
Propres1.doc:1998/04/04:page 1 of 41

The Resolution Proof System
in Propositional Logic

While the Hilbert proof system has the property that
it reflects the methods by which humans commonly
do mathematics, it is ill suited for use in automated
reasoning, because of the infinite number of axiom
which may be generated from an axiom schema.

The resolution proof system is the most successful
attempt to provide an alternate system which is
more suited to the task of automated reasoning by
computer.

Propres1.doc:1998/04/04:page 2 of 41

The number of semantically distinct formulas:

Call two wff’s ϕ1 and ϕ2 semantically distinct if
~ (¬(ϕ1 ≡ ϕ2)) holds.

Observation: Let / be a propositional logic with a
finite number n of distinct proposition names P =
{A1, A2, .., An}. Then there are 22n

 semantically
distinct wff’s over L.
Proof: The truth table for such a wff has 2n rows,
and the entry in for each row may be 0 or 1. ¹

Despite this, observe that WF(/) is an infinite set,
even if there is only one proposition name.

• If we want a proof system which admits
algorithmic construction of proofs, it would be a
great advantage to have just a finite number of
formulas. (In view of the above result, only 22n

are needed.)

Propres1.doc:1998/04/04:page 3 of 41

Clauses:

Definition: A clause is a wff which is a disjunction of
literals.

Examples:
• (A1 ∨ ¬A2 ∨ A3 ∨ ¬A4) is a clause.
• (¬A1 ∨ ¬A3 ∨ A3 ∨ ¬A4) is a clause which is

always true.
• ⊥ is taken to be a clause of with no literals, and

is always false.
Motivation: A clause is true iff at least one of its
literals is true. Since ⊥ contains no literals, it
must always be false.

Observation: Let /�be a propositional logic having a
finite number n of distinct proposition names. Then
the number of distinct clauses over / is finite, the
exact number being 4n.
Proof: For each proposition name A, there are four
possibilities for a clause ϕ:

• A is a disjunct of ϕ.
• (¬A) is a disjunct of ϕ.
• Both A and (¬A) are disjuncts of ϕ.
• Neither A nor (¬A) are disjuncts of ϕ.

From this observation, the result follows
immediately. ¹

Propres1.doc:1998/04/04:page 4 of 41

From a practical point of view, a clause which
contains a complementary pair of literals is
uninteresting, because it is always true.

Call a clause trivial if it contains a complementary
pair of literals. Clearly, a trivial clause is true in any
interpretation, and thus all such clauses are
semantically equivalent.

Observation: Let /�be a propositional logic a finite
number n of distinct proposition names. Then the
number of distinct nontrivial clauses over / is finite,
the exact number being 3n.
Proof: Similar to the above with the possibility that
both A and (¬A) being disjuncts of the same clause
excluded. ¹

Remark: It is probably useful to keep one clause
around which is always true, in which case the
number of interesting clauses will be 3n + 1.

Propres1.doc:1998/04/04:page 5 of 41

Resolution:
Definition: Resolution is the following proof rule:

(α1 ∨ p), (α2 ∨ ¬p)
 (α1 ∨ α2)

In this rule, p is bound to a proposition name, and
α1 and α2 are to be bound to clauses.

Note that the result of resolution is also a clause,
called the resolvent of the components from which it
is built. More formally, if ϕ1 = ψ1 ∨ �1 and
ϕ2 = ψ2 ∨ �2 are clauses with {�1, �2} a
complementary pair of literals, then ψ1 ∨ ψ2 is called
the resolvent of (ϕ1, ϕ2) with respect to (�1, �2).
The set of all resolvents of {ϕ1, ϕ2} is denoted
Res(ϕ1, ϕ2).

Example: Let ϕ1 = A ∨ ¬B and ϕ2 = ¬A ∨ B. Then
Res(ϕ1, ϕ2) = { A ∨ ¬A, B ∨ ¬B}. Note that only one
pair of complementary literals may be deleted.
⊥ ∉ Res(ϕ1, ϕ2).

