
Unify1.doc:1998/05/11:page 1 of 25

Substitutions and Unifiers in
First-Order Predicate Logic

A motivating example:

Axioms: (∀x)(Bird(x) →Flies(x))
 Bird(Tweety)

Goal: Flies(Tweety)

Convert to a clausal form database:

Axioms: ¬Bird(x) ∨ Flies(x)
Bird(Tweety)

Negated goal: ¬Flies(Tweety)

Without further operations, no resolution is possible.

The needed operation is substitution.

¬Bird(x) ∨ Flies(x)

¬Bird(Tweety) ∨ Flies(Tweety)

The notation Tweety/x means
“Substitute Tweety for x.”

To employ resolution for first-order logic, it is
necessary to develop substitution in a systematic
manner.

{Tweety/x}

Unify1.doc:1998/05/11:page 2 of 25

A more complex example:

Axioms: (∀x)(∀y)(P(f(x), h(y)) ∨ Q(y))
(∀x)(¬Q(g(a)))

Goal: (∃y)(∀x)P(f(x),h(g(y)))

Note: a, b, c denote constants
x, y , z, w denote variables.

Negate the goal and normalize all:

P(f(x), h(y)) ∨ Q(y)
(¬Q(g(a)))
¬P(f(fx(w)),h(g(w)))

Now perform resolution:

Notice that some fairly complex decisions regarding
which substitutions to make are necessary.

P(f(x), h(y)) ∨ Q(y) ¬Q(g(a)) ¬P(f(fx(w)), h(g(w)))

P(f(x), h(g(a)))

⊥

{g(a)/y}

{fx(a)/x, a/w }

Unify1.doc:1998/05/11:page 3 of 25

The technique should also work if resolution is
performed in another order.

Note that a substitution which is too specific can
cause a problem.

Thus, it is necessary to investigate this substitution
issue thoroughly.

P(f(x), h(y)) ∨ Q(y) ¬Q(g(a))¬P(f(fx(w)), h(g(w)))

Q(g(w))

⊥

{ fx(w)/x, g(w)/y}

{a/w}

P(f(x), h(y)) ∨ Q(y) ¬Q(g(a))¬P(f(fx(w)), h(g(w)))

Q(g(g(u)))

⊥

{ fx(g(u))/x, g(g(u))/y,

{???}

g(u)/w }

Unify1.doc:1998/05/11:page 4 of 25

Substitution and Unification:

• Unification is the operation which is applied to
terms in order to make them “match” so that
resolution can be performed.

• It is accomplished by applying substitutions to the
clauses containing the atoms to be matched.

We now investigate these ideas in more detail.

Notational convention: Throughout this discussion,
it is assumed that there is an extant first-order logic
/� ��5��&��$��7�, with 7� ��9��.��)��

In general: a, b, c denote constants;
x, y, z, w denote variables;
P, Q, R, S denote predicate letters;
f, g, h denote function symbols;

unless stipulated to the contrary.

Unify1.doc:1998/05/11:page 5 of 25

Substitution:

 Definition: A substitution is a finite set of
specifications of the form

t/v
in which t is a term and v is a variable.
Substitutions are usually written in set notation:

{t1/v1, t2/v2, .., tn/vn}

Substitutions are applied to terms, or to sets of
terms.

Important: The semantics of a substitution is that all
of its elements are applied simultaneously.

Example: The application of the substitution
{g(y)/x, h(z)/y, x/z}

to
 f(x, y, g(z), w)

is
f(g(y), h(z), g(x), w),

 and not
f(g(h(x)), h(x), g(x), w).

The order of the elements in a substitution list is
irrelevant.

Note also that the substitution need not specify a
replacement for each variable in the formula.
Variables not listed in the substitution are left
unchanged.

Unify1.doc:1998/05/11:page 6 of 25

Notation: The symbol σ (and subscripted versions
threreof) are typically used to represent
substitutions. The application of a substitution σ to
a term t is denoted

tσ.

Substitutions may also be applied to atoms. In that
case, the substitution is applied to each term in the
atom.

