Is_pyramid(z) ∧ On_table(z)))

Move the negations in to the atoms:

(∃ x)(∃ y)(Is_cube(x) ∧ Is_cube(y) ∧ On(x,y))) ∧
(∀ z)(¬ Is_pyramid(z) ∨ ¬On_table(z))

Bring the quantifiers out to the front in optimal order:

(∃ x)(∃ y)(∀ z)((Is_cube(x) ∧ Is_cube(y) ∧ On(x,y))) ∧
 (¬ Is_pyramid(z) ∨ ¬On_table(z)))

Paramod.doc:1998/05/19:page 14 of 27

Skolemize and drop universal quantifiers:

((Is_cube(cx) ∧ Is_cube(cy) ∧ On(cx,cy))) ∧
 (¬ Is_pyramid(z) ∨ ¬On_table(z)))

Break into clauses:

(1) Is_cube(cx)
(2) Is_cube(cy)
(3) On(cx,cy)
(4) ¬ Is_pyramid(z) ∨ ¬On_table(z)

The next step is to write down the axioms of the
blocks world in clausal form. For exercise, we will
do all of them, but will show only the final results.
Also, we will defer the renaming of variables until
later. First, the original formula will be given, and
then the clausal form, with a number in front.

• Everything is either a block or a pyramid:
(∀ x)(Is_cube(x) ∨ Is_pyramid(x))

(5) Is_cube(x) ∨ Is_pyramid(x)

• Nothing is both a block and a pyramid:
(∀ x)(¬ (Is_cube(x) ∧ Is_pyramid(x)))

(6) ¬ Is_cube(x) ∨ ¬ Is_pyramid(x)

Paramod.doc:1998/05/19:page 15 of 27

• Domain closure; the only objects are those which
are identified explicitly:

(∀ x)(Is_cube(x) ↔ (x=B1 ∨ x=B2))
(∀ x)(Is_pyramid(x) ↔ (x=P1 ∨ x=P2))

(7) ¬ Is_cube(x) ∨ (x=B1) ∨ (x=B2)
(8) Is_cube(B1)
(9) Is_cube(B2)
(10) ¬ Is_pyramid(x) ∨ (x=P1) ∨ (x=P2)
(11) Is_pyramid(P1)
(12) Is_pyramid(P2)

• Objects are distinct:
(B1 ≠ B2) ∧ (P1 ≠ P2) ∧ (B1 ≠ P1) ∧ (B1 ≠ P2)
 ∧ (B2 ≠ P1) ∧ (B2 ≠ P2)

(13) ¬ (B1 = B2)
(14) ¬ (P1 = P2)
(15) ¬ (B1 = P1)
(16) ¬ (B1 = P2)
(17) ¬ (B2 = P1)
(18) ¬ (B2 = P2)

• No object can rest atop a pyramid.
(∀ x)(∀ y)(¬ (Is_pyramid(x) ∧ On(y,x)))

(19) ¬ Is_pyramid(x) ∨ ¬On(y,x)

Paramod.doc:1998/05/19:page 16 of 27

• No object can rest atop another object and lie on
the table at the same time.

(∀ x)(∀ y)(¬ (On_table(x) ∧ On(x,y)))

(20) ¬On_table(x) ∨ ¬On(x,y)

• Every object is either on the table or else atop
another object.

(∀ x)(∃ y)(On_table(x) ∨ On(x,y))

(21) On_table(x) ∨ On(x,base(x))

Here base is a Skolem function. We have given it a
“meaningful” name.

• No object can rest atop itself.
(∀ x)(¬On(x,x))

To facilitate the proof, this will be written in a
different but equivalent way, as the compound
negation:

(∀ x)(∀ y)((On(x,y) ∧ (x=y)) → ⊥)

(22) ¬On(x,y) ∨ ¬ (x=y)

• An object can rest atop at most one object.
(∀ x)(∀ y)(∀ z) ((On(x,y) ∧ On(x,z)) → y=z))

(23) ¬On(x,y) ∨ ¬On(x,z) ∨ (y=z)

Paramod.doc:1998/05/19:page 17 of 27

• At most one object can rest atop another object.
(∀ x)(∀ y)(∀ z) ((On(y,x) ∧ On(z,x)) → y=z))

(24) ¬On(y,x) ∨ ¬On(z,x) ∨ (y=z)

The proof will be written in linear fashion, with
citations to clause numbers.

