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Sequent Systems
for Propositional Logic

The resolution proof system has tremendous
computational advantages over the Hilbert system.
However, these advantages come at a price;
namely:
(a) The computation is restricted to data which are

clauses, or at least which are in CNF.
(b) The proof system is complete only for

refutations.  This requires that the negation of
the goal be added to the hypotheses, resulting
in somewhat “unnatural” proofs.

An important and interesting question is that which
asks whether there is a proof system which has the
“naturalness” of the Hilbert system, while at the
same time lending itself to computational methods.

The answer is, to some degree, yes.  In this set of
notes, one such system will be developed.

Important: The sequent proof system developed in
Section 3.3 of the textbook, while similar to the one
developed in these slides, is not identical.
Unfortunately, the system developed in the textbook
has many of the flaws of the Hilbert system, so we
choose to develop a better, alternate system in
these slides.
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Sequents:

Definition: A sequent is an ordered pair (Λ1, Λ2) of
finite sequences of wff’s.
Notational convention: Throughout this section of
notes, unless stated otherwise, a finite propositional
/ will be fixed.

Sequences will be written between angular
brackets.  Thus, a sequent is of the form

(»λ11, λ12, .., λ1m¼, »λ21, λ22, .., λ2n¼)

with the λij’s wff’s.  Either or both of the sequences
may be empty.

There is a special notation which is often used for
sequents.  The alternate notation for

(»λ11, λ12, .., λ1m¼, »λ21, λ22, .., λ2n¼)
is

λ11, λ12, .., λ1m ⇒ λ21, λ22, .., λ2n
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Example:
 (»A, (¬A ∨ B), (¬B ∨ C ∨ D), (¬D ∨ E), ¬E, ¬C¼, » ¼)
and

(»A, (¬B ∨ C ∨ D), (¬D ∨ E) ¼, » E, C, (A ∧ ¬B) ¼)

are each sequents.  In the common sequence
notation, they are written as

A, (¬A ∨ B), (¬B ∨ C ∨ D), (¬D ∨ E), ¬E, ¬C ⇒
and

A, (¬B ∨ C ∨ D), (¬D ∨ E) ⇒ E, C, (A ∧ ¬B)

Although it is a bit more cryptic, the latter notation is
very widely used, and so it will be emphasized
within these slides.

Important:  Do not confuse the symbol → with the
symbol ⇒.

• → is a logical connective in wff’s.
• ⇒ is a connector for defining sequents.
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Definition:  An interpretation v in / is a model of a
sequent

 Λ1 ⇒ Λ2   =  λ11, λ12, .., λ1m ⇒ λ21, λ22, .., λ2n

precisely in the case that it is a model of

¬λ11 ∨ ¬λ12 ∨ .. ∨ ¬λ1m ∨ λ21 ∨ λ22 ∨ .. ∨ λ2n

Equivalently, it is a model of the sequent if it is a
model of the corresponding wff, which is

(λ11 ∧ λ12 ∧ .. ∧ λ1m)  → (λ21 ∨ λ22 ∨ .. ∨ λ2n)
In this case, we write

v ~ Λ1 ⇒ Λ2

Furthermore, the Mod(-) notation is extended to
both single sequents and to sets of sequents, in the
obvious fashion.

The full definition of ~ is also extended to sequents.
That is, if Σ is a set of sequents, and if Λ1 ⇒ Λ2

 is also a sequent, then

Σ ~  Λ1 ⇒ Λ2

denotes that Mod(Σ) ⊆  Mod(Λ1 ⇒ Λ2).

A sequent is valid  (or a sequent tautology) if it is a
model of every interpretation.

Proposition:  A sequent is valid iff the corresponding
wff is a tautology. ¹
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Note: The examples on the previous slides are
valid, although this requires some work to prove.
(Establishing this validity computationally is the
ultimate focus of this discussion.)

Definition: A sequent (Γ1, Γ2) is atomic if both Γ1 and
Γ2 consist entirely of proposition names.

Example:  A, B, C ⇒ B, D, E  and
A, B, C ⇒ D, E  are atomic sequents, as are
A, B, C ⇒  and the empty sequent  ⇒.