Example: Let ϕ1 = A ∨ ¬B and ϕ2 = ¬A. Then
Res(ϕ1, ϕ2) = {¬B }.

Example: Let ϕ1 = A and ϕ2 = ¬A. Then
Res(ϕ1, ϕ2) = {⊥}.

Propres1.doc:1998/04/04:page 6 of 41

Example: Let ϕ1 = A ∨ ¬B and ϕ2 = A ∨ ¬C. Then
Res(ϕ1, ϕ2) = ∅; there are no resolvents. Note
carefully that Res(ϕ1, ϕ2) = {⊥} and
Res(ϕ1, ϕ2) = ∅ do not mean the same thing.

Example: Let ϕ1 = A ∨ ¬B ∨ C and
ϕ2 = ¬A ∨ ¬B ∨ C. Then Res(ϕ1, ϕ2) = {¬B ∨ C}.

Proposition: Resolution is sound. That is, if ϕ1 and
ϕ2 are clauses, and ϕ ∈ Res(ϕ1, ϕ2), then
{ϕ1, ϕ2} ~ ϕ.
Proof: Without loss of generality, suppose that
ϕ1 = ψ1 ∨ A and ϕ2 = ψ2 ∨ ¬A, with A a proposition
name. Let v ∈ Mod({ϕ1, ϕ2}). Then either

v ∈ Mod(ψ1) or else v ∈ Mod(ψ2), since v- cannot be

true on both A and ¬A. Thus, v- ∈ Mod(ψ1 ∨ ψ2), as
was to be proved. ¹

Resolution also has a completeness property, but
discusion of it will be deferred until use of this
powerful tool has been examined more completely.

Propres1.doc:1998/04/04:page 7 of 41

Proofs using resolution:

The resolution proof rule defines a proof system
5HV�in which there are no axiom schemata, and
only one proof rule, resolution. Since the resolution
proof rule operates only on clauses, the whole proof
system operates only on them.

Since this system is so important, it is worth writing
out the definition of a proof in detail.

A proof in 5HV of the clause ϕ from the set of
clauses Φ is a sequence ϕ1, ϕ2, .., ϕn of clauses,
with the following properties.
(a) Each ϕi is either:

(i) A member of Φ;
(ii) A member of Res(ϕj, ϕk), where

1 ≤ j, k < i.
(b) ϕn = ϕ.

Φ d5HV ϕ denotes that ϕ is provable from Φ in 5HV.

Notice how much simpler this definition is than the
corresponding one for the Hilbert system.

Propres1.doc:1998/04/04:page 8 of 41

Example: Let
ϕ1 = A ∨ B ∨ ¬D
ϕ2 = A ∨ B ∨ C ∨ D
ϕ3 = ¬B ∨ C
ϕ4 = ¬A
ϕ = C

The task is to show that {ϕ1, ϕ2, ϕ3, ϕ4 } d5HV�ϕ.

1. A ∨ B ∨ ¬D [hypothesis ϕ1]

2. A ∨ B ∨ C ∨ D [hypothesis ϕ2]

3. A ∨ B ∨ C [res. on 1, 2 with ¬D, D]

4. ¬B ∨ C [hypothesis ϕ3]

5. A ∨ C [res. on 3, 4 with B, ¬B]

6. ¬A [hypothesis ϕ4]

7. C [res. on 5, 6 with A, ¬A]

This proof may also be represented graphically:

A ∨ B ∨ ¬D A ∨ B ∨ C ∨ D

A ∨ B ∨ C

¬B ∨ C

A ∨ C

¬A

C

Propres1.doc:1998/04/04:page 9 of 41

For direct inference, resolution is not complete,
even when the goal is a simple clause.

Example: Let ϕ1 = A and let ϕ = A ∨ B. Then it is
clear that {ϕ1} ~ ϕ, yet ϕ ∉ Res(ϕ1, ϕ2).

However, resolution is complete for refutation, i.e.,
proofs of ⊥. To solve the above example, negate
the goal and add it to the hypotheses. The negated
goal is ¬(A ∨ B), which is not a clause. However, a
simple application de Morgan’s identity yields

¬(A ∨ B) ≡ (¬A ∧ ¬B).