1. Resolve
(22) ¬On(x,y) ∨ ¬ (x=y)

with
 (3) On(cx,cy)
using { cx/x, cy/y}
to obtain

(25) ¬ (cx=cy)

2. Resolve
(7) ¬ Is_cube(x) ∨ (x=B1) ∨ (x=B2)

with
 (1) Is_cube(cx)
using { cx/x }
to obtain

(26) (cx=B1) ∨ (cx=B2)

Paramod.doc:1998/05/19:page 18 of 27

3. Similarly, resolve
(7) ¬ Is_cube(x) ∨ (x=B1) ∨ (x=B2)

with
 (2) Is_cube(cy)
using { cy/x }
to obtain

(27) (cy=B1) ∨ (cy=B2)

4. Use paramodulation on
(26) (cx=B1) ∨ (cx=B2)

and
 (25) ¬ (cx=cy)
with {} and paramodulating objects underlined
to obtain

(28) (cx=B1) ∨ ¬ (B2=cy)

5. Resolve (28) with (27) using {} to obtain

(29) (cx=B1) ∨ (cy=B1)

6. Using steps similar to those of (4), derive

(30) (cx=B2) ∨ (cy=B2)

Paramod.doc:1998/05/19:page 19 of 27

7. Use generalized paramodulation on
(7) ¬ Is_cube(x) ∨ (x=B1) ∨ (x=B2)

and
 (29) (cx=B1) ∨ (cy=B1)
with {} to obtain

(31) ¬ Is_cube(x) ∨ (x=B2) ∨ (cx=x) ∨ (cy=x)

8. Use generalized paramodulation on

 (31) ¬ Is_cube(x) ∨ (x=B2) ∨ (cx=x) ∨ (cy=x)
 and

(30) (cx=B2) ∨ (cy=B2)
with {} to obtain

(32) ¬ Is_cube(x) ∨ (cx=x) ∨ (cy=x)

9. Resolve
(4) ¬ Is_pyramid(z) ∨ ¬On_table(z)

with
(11) Is_pyramid(P1)

with {P1/z} to obtain

(33) ¬On_table(P1)

10. Derive similarly

(34) ¬On_table(P2)

Paramod.doc:1998/05/19:page 20 of 27

11. Resolve
(21) On_table(x) ∨ On(x,base(x))

with
 (33) ¬On_table(P1)
using {P1/x} to obtain

(35) On(P1,base(P1))

12. Similarly, derive

(36) On(P2,base(P2))

12. Resolve
 (19) ¬ Is_pyramid(x) ∨ ¬On(y,x)
with (35) using {P1/y, base(P1)/x} to obtain

(37) ¬ Is_pyramid(base(P1))

13. Resolve
(13) Is_cube(x) ∨ Is_pyramid(x)

with (37) using {base(P1)/x} to obtain

(38) Is_cube(base(P1))

14. Derive similarly

(39) Is_cube(base(P2))

Paramod.doc:1998/05/19:page 21 of 27

15. Resolve
 (32) ¬ Is_cube(x) ∨ (cx=x) ∨ (cy=x)
with
 (38) Is_cube(base(P1))
using {base(P1)/x} to obtain

(40) (cx=base(P1)) ∨ (cy=base(P1))

16. Derive similarly

(41) (cx=base(P2)) ∨ (cy=base(P2))

17. Paramodulate
 (40) (cx=base(P1)) ∨ (cy=base(P1))
with
 (35) On(P1,base(P1))
using {} to obtain

(42) On(P1,cx) ∨ (cy=base(P1))

18. Paramodulate
 (42) On(P1,cx) ∨ (cy=base(P1))
with
 (35) On(P1,base(P1))
using {} to obtain

(43) On(P1,cx) ∨ On(P1,cy)