Example:  A, B, C ⇒ B, ¬D, E  and
¬A, B, C ⇒  are not atomic sequents, nor are the
sequent examples on the previous slides.

It should be remarked that the order of the elements
in a sequent has no particular significance.  One
could just as well work with sets of formulas.
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The Gentzen system G′:

Definition:  The axiom schema AxG′ is defined as
follows:

Γ1, α, Γ2 ⇒ Γ3, α, Γ4

or, equivalently,
(»Γ1, α, Γ2¼, »Γ3, α, Γ4¼)

Here α is to be bound to a wff and the Γi’s  are to be
bound to arbitrary sequences of wff’s.

Any instance of this schema is called an axiom of
G′.  An indecomposable axiom is any sequent of
the form

P1, p, P2 ⇒ P3, p, P4

with p a proposition names, and in which each of
the  Pi’s is a sequence of proposition names.  In
other words, an indecomposable axiom is an atomic
sequent in which the left and right sequences
contain a common element.

Observation: Any instantiation of AxG′ is a valid
sequent. ¹

Definition: The Gentzen system G′ is the proof
system consisting of
(a) the axiom schema AxG′, and
(b) the ten proof rules Left-∧, Right-∧,

Left-∨, Right-∨, Left-→, Right-→, Left-¬,
Right-¬, Left-↔, and Right-↔.
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The ten proof rules of the Gentzen system G′ in
basic sequence format are given below.  In each
case, the αi’s are to be bound to wff’s, and the  Γi’s
are to be bound to sequences of wff’s.

(»Γ1, α1, α2, Γ2¼, »Γ3¼) 
(»Γ1, (α1 ∧ α2), Γ2¼, »Γ3¼)

Left-∧

(»Γ1¼, »Γ2, α1, Γ3 ¼)      (»Γ1¼,  »Γ2, α2, Γ3¼)
(»Γ1¼, »Γ2, (α1 ∧ α2), Γ3¼)

Right-∧

(»Γ1, α1, Γ2¼, »Γ3¼)    (»Γ1, α2, Γ2¼,  »Γ3¼)

 (»Γ1, (α1 ∨ α2), Γ2¼, »Γ3¼)
Left-∨

(»Γ1¼, »Γ2, α1, α2, Γ3¼)
(»Γ1¼, »Γ2, (α1 ∨ α2), Γ3¼)

Right-∨

(»Γ1, Γ2¼, »α1, Γ3¼)     (»α2, Γ1, Γ2¼, »Γ3¼)

 (»Γ1, (α1 → α2), Γ2¼, »Γ3¼)
Left-→

(»α1, Γ1¼, »α2, Γ2, Γ3¼)
(»Γ1¼, »Γ2, (α1 → α2), Γ3¼)

Right-→

(»Γ1, Γ2¼, »α, Γ3¼)
(»Γ1, ¬α, Γ2¼, »Γ3¼)

Left-¬

(»α, Γ1¼, »Γ2, Γ3¼)
(»Γ1¼, »Γ2, ¬α, Γ3¼)

Right-¬

(»Γ1, (α1 → α2), (α2 → α1), Γ2¼, »Γ3¼)
(»Γ1, (α1 ↔ α2), Γ2¼, » Γ3¼)  

Left-↔

(»Γ1¼, »Γ2, (α1 → α2), Γ3¼,)   (»Γ1¼, »Γ2, (α2 → α1), Γ3¼)
(»Γ1¼, »Γ2, (α1 ↔ α2), Γ3¼)

Right-↔
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The ten proof rules of the Gentzen system G′ in
common format are given below.  In each case, the
αi’s are to be bound to wff’s, and the  Γi’s are to be
bound to sequences of wff’s.