Example: Let ϕ = P(f(x,y), g(h(y)), z, w)
σ = {h(y)/x, a/y, w/z }

Then ϕσ = P(f(h(y),a), g(h(a)), w, w)

Substitutions may furthermore be applied to entire
clauses. In this case, the substitution is applied to
each atom of the clause.

Example: Let ϕ = P(f(x,y), g(h(y)), z, w) ∨ Q(y,z)
σ = {h(y)/x, a/y, w/z }

Then ϕσ = P(f(h(y),a), g(h(a)), w, w) ∨ Q(a,w).

Note particularly the "right" notation, which differs
from the more traditional mathematical σ(ϕ).

Unify1.doc:1998/05/11:page 7 of 25

Composition of substitutions:

Substitutions may be composed.

Example: Let
σ1 = {f(a)/x, g(b,z)/y, x/z}
σ2 = {w/x, h(z)/y, a/z}

Then σ1σ2 = {f(a)/x, g(b,a)/y, w/z}

Note that

• Substitution composition occurs from left to right.
Thus, σ1σ2 means that first σ1 should be applied,
and then σ2.

• Application of substitution respects composition.
That is:

ϕ(σ1σ2) = (ϕσ1)σ2

Example: Let ϕ = P(x,y,z), and let σ1 and σ2 be as
above.

Then ϕσ1 = P(f(a), g(b,z), x)
(ϕσ1)σ2 = P(f(a), g(b,a), w) = ϕ(σ1σ2)

Note, however, that composition is not
commutative:

σ2σ1 = {w/x, h(x)/y, a/z} ≠ σ1σ2.

Unify1.doc:1998/05/11:page 8 of 25

Also note that a substitution is not necessarily the
composition of its components.

Example: Let σ1 = {f(a)/x, g(b,z)/y, x/z} as above.

Let σ11 = { f(a)/x }; σ12 = {g(b,z)/y}; σ13 = {x/z}.

Then σ11σ12σ13 = {f(a)/x, g(b,x)/y, x/z} ≠ σ1.

The result even depends upon the ordering:

σ13σ12σ11 = {f(a)/z, g(b,z)/y} ≠ σ11σ12σ13.

Unify1.doc:1998/05/11:page 9 of 25

Ordering of substitutions:

Definition: Let σ1 and σ2 be substitutions. Write

σ1 þ σ2

just in case there is a substitution σ such that

σ1 = σ2σ.

In this case, it is said that σ2 is more general than
σ1.

Example: Let σ1 = {f(a)/x, a/y}.
σ2 = {f(a)/x}

Then σ1 þ σ2 since σ1 = σ2σ for
σ = {a/y}

has the property that
σ1 = σ2σ.

Caution: This definition can be misleading.
Example: Let σ1 = {f(a)/x}

σ2 = {f(y)/x}.
It might appear at first that

σ1 þ σ2

with σ = {a/y} yielding σ1 = σ2σ.
This is not the case! Try it on the formula

P(x,y)
and see what happens.

Unify1.doc:1998/05/11:page 10 of 25

Some further useful ideas, without proof:

Definition: A substitution σ is a renaming if it defines
a permutation of the some set of variables. For
example, {x/y, z/x, y/z} is a renaming.

Definition: Two substitutions σ1 and σ2 are
equivalent if there is a renaming σ such that

σ1 = σ2σ.

In this case, there must also be a renaming σ′ such
that σ2 = σ1σ′.

Fact: If
σ1 þ σ2

and
σ2 þ σ1

both hold, then there are renamings σ and σ′ such
that

σ1 = σ2σ
and

σ2 = σ1σ′. ¹

Unify1.doc:1998/05/11:page 11 of 25

 Unification:

Definition: Let ψ1 and ψ2 be atoms. A unifier for ψ1

and ψ2 is a substitution σ such that
ψ1σ = ψ2σ

Example: Let ψ1 = Bird(x)
ψ2 = Bird(Tweety).

Then σ = {Tweety/x} is a unifier for these atoms.

Example: Let ψ1 = P(a, x, f(g(y))
ψ2 = P(z, f(z), f(w))

Then σ = {a/z, f(a)/x, g(y)/w} is a unifier for ψ1 and
ψ2.

Definition: A unifier for atoms ψ1 and ψ2 is a most
general unifier (mgu) if it is a most general
substitution which unifies ψ1 and ψ2.