Paramod.doc:1998/05/19:page 22 of 27

19. Derive similarly

(44) On(P2,cx) ∨ On(P2,cy)

20. Resolve
 (24) ¬On(y,x) ∨ ¬On(z,x)) ∨ (y=z)
with
 (3) On(cx,cy)
using { cy/x, cx/y } to obtain

(45) ¬On(z, cy) ∨ (cx=z)

21. Resolve (45) with
 (43) On(P1,cx) ∨ On(P1,cy)
using {P1/z} to obtain

(46) (cx=P1) ∨ On(P1,cx)

22. Paramodulate
(1) Is_cube(cx)

with
 (46) (cx=P1) ∨ On(P1,cx)
using {} to obtain

(47) Is_cube(P1) ∨ On(P1,cx)

Paramod.doc:1998/05/19:page 23 of 27

23. Resolve
 (47) Is_cube(P1) ∨ On(P1,cx)
with
 (6) ¬ Is_cube(x) ∨ ¬ Is_pyramid(x)
using {P1/x} to obtain

(48) ¬ Is_pyramid(P1) ∨ On(P1,cx)

24. Resolve (48) with
(11) Is_pyramid(P1)

Using {} to obtain

(49) On(P1,cx)

25. Derive similarly

(50) On(P2,cx)

26. Resolve (50) with
 (24) ¬On(y,x) ∨ ¬On(z,x)) ∨ (y=z)
using {P2/y, cx/x} to obtain

(51) ¬On(z, cx)) ∨ (P2=z)

27. Resolve (51) with (49) using {P1/z} to obtain

(51) (P2=P1)

Paramod.doc:1998/05/19:page 24 of 27

28. Resolve
(51) (P2=P1)

with
 (15) ¬ (P1 = P2)
using {} to obtain

(52) ⊥

Paramod.doc:1998/05/19:page 25 of 27

Remarks on complexity:

One cannot help but notice that much of the
preceding proof is consumed by inferences about
objects being cubes or pyramids.

It is natural to ask whether the process could be
improved by incorporating this information in some
other fashion.

The answer is in the affirmative. By incorporating
so-called type hierarchies into the proof process in
an integral fashion, the efficiency of many
inferences may be improved immensely.

Here is the type hierarchy for this simple example.

All objects

Cubes Pyramids

Nothing

Paramod.doc:1998/05/19:page 26 of 27

A slightly more complex example is the following:

A system with typing would relegate the axioms
concerning such a hierarchy to a “higher level.”

This means that they would a different, built-in
inference mechanism.

The axioms for the above schema would include:

(∀ x)(Is_pyramid(x) → Is_block(x))
(∀ x)(Is_cube(x) → Is_block(x))
(∀ x)((Is_block(x) ∧ Is_sphere(x)) → ⊥)
(∀ x)((Is_cube(x) ∧ Is_pyramid(x)) → ⊥)
(∀ x)(Is_block(x) ∨ Is_sphere(x))

Blocks

Cubes Pyramids

Nothing

Sphere

All Objects

Paramod.doc:1998/05/19:page 27 of 27

Further information:

Elementary presentations of paramodulation are not
easy to find.

Probably the best overall reference is the classical
text of Chang and Lee.

Chang, Chin-Liang, and Lee, Richard Char-Tung,
Symbolic Logic and Mechanical Theorem Proving,
Academic Press, 1973.

Most modern textbooks on artificial intelligence will
give basic information on the use of type hierarchies
in knowledge representation. Several special-
purpose programming languages have built-in
inheritance.

Aït-Kaci, H, and Nasr, R., “LOGIN: A logic
programming language with built-in inheritance,” J.
Logic Programming, 3(1986), pp. 185-215.

Dörre, J., and Dorna, M., “CUF – a formalism for
linguistic knowledge representation,” in Dörre, J.,
editor, Computational Aspects of Constraint-Based
Linguistic Descriptions, DYANA-2 Deliverable
R.1.2.A, pp 3-22, ESPRIT, 1993.

	First-Order Resolution with Equality