Γ1, α1, α2, Γ2 ⇒ Γ3 

 Γ1, (α1 ∧ α2), Γ2  ⇒ Γ3

Left-∧

Γ1 ⇒ Γ2, α1, Γ3       Γ1 ⇒ Γ2, α2, Γ3

 Γ1 ⇒ Γ2, (α1 ∧ α2), Γ3

Right-∧

Γ1, α1, Γ2 ⇒ Γ3     Γ1, α2, Γ2 ⇒ Γ3

 Γ1, (α1 ∨ α2), Γ2, ⇒ Γ3

Left-∨

Γ1 ⇒ Γ2, α1, α2, Γ3 

 Γ1 ⇒ Γ2, (α1 ∨ α2), Γ3

Right-∨

Γ1, Γ2 ⇒ α1, Γ3     α2, Γ1, Γ2 ⇒ Γ3

 Γ1, (α1 → α2), Γ2 ⇒ Γ3

Left-→

α1, Γ1 ⇒ α2, Γ2, Γ3 

 Γ1 ⇒ Γ2, (α1 → α2), Γ3

Right-→

Γ1, Γ2 ⇒ α, Γ3 

 Γ1, ¬α, Γ2  ⇒ Γ3

Left-¬

α, Γ1 ⇒ Γ2, Γ3 

 Γ1 ⇒ Γ2, ¬α, Γ3

Right-¬

Γ1, (α1 → α2), (α2 → α1), Γ2 ⇒ Γ3

Γ1, (α1 ↔ α2), Γ2 ⇒ Γ3

Left-↔

Γ1 ⇒ Γ2, (α1 → α2), Γ3     Γ1 ⇒ Γ2, (α2 → α1), Γ3

Γ1 ⇒ Γ2, (α1 ↔ α2), Γ3

Right-↔
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At this point, it might appear that we are no better
off with G′ than we are with the Hilbert system.  We
have an infinite number of axioms, and so a infinite
number of proofs.

Q:  To begin a proof, must we “divine” the correct
set of starting axioms?

A:  No!  With G′, we will construct the proof
backwards.  That is, we will start with the statement
which we wish to prove, and work backwards
towards the axioms.  There is an algorithm to
construct such proofs.

Before developing formally notions of soundness
and completeness, we will work out a variety of
examples.
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Examples:

First of all, we will provide a proof, within G′, that
the wff

((A1 → A2) → (¬A2 → ¬A1))
is a tautology.

As with resolution and semantic tableaux, the proof
is best represented as a directed graph.  A solution
is shown below on the next slide, in both notations.

Notice the following:

• In constructing this proof, we work backward from
the conclusion, to reach valid atomic sequents.

• The formula ϕ to be validated is represented as
the sequent  ⇒ ϕ.

• As we work backwards, each step up the tree
produces a “simpler” formula.  (This means that
the tree cannot grow forever.)

• A path ends whenever an atomic sequent is
encountered.  Such a sequent cannot be
reduced further.

• The original formula is valid iff each path ends
with a valid atomic sequent.
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»¼   »((A1 → A2) → (¬A2 → ¬A1))¼

»¼  »A1, (¬A2 → ¬A1)¼

»¬A2¼  »¬A1, A1¼

»(A1 → A2)¼  »(¬A2 → ¬A1)¼

» A2¼  »(¬A2 → ¬A1)¼

»¬A2, A2¼  »¬A1¼

Right-→

Right-→

Left-→

Right-→

Valid Valid

»A2¼ ⇒ »A2, ¬A1¼» A1, ¬A2¼  »A1¼

»A1¼  »A1, ¬A2¼

Right-¬

Left-¬

Left-¬

»A1, A2¼ ⇒ »A2¼

⇒ ((A1 → A2) → (¬A2 → ¬A1))

⇒ A1, (¬A2 → ¬A1)

¬A2 ⇒ ¬A1, A1

 (A1 → A2) ⇒ (¬A2 → ¬A1)

A2 ⇒ (¬A2 → ¬A1)

¬A2, A2 ⇒ ¬A1

Right-→

Right-→

Left-→

Right-→

Valid Valid

A2 ⇒ A2, ¬A1

Right-¬

A1, ¬A2 ⇒ A1

A1, A2 ⇒ A2

Left-¬Right-¬

A1 ⇒ A2, A1



Propseq1.doc:1998/04/14:page 12 of 31

• In establishing validity it is not necessary to
expand a node until it becomes an atomic
sequent.  For validity, it suffices that there be a
common proposition name (as a wff; not as a
component of one) in each sequence.  Thus, the
expansions in the previous example could
actually have been halted without expanding the
boxes which are outlined with dashes.