(¬A ∧ ¬B) is not a clause, but it may be
decomposed into two clauses, ¬A and ¬B. The
problem of establishing that

{A} ~ A ∨ B
is thus reduced to the problem of establishing that

{A, ¬A, ¬B } ~ ⊥.
The latter is a trivial resolution.

1. A [hypothesis]

2. ¬A [hypothesis]

3. ⊥ [res. 1, 2]

Propres1.doc:1998/04/04:page 10 of 41

The previous proof may be converted similarly.

Example: Let
ϕ1 = A ∨ B ∨ ¬D
ϕ2 = A ∨ B ∨ C ∨ D
ϕ3 = ¬B ∨ C
ϕ4 = ¬A
ϕ = C

The task is show that {ϕ1, ϕ2, ϕ3, ϕ4, ¬ϕ} d5HV�⊥

1. A ∨ B ∨ ¬D [hypothesis ϕ1]
2. A ∨ B ∨ C ∨ D [hypothesis ϕ2]
3. A ∨ B ∨ C [res. on 1, 2 with ¬D, D]
4. ¬B ∨ C [hypothesis ϕ3]
5. A ∨ C [res. on 3, 4 with B, ¬B]
6. ¬A [hypothesis ϕ4]
7. C [res. on 5, 6 with A, ¬A]
8. ¬C [hypothesis ¬ϕ]
9. ⊥ [res. on 7, 8]

A ∨ B ∨ ¬D A ∨ B ∨ C ∨ D

A ∨ B ∨ C

¬B ∨ C

A ∨ C

¬A

C

¬C

⊥

Propres1.doc:1998/04/04:page 11 of 41

Adequacy of clauses and CNF:

• In problem solving, it will not always be the case
that the hypotheses and the conclusion will be
clauses.

• For resolution to be viewed as a general
procedure, it must be possible to begin with
hypotheses and goals expressed as arbitrary
wff’s.

• The solution is to use a normal form called
conjunctive normal form (CNF). Every wff may
be converted to one in CNF.

Propres1.doc:1998/04/04:page 12 of 41

It is not the case that every wff is equivalent to a
clause. For example, there is no clause which is
equivalent to the wff (A ∧ B). However, there is a
result which turns out to be just as useful.

Definition: A wff ϕ is said to be in conjunctive
normal form (CNF) if it is of the form
ϕ1 ∧ ϕ2 ∧ .. ∧ ϕk, with each ϕi a clause.

Example: The formula
ϕ = (A1 ∨ ¬A2 ∨ A3 ∨ ¬A4) ∧

 (¬A1 ∨ ¬A3 ∨ A3 ∨ ¬A4)
is in CNF.

Fact: Every wff is semantically equivalent to a
formula in CNF. In fact, there is an algorithm which
will convert an arbitrary wff into one in CNF.
Proof: The proof is very similar to that for
conversion to DNF. The key difference is that,
instead of using the distributive identity which
distributes ∧ over ∨, we use the dual, which
distributes ∨ over ∧. Formally, the following steps
need to be taken.

Step 1: Eliminate ≡.
Step 2: Eliminate →.
Step 3: Use de Morgan’s laws to move ¬’s in to
atoms.
Step 4: Eliminate double negatives (implicit).
Step 5: Distribute ∨ over ∧. ¹

Propres1.doc:1998/04/04:page 13 of 41

Example:
¬((A1 ≡ A2) ∧ ¬(A3 ∨ ¬ (A4 → A1)))

Steps 1 and 2:
¬(((A1 ∧ A2) ∨ (¬A1 ∧ ¬A2))) ∧
 ¬(A3 ∨ ¬(¬A4 ∨ A1)))

Note: Rather than substituting
((A1 → A2) ∧ (A2 → A1))

for (A1 ≡ A2), it is more productive to use
 ((A1 ∧ A2) ∨ (¬A1 ∧ ¬A2)).