Example: Both examples above are mgu’s.

Theorem: If two atoms ψ1 and ψ2 have a unifier,
then they have a most general unifier. Furthermore,
there is an algorithm which can determine whether
or not two atoms are unifiable, and, if so, deliver an
mgu for them. ¹

Unify1.doc:1998/05/11:page 12 of 25

The mgu algorithm:

Before presenting the algorithm formally, it will be
illustrated on some examples.

Example: Let ψ1 = P(a, x, f(g(y)))
ψ2 = P(z, f(z), f(w))

Step 1: Make sure that the predicate symbols
match. Atoms with different predicate symbols can
never be unified.

Step 2: Attempt to unify each pair of terms.

• The first pair is (a,z). Since one of the elements
is a variable, they can be unified by substituting
the other term for this variable. The appropriate
substitution is a/z. So, set

mgu ← {a/z}
This substitution must also be applied to both
clauses yielding

P(a, x, f(g(y)))
P(a, f(a), f(w))

• The second pair is (x,f(a)). Again, since one term
is a variable, substitute the other for it: f(a)/x. The
new value of mgu is the old value, composed with
this new substitution.

mgu ← mgu){f(a)/x} = {a/z, f(a)/x}
This substitution must also be applied to both
clauses yielding

P(a, f(a), f(g(y)))
P(a, f(a), f(w))

Unify1.doc:1998/05/11:page 13 of 25

• The third and final pair is (f(g(y)),f(w)). Neither is
an atom, so we check to see whether the function
symbols are the same. They are, so we strip
them and unify each pair of sub-terms. (In this
case, there is just one such pair.) The new pair is
(g(y),w). This pair may be unified with the
substitution g(y)/w. Thus,

mgu ← mgu){g(y)/w} = {a/z, f(a)/x, g(y)/w)}
This substitution must also be applied to both
clauses yielding

P(a, f(a), f(g(y)))
P(a, f(a), f(g(y)))

 The clauses match, and an mgu has been found.

Unify1.doc:1998/05/11:page 14 of 25

Note: The order in which the terms are unified does
not matter.

Starting with ψ1 = P(a, x, f(g(y)))
ψ2 = P(z, f(z), f(w))

again, let us unify the second pair of terms first.

This yields {f(z)/x}, with resulting atoms
P(a, f(z), f(g(y)))
P(z, f(z), f(w))

Now unify the third pair of terms. The mgu is
{g(y)/w}, so after this step the unifier is
{f(z)/x, g(y)/w}, and the atoms are

P(a, f(z), f(g(y)))
P(z, f(z), f(g(y)))

Finally, we unify the first pair of terms, using a/z.
The final mgu is {f(z)/x, g(y)/w, a/z}, and the final
terms match, as before:

P(a, f(a), f(g(y)))
P(a, f(a), f(g(y)))

Unify1.doc:1998/05/11:page 15 of 25

Not all pairs of atoms unify, of course. Here are
some examples of failure.

Example: ψ1 = Q(f(a), g(x))
ψ2 = Q(y, y)

To unify the first pair, (f(a), y), the substitution f(a)/y
is used. The atoms become

Q(f(a), g(x))
Q(f(a), f(a))

Now, the second pair is (g(x), f(a)). Since the
function symbols are different, unification fails.

Suppose that we try to unify the second pair first.
In that case, the pair is (g(x), y), which is unifiable
with g(x)/y. The atoms become

Q(f(a), g(x))
Q(g(x), g(x))

Fact: If unification fails for one order of the pairs,
then it will fail for all orders. The order of attempt
will not affect the result.

Unify1.doc:1998/05/11:page 16 of 25

The occurs check:

There is a rather subtle but nonetheless important
point which must be observed.

Example: ψ1 = Q(x, x)
ψ2 = Q(y, f(y))

Unifying the first pair using y/x, we get
Q(y, y)
Q(y, f(y))

The second pair, (y, f(y)), is strange in that both
components involve y. Unless they are identical, it
is impossible to unify them.

To detect this situation requires a special test called
the occurs check, which tests whether or not a
given variable occurs in a given term.