• It is in fact possible to halt the expansion of a
node when there is a common wff in each
sequence.  However, testing for such common
formulas at each step involves substantial
overhead, and so the decision to do this should
be weighed carefully.  In these notes, only
checking for matching proposition names will be
performed.

• This shortcut only applies to establishing validity.
For establishing invalidity, a full expansion to
atomic sequents must be performed (or other,
more complex shortcuts must be employed).
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• At some steps, there may be a choice as to which
rule to apply.  Here is an alternate proof, also
making use of the shortcut just described.

• In some sense, this proof is “better” than the first
one, because it delays branching into two distinct
paths as long as possible.

⇒ ((A1 → A2) → (¬A2 → ¬A1))

¬A2 ⇒ A1, ¬A1

 (A1 → A2) ⇒ (¬A2 → ¬A1)

A2, ¬A2, ⇒ ¬A1

Right-→

Left-→

Right-→

Left-¬

Valid Valid

 ¬A2, (A1 → A2) ⇒ ¬A1

A2 ⇒ A2, ¬A1A1, ¬A2 ⇒ A1

Right-¬
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• In most logic books, including the course
textbook, proofs are written using a sort of
“stacked proof rule” syntax, as illustrated below.

• This syntax tends to become difficult to read as
the size of the proof grows, and it makes it all but
impossible to show explicitly the proof rules which
were used.  The explicit tree syntax is therefore
preferable.

⇒ ((A1 → A2) → (¬A2 → ¬A1))

⇒ A1, (¬A2 → ¬A1)

¬A2, ⇒ ¬A1, A1

 (A1 → A2) ⇒ (¬A2 → ¬A1)

A2 ⇒ (¬A2 → ¬A1)

¬A2, A2 ⇒ ¬A1,

A2 ⇒ A2, ¬A1A1, ¬A2, ⇒ A1
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Here is a proof of an equivalent formula, with the
inner implications replaced by disjunctions.

Notice that the result is the same, but that the rules
which are applied are different.

 (¬A1 ∨ A2) ⇒ (A2 ∨ ¬A1)

 (¬A1 ∨ A2) ⇒ A2, ¬A1

Right-∨

Left-∨

Valid

 A2 ⇒A2,  ¬A1¬A1 ⇒ A2, ¬A1

⇒ ((¬A1 ∨ A2) → (A2  ∨ ¬A1))

Right-→

Left-¬

Valid

⇒ A1,  A2, ¬A1

A1 ⇒ A1,  A2

Right-¬
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Example: Strictly speaking, a formula of the form
¬(A ∧ (A→ B) ∧ ¬(B ∨ C ∨ D)

cannot be processed with the existing rules, since
only binary conjunction and disjunction is
supported.  To handle such a formula, a grouping
such as the following must first be imposed, either
explicitly or implicitly.

¬((A ∧ (A→ B)) ∧ ¬((B ∨ C) ∨ D))

Left-∧

Valid

⇒ ¬((A ∧ (A→ B)) ∧ ¬((B ∨ C) ∨ D))

Right-¬

Right-∨

Valid

((A ∧ (A→ B)) ∧ ¬((B ∨ C) ∨ D)) ⇒

(A ∧ (A→ B)), ¬((B ∨ C) ∨ D) ⇒

A, (A→ B), ¬((B ∨ C) ∨ D) ⇒

Left-∧

A, (A → B) ⇒ B, C, D

A ⇒ A, B, C, D B, A ⇒ B, C, D

A, (A→ B), ¬((B ∨ C), D) ⇒

Right-∨

Left-→

A, (A→ B)  ⇒ ((B ∨ C) ∨ D)

Left-¬
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To handle such cases more cleanly, it is useful to introduce some extended rules.
Essentially, all that they do is allow sequences of ∧’s and ∨’s to be expanded in one
step, rather than two at a time.