Steps 3 and 4:
¬((A1 ∧ A2) ∨ (¬A1 ∧ ¬A2)) ∨ (¬A3 ∧ (¬A4 ∨ A1))

(¬(A1 ∧ A2) ∧ ¬(¬A1 ∧ ¬A2)) ∨ (A3 ∨ (A4 ∧ ¬A1))

((¬A1 ∨ ¬A2) ∧ (A1 ∨ A2) ∨ (A3 ∨ (A4 ∧ ¬A1))

Step 5:
((¬A1 ∨ ¬A2) ∧ (A1 ∨ A2)) ∨ ((A3 ∨ A4) ∧ (A3 ∨ ¬A1))

(¬A1 ∨ ¬A2 ∨ A3 ∨ A4) ∧ (¬A1 ∨ ¬A2 ∨ A3 ∨ ¬A1) ∧
(A1 ∨ A2 ∨ A3 ∨ A4) ∧ (A1 ∨ A2 ∨ A3 ∨ ¬A1)

Simplify:
(¬A1 ∨ ¬A2 ∨ A3 ∨ A4) ∧ (¬A1 ∨ ¬A2 ∨ A3) ∧
(A1 ∨ A2 ∨ A3 ∨ A4)

Propres1.doc:1998/04/04:page 14 of 41

Problem solving using resolution:

Recall that, for direct inference, resolution is not
complete, even when the goal is a simple clause.

Example: Let ϕ1 = A and ϕ2 = B. Let ϕ = A ∨ B.
Then it is clear that {ϕ1, ϕ2} ~ ϕ, yet
ϕ ∉ Res(ϕ1, ϕ2).

However, resolution is complete when the goal is
the empty clause ⊥. If {ϕ1, ϕ2, .., ϕn} is a finite set of
clauses, then {ϕ1, ϕ2, .., ϕn} ~ ⊥ iff there is a
sequence of resolutions which may be applied to
{ϕ1, ϕ2, .., ϕn} to yield the empty clause. This will
be made more precise, and the result proved, later.
For now we look at how some examples are solve.

Example: Recall that a proof of ~ (ϕ → ϕ) within
the Hilbert system was surprisingly difficult. In the
resolution system, it is trivial. (ϕ → ϕ) is equivalent
to (¬ϕ ∨ ϕ). To prove the validity of this formula,
convert its negation to CNF: ¬ (¬ϕ ∨ ϕ) reduces to
(ϕ ∧ ¬ϕ), which is represented by the set {ϕ, ¬ϕ} of
clauses. It is trivial to resolve this set to ⊥.

Propres1.doc:1998/04/04:page 15 of 41

Example: We return to the party example, which is
Example 2.4 of the textbook. The premises of the
problem consist of the following three statements.
Φ = {(J ∨ Y), (Y → (¬S → C)), (¬J → S)}.
The conclusion is the single proposition C.

The first step is to convert the elements of Φ to
clauses. This is quite easy.
• (J ∨ Y) is already a clause.
• (Y → (¬S → C)) is equivalent to the the clause

(¬Y ∨ S ∨ C).
• (¬J → S) is equivalent to the clause (J ∨ S).
• The negation of the goal is the clause ¬C.

Thus, the set of clauses to work with is

ψ = {(J ∨ Y), (¬Y ∨ S ∨ C), (J ∨ S), (¬C)}.

From examination of this problem under other proof
methods, we know that the conclusion does not
follow from the hypotheses. In this case, what can
resolution tell us?

Under these finite circumstances, the number of
resolvents is finite. Thus, once no new resolvents
can be discovered, the process has completed.

Propres1.doc:1998/04/04:page 16 of 41

Here is the resolution graph for this problem.
Duplicates (which are discarded) are shown with
dashed boxes and arrows.

Since an exhaustive search does not yield the
empty clause, ψ must be satisfiable.

Since the number of clauses over a finite number of
proposition letters is finite, the process of
generating resolvents until none further exist is
guraranteed to terminate.