Unify1.doc:1998/05/11:page 17 of 25

The formal algorithm:

Basic data types:
 Term:
 Substitution:
 List_of_terms: »t1, t2, .., tn¼
 Logical_atom: Something like P(x,y,g(a,x))

Basic functions:
 Is_variable(x: term): Returns Boolean.
 True if the term is a variable.

 Is_constant(x: term): Returns Boolean.
 True if the term is a constant symbol

 Is_functional_term(x: term): Returns Boolean.
 True if the term is of the form f(t1, t2, .., tn).

 Function_symbol(x: term): Returns the function
 symbol of a functional term: f(t1, t2, .., tn) x f.

 Term_list(x: term): Returns list_of_terms.
f(t1, t2, .., tn) x »t1, t2, .., tn¼

 Compose_substitutions(σ1, σ2):
 Returns substitution.

First(x:list_of_terms): »t1, t2, .., tn¼ x t1

 Rest(x): Returns list_of_term.
»t1, t2, .., tn¼ x »t2, .., tn¼

 Arglist(x:Logical_atom): Returns: list_of_term
P(t1, t2, .., tn) x »t1, t2, .., tn¼

Unify1.doc:1998/05/11:page 18 of 25

Procedure Term_mgu (s, t: term; σ: substitution);
 Returns: substitution;
--- If s and t are unifiable,
--- returns the composition of σ with their unifier.
--- If s and t are not unifiable, returns FAIL.
 Begin
 Do_first_true_conditional:
 Is_variable(s):
 Return variable_mgu(s, t, σ);
 Is_variable(t):
 Return variable_mgu(t, s, σ);
 Is_constant(s):
 If (Is_constant(t) ∧ s=t)
 then return σ else return FAIL;
 Is_functional_term(s):

 If (Is_functional_term(t) ∧
 function_symbol(s) =
 function_symbol(t))
 then return
 Term_list_mgu (Term_list(s),
 Term_list(t), σ);
 else return FAIL;
 End Do_first_true_conditional;
End Procedure; {Term_mgu}

Unify1.doc:1998/05/11:page 19 of 25

Procedure Variable_mgu
(s: variable; t: term: σ: substitution);
 Returns: substitution;

--- If s does not occur in t, returns σ){t/s}.
--- If s occurs in t, returns FAIL.
Begin

If Includes_check(s,t)
Then return FAIL;
Else return

Compose_substitutions(σ, {t/s})
End Procedure; {Variable_mgu}

Procedure Term_list_mgu
 (s, t: list_of_terms; σ: substitution);
 Returns: substitution;
--- If there is an mgu τ for the lists s and t, returns
--- στ. Returns FAIL otherwise.
 Begin
 If s = »¼
 then return σ;
 else return
 Term_list_mgu_aux(
 Rest(s),
 Rest(t),

 Term_mgu(first(s), first(t), ∅)),
 σ)

End if;
 End Procedure; {Term_list_mgu}

Unify1.doc:1998/05/11:page 20 of 25

Procedure Term_list_mgu_aux
 (s, t: list_of_terms; τ, σ: substitution);
 Returns: substitution;
--- Auxiliary function to support Term_list_mgu.
 Begin
 Term_list_mgu(
 Apply_substitution_to_list(s, τ),
 Apply_substitution_to_list(t, τ),
 Compose_substitutions(σ,τ))
 End Procedure; {Term_list_mgu_aux}

Procedure Apply_substitution_to_list
(x: list_of_terms, σ: substitution);

--- Applies the substitution σ to every term in the list
--- x.

Procedure Atom_mgu
 (ψ1, ψ2: logical_atom);
 Returns: substitution;
--- If ψ1 and ψ2 have the same relation name,
--- and if the corresponding lists of terms are
--- unifiable, returns σ composed with the mgu
--- for those lists.
--- Returns FAIL otherwise.
 Begin
 If Relation_name(ψ1) = Relation_name(ψ2)
 Then
 Term_list_mgu(arg_list(A), arg_list(B), ∅);
 Else Return FAIL;
 End Procedure; {Atom_mgu}

Unify1.doc:1998/05/11:page 21 of 25

• The overall algorithm is invoked with a call to
Atom_mgu.

• Note that this algorithm is tail recursive. Once an
instance of a procedure calls another procedure,
the calling instance may be discarded.