Γ1, α1, α2, .., αn, Γ2 ⇒ Γ3 

 Γ1, (α1 ∧ α2 ∧ .. ∧ αn), Γ2  ⇒ Γ3

Left-∧*

Γ1, α1, Γ2 ⇒ Γ3      Γ1, α2, Γ2 ⇒ Γ3    ..    Γ1, αn, Γ2 ⇒ Γ3 

 Γ1 ⇒ Γ2, (α1 ∧ α2 ∧ .. ∧ αn), Γ3

Right-∧*

Γ1 ⇒ Γ2, α1, Γ3      Γ1 ⇒ Γ2, α2, Γ3    ..    Γ1 ⇒ Γ2, αn, Γ3  

 Γ1, (α1 ∨ α2 ∨ .. ∨ αn), Γ2, ⇒ Γ3

Left-∨*

Γ1 ⇒ Γ2, α1, α2, .., αn, Γ3 

 Γ1 ⇒ Γ2, (α1 ∨ α2 ∨ .. ∨ αn), Γ3

Right-∨*
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Here is a simpler proof of

¬(A ∧ (A→ B) ∧ ¬(B ∨ C ∨ D)

Using these extended rules.

Left-∧*

Valid

⇒ ¬((A ∧ (A→ B) ∧ ¬(B ∨ C ∨ D))

Right-¬

Right-∨*

Valid

((A ∧ (A→ B)) ∧ ¬(B ∨ C ∨ D)) ⇒

A, (A→ B), ¬(B ∨ C ∨ D) ⇒

A, (A → B) ⇒ B, C, D

A ⇒ A, B, C, D B, A ⇒ B, C, D

Left-→

A, (A→ B) ⇒ (B ∨ C ∨ D)

Left-¬
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Now we look at the “people going to the party”
example.  There are two ways to formulate this
problem in G′.  First of all, things may be set up to
refute the following set of clause, as was done in
the resolution solution.

ψ = {(J  ∨ Y), (¬Y ∨ S ∨ C), (J ∨ S), (¬C)}.

An alternative is to set things up as a direct
implication; that is, to establish that

{(J  ∨ Y), (¬Y ∨ S ∨ C), (J ∨ S)} ~ C

Both possibilities are expressible as a sequent.

In the first case, the refutation is expressed as

(J  ∨ Y), (¬Y ∨ S ∨ C), (J ∨ S), (¬C) ⇒

In the second case, the direct deduction is
expressible as

(J  ∨ Y), (¬Y ∨ S ∨ C), (J ∨ S) ⇒ C

The proof graph on the next slide actually
recaptures both cases.  Note that the first rule
applied (left-¬ to ¬C) transforms the input sequent
into the above representation of direct deduction.

Notice that an atomic sequent which is not valid is
obtained, at which point further expansion is
unnecessary, since the input sequent cannot be
valid.
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 (J  ∨ Y), (Y → (¬S → C)), (¬J → S), ¬C ⇒

 (J  ∨ Y), (Y → (¬S → C)), (¬J → S) ⇒ C

 J, (Y → (¬S → C)), (¬J → S) ⇒ C  Y, (Y → (¬S → C)), (¬J → S) ⇒ C

 J, (Y → (¬S → C)) ⇒ ¬J, C  S, J, (Y → (¬S → C)) ⇒ C

 S, J, ⇒ Y, ¬J, ¬C (¬S → C), S, J,  ⇒ ¬J, C
C

Not valid

Left-¬

Left-∨

Left-→

Left-→

 C, S, J, ⇒ Y, ¬J

Right-¬

 J, C, S, J, ⇒ Y
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On the next slide is shown a proof of the
unsatisfiability of the following set of clauses:

{A, (¬A ∨ B), (¬B ∨ C ∨ D), (¬D ∨ E), ¬E, ¬C}

This is equivalent to showing that

{A, (¬A ∨ B), (¬B ∨ C ∨ D), (¬D ∨ E)} ~  E ∨ C

Note that within the sequent system, these two
problems have almost the same representation and
solution method. The sequent

A, (¬A ∨ B), (¬B ∨ C ∨ D), (¬D ∨ E)  ⇒  E, C

is obtained in a single step from the sequent

A, (¬A ∨ B), (¬B ∨ C ∨ D), (¬D ∨ E)  ⇒  E ∨ C

by application of the Right-∨ rule, so the proof on
the following slide may be modified by replacing the
first two steps with this single application of Right-∨.
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A, (¬A ∨ B), (¬B ∨ C ∨ D), (¬D ∨ E), ¬E, ¬C ⇒

 A, ¬A, (¬B ∨ C ∨ D), (¬D ∨ E), ⇒ C, E A, B, (¬B ∨ C ∨ D), (¬D ∨ E), ⇒ C, E

Valid

Left-¬

Left-∨

A, (¬A ∨ B), (¬B ∨ C ∨ D), (¬D ∨ E), ¬C ⇒ E

A, (¬A ∨ B), (¬B ∨ C ∨ D), (¬D ∨ E), ⇒ C, E

Left-¬

 A, (¬B ∨ C ∨ D), (¬D ∨ E) ⇒ A, C, E

Left-¬

A, B, (¬B ∨ C ∨ D), ¬D ⇒ C, E A, B, (¬B ∨ C ∨ D), E ⇒ C, E

Valid

A, B, ¬B, ¬D ⇒ C, E A, B, C, ¬D ⇒ C, E A, B, D, ¬D ⇒ C, E

A, B,  ¬D ⇒ B, C, E A, B, D ⇒ D, C, E

Valid

Valid

Valid

Left-∨

Left-∨*

Left-¬Left-¬
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Notice that the choice of which element to expand is important.   Here is an example of
a poor choice.  (There are several long branches left to be expanded, shown by three
vertical dots.

A, (¬A ∨ B), (¬B ∨ C ∨ D), (¬D ∨ E), ¬E, ¬C ⇒

Left-∨*

A, (¬A ∨ B), ¬B, (¬D ∨ E), ¬E, ¬C ⇒

A, (¬A ∨ B), C, (¬D ∨ E), ¬E, ¬C ⇒

A, (¬A ∨ B), D, (¬D ∨ E), ¬E, ¬C ⇒

A, ¬A, ¬B, (¬D ∨ E), ¬E, ¬C ⇒ A, B, ¬B, (¬D ∨ E), ¬E, ¬C ⇒

A, ¬B, (¬D ∨ E), ¬E, ¬C ⇒ A A, B, (¬D ∨ E), ¬E, ¬C ⇒ B

�

�

Left-∨

Left-¬ Left-¬

Valid Valid
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Soundness and Completeness:

Definition: Let  dG′  denote the inference relation for
the proof system G′.

The soundness of G′ is an immediate consequence
of the nature of the proof rules.

Theorem: G′ is a sound inference mechanism.  That
is,

dG′  Λ1 ⇒ Λ2    implies    ~  Λ1 ⇒ Λ2. ¹

Now let us turn to completeness.
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Definition: Call a proof rule

Ω1   Ω2   ..   Ωn

 Ω

non-weakening if each of the “inverse” rules

 Ω
 Ωi

is a sound proof rule.  Otherwise, call the rule
weakening.  Intuitively, a non-weakening rule is one
in which the premises are not too strong.  There is
cannot be information in the premises which is not
passed on to the conclusion.

Proposition: Each of the ten proof rules of G′, as
well as the four extended rules, are non-weakening.
Proof: This is a straightforward verification.  It will be
discussed in class, but not written out in these
slides. ¹

Theorem: G′ is a complete inference mechanism.
That is,

~  Λ1 ⇒ Λ2   implies    dG′  Λ1 ⇒ Λ2.

Proof: If a proof tree is found for which each leaf is
a valid sequent, then the root must be a
consequence of those axioms.  On the other hand,
if a proof tree is found for which one of the leaves is
a non-valid atomic sequent, then that sequent must
be a consequence of the root sequent, whence the
root cannot be valid.  ¹
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Algorithmicity:

Are we done?  Not quite.  We are computer
scientists, and the question of termination of this
procedure is central to us.

How do we know that this process will terminate?
Perhaps the process of expanding nodes of the tree
can run forever.  After all, there is an infinite number
of axioms. The key to establishing that this cannot
happen is to note that the formulas associated with
the premises of the proof rules are simpler than
those associated with the conclusion.

Definition: The complexity of a wff ϕ, denoted
Complexity(ϕ), is defined according to the following
table.