• This implies that the entire algorithm may be
implemented iteratively, without a deep stack.

• The sequence of calls for the running example is
shown on the next slide.

Unify1.doc:1998/05/11:page 22 of 25

The tail-recursive call graph for the processing of ψ1

and ψ2 is shown below. Only the most significant
procedure calls are shown:

Atom_mgu(P(a,x,f(g(y))), P(z,f(z),f(w)))

Term_list_mgu(»a, x, f(g(y))¼, »z, f(z), f(w))¼, ∅)

Term_list_mgu_aux(»f(g(y))¼, »f(w))¼, Term_mgu(x, f(a), ∅), {a/z})

Variable_mgu(z, a, ∅)

{a/z}Term_list_mgu(»x, f(g(y))¼, »f(a), f(w))¼, {a/z}

Variable_mgu(x, f(a), ∅)

{f(a)/x}

Term_list_mgu(»¼, »¼, Term_mgu(f(g(y)), f(w), {a/z, f(a)/x}))

Term_list_mgu(»g(y)¼, »w¼, {a/z, f(a)/x}))

Variable_mgu(w, g(y), ∅)

{ g(y)/w}

Term_list_mgu_aux(»x, f(g(y))¼, »f(z), f(w))¼, Term_mgu(a, z, ∅), ∅)

Term_list_mgu_aux(»¼, »¼, Term_mgu(g(y), w, ∅) {a/z, f(a)/x}))

Term_list_mgu(»¼, »¼, {a/z, f(a)/x, g(y)/w}))

{a/z, f(a)/x, g(y)/w}

Unify1.doc:1998/05/11:page 23 of 25

A simple resolution example:

Suppose that we are given the following clauses:

P(a, x, f(g(y)))
¬P(z, f(z), f(w)) ∨ Q(w, z)

¬Q(g(u), u)

Here is a resolution refutation:

• Note that the unifying substitutions are applied to
entire clauses, and not just to the atoms to be
matched.

P(a, x, f(g(y))) ¬P(z, f(z), f(w)) ∨ Q(w, z)

¬Q(g(u), u)

Q(g(y), a)

 ⊥

{a/z, f(a)/x, g(y)/w}

{a/y, a/u}

Unify1.doc:1998/05/11:page 24 of 25

Renaming of variables and re-use of clauses:

Consider the problem of showing that the following
set of clauses is unsatisfiable.

Φ = {L(a,b),
 L(f(x,y), g(z)) ∨ ¬L(y,z),
 ¬L(f(x, f(c, f(d,a))), w) }

Since the clauses contain variable names in
common, the first step is to rename variables.

 Φ′ = {L(a,b),
 L(f(x2,y2), g(z2)) ∨ ¬L(y2,z2),
 ¬L(f(x3, f(c, f(d,a))), w3) }

Here is a first attempt at a refutation proof using
resolution.

Is it possible to proceed and shown that the set is
unsatisfiable?

L(a,b) L(f(x2,y2), g(z2)) ∨ ¬L(y2,z2)

¬L(f(x3, f(c, f(d,a))), w3)L(f(x2,a), g(b))

{ a/y2, b/z2 }

???

Unify1.doc:1998/05/11:page 25 of 25

Yes. To proceed, it is necessary to employ clause
re-use.
• Notice that variable renaming “on the fly” is

required to avoid collision of variable names.

L(a,b) L(f(x2,y2), g(z2)) ∨ ¬L(y2,z2)

¬L(f(x3, f(c, f(d,a))), w3)

L(f(x2,a), g(b))

{ a/y2, b/z2 }

⊥

L(f(x4,a), g(b))

{ x4/x2 }

L(f(x2, f(x4,a)), g(g(b)))

{ f(x4,a)/y2, g(b)/z2 }

{ f(x5,f(x6,a))/y2, g(g(b))/z2 }

L(f(x2, f(x5, f(x6,a))), g(g(g(b))))

L(f(x5, f(x6,a)), g(g(b)))

{ x5/x2, x6/x4 }

{ x3/x2, c/x5, d/x6, g(g(g(b)))/w3 }

	Substitutions and Unifiers in �First-Order Predicate Logic