ϕ Complexity(ϕ)
A 0

(¬ψ) 1 + Complexity(ψ)
(ψ1 ∨ ψ2) 1 + Complexity(ψ1) + Complexity(ψ2)
(ψ1 ∧ ψ2) 1 + Complexity(ψ1) + Complexity(ψ2)
(ψ1 → ψ2) 1 + Complexity(ψ1) + Complexity(ψ2)
(ψ1 ↔ ψ2) 1 + Complexity((ψ1 → ψ2)) +

Complexity((ψ2 → ψ1))

The complexity of a sequent is the sum of the
complexities of all of its members (in both
sequences).
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Note that the complexity of an atomic sequent is
zero.

Definition: Call a proof rule simplifying if for any
instantiation, the complexity of the conclusion is
strictly greater than the complexity of each premise.

Proposition: The system G′ is simplifying.
Proof: This is easily verified from a case-by-case
examination of the proof rules. ¹

Theorem: G′ admits an algorithmic deductive
process.
Proof: Because the proof rules are simplyfing, the
expansions cannot continue indefinitely. ¹

(Remember that proof construction proceeds from
conclusion to hypotheses.)
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The sequent system of the textbook:

The textbook presents a different sequent system
than the one developed in these notes.

• Some of the proof rules of the system in the text
are weakening.  Examples include the rules L∧
(converted to our notation):

Γ1, α1 ⇒ Γ2 

 Γ1, (α1 ∧ α2) ⇒ Γ2

Γ1, α2 ⇒ Γ2 

 Γ1, (α1 ∧ α2) ⇒ Γ2

As well as the rules LT and RT:

Γ1 ⇒ Γ2 

 Γ1 ⇒ α, Γ2

Γ1 ⇒ Γ2 

 Γ1, α ⇒  Γ2

Because these rules are weakening, it is not
guaranteed that leaf nodes are consequences of
the root.  Therefore, invalidity cannot be established
except by exhaustive search.



Propseq1.doc:1998/04/14:page 29 of 31

Example: Below is shown a deduction of
A ∧ B ⇒ A

from  B ⇒ A.

While the deduction is perfectly correct, it is not the
case that the inverse deduction is correct.  In other
words, while

B ⇒ A   ~   A ∧ B ⇒ A

certainly holds, it is not the case that

A ∧ B ⇒ A    ~    B ⇒ A

does.  Thus, it it is erroneous to conclude that
A ∧ B ⇒ A  is not valid.  Instead, it is necessary to
backtrack and try other rules.  The following does
the trick.

However, this mandates the need for a much more
complex search algorithm, capable of backtracking.

A ∧ B ⇒ A

B ⇒ A

Rule (2)

A ∧ B ⇒ A

A ⇒ A

Rule (3)
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• The system in the textbook only uses the simpler
axiom schema:

α ⇒  α

• While this schema is adequate, it does require
some supporting effort, including replication and
rearrangement axioms (RC, LC, RR, and LR).

Γ1 ⇒ α, α, Γ2 

 Γ1 ⇒ α, Γ2

Γ1, α, α ⇒ Γ2 

 Γ1, α ⇒  Γ2

Γ1 ⇒ α1, α2, Γ2 

 Γ1 ⇒ α2, α1, Γ2

Γ1, α1, α2 ⇒ Γ2 

 Γ1, α2, α1 ⇒  Γ2

Such axioms add to the search complexity.  While
they are non-weakening, they are not simplifying,
and so may be applied and re-applied endlessly,
unless a separate mechanism for avoiding this is
added.

Conclusions:

• The system of the text is sound.

• It is probably complete, but the author has not
proven this.

• It includes rules which are weakening and/or non-
simplifying, so at best it is unclear how to devise
an algorithm to use this system.  At the very least,
such an algorithm would require backtracking and
intelligent search.
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The cut rule:

No discussion of sequent calculi is complete without
mentioning the cut rule.  It is essentially a rule for
chaining implications.

Γ1 ⇒ α, Γ2       Γ3, α ⇒ Γ4

 Γ1, Γ2 ⇒ Γ3, Γ4

It is easy to see that this rule is valid.  In some
cases, it can simplify some proofs substantially.

Further information:

The most extensive reference on sequent systems,
from a computer science perspective, is:

Gallier, Jean, H., Logic for Computer Science:
Foundations of Automatic Theorem Proving, Harper
and Row, 1986.

The sequent system described in these notes is
also discussed there.
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