(J ∨ Y) (¬Y ∨ S ∨ C) (J ∨ S) (¬C)

(J ∨ S ∨ C) (¬Y ∨ S)

(J ∨ S) (J ∨ S)

Propres1.doc:1998/04/04:page 17 of 41

A blocks world example:

This example uses the domain of the simple blocks
world, introduced on the introductory slides.

The goal is to prove that if B2 is atop B1, then either
P1 or else P2 must be on the table. In the
associated propositional logic, this is expressed as
follows:

On[B2,B1] → (On_table[P1] ∨ On_table[P2])

This is the goal of the problem. In a resolution
solution, it must be negated. This negation yields
three atomic clauses:

(1) On[B2,B1]
(2) ¬On_table[P1]
(3) ¬On_table[P2]}

To convert all of the first-order sentences describing
the constraints on the blocks world to propositional
wff’s would be a huge task. So, we will select just
the ones that we need.

No object can rest atop a pyramid.
(∀x)(∀y)(¬(Is_pyramid(x) ∧ On(y,x)))

We need:
(4) ¬On(P1,P1)
(5) ¬On(P1,P2)
(6) ¬On(P2,P1)
(7) ¬On(P2,P2)

Propres1.doc:1998/04/04:page 18 of 41

At most one object can rest atop another object.
(∀x)(∀y)(∀z) ((On(y,x) ∧ On(z,x)) → y=z))

¬(On[B2,B1] ∧ On[P1,B1])
¬(On[B2,B1] ∧ On[P2,B1])
¬(On[P1,B2] ∧ On[P2,B2])

which are represented by the following clauses:

(8) (¬On[B2,B1] ∨ ¬On[P1,B1])
(9) (¬On[B2,B1] ∨ ¬On[P2,B1])
(10) (¬On[P1,B2] ∨ ¬On[P2,B2])

Every object is either on the table or else atop
another object.
(∀x)(∃y)(On_table(x) ∨ On(x,y)))

(11) (Ontable[P1] ∨ On[P1,B1] ∨ On[P1,B2] ∨
 On[P1,P1] ∨ On[P1,P2])

(12) (Ontable[P2] ∨ On[P2,B1] ∨ On[P2,B2] ∨
On[P2,P1] ∨ On[P2,P2])

Propres1.doc:1998/04/04:page 19 of 41

So, here is the database of clauses necessary to
perform the deduction:

(1) On[B2,B1]

(2) ¬On_table[P1],

(3) ¬On_table[P2]

(4) ¬On(P1,P1)

(5) ¬On(P1,P2)

(6) ¬On(P2,P1)

(7) ¬On(P2,P2)

(8) (¬On[B2,B1] ∨ ¬On[P1,B1])

(9) (¬On[B2,B1] ∨ ¬On[P2,B1])

(10) (¬On[P1,B2] ∨ ¬On[P2,B2])

(11) (Ontable[P1] ∨ On[P1,B1] ∨ On[P1,B2] ∨
 On[P1,P1] ∨ On[P1,P2])

(12) (Ontable[P2] ∨ On[P2,B1] ∨ On[P2,B2] ∨
On[P2,P1] ∨ On[P2,P2])

Propres1.doc:1998/04/04:page 20 of 41

(Ontable[P1] ∨ On[P1,B1] ∨ On[P1,B2] ∨ On[P1,P1] ∨ On[P1,P2]) ¬On_table[P1]

(On[P1,B1] ∨ On[P1,B2] ∨ On[P1,P1] ∨ On[P1,P2]) ¬On(P1,P1)

(On[P1,B1] ∨ On[P1,B2] ∨ On[P1,P2]) ¬On(P1,P2)

(On[P1,B1] ∨ On[P1,B2])
(¬On[B2,B1] ∨ ¬On[P1,B1]) On[B2,B1]

¬On[P1,B1]

On[P1,B2]

Propres1.doc:1998/04/04:page 21 of 41

(Ontable[P2] ∨ On[P2,B1] ∨ On[P2,B2] ∨ On[P2,P1] ∨ On[P2,P2]) ¬On_table[P2]

(On[P2,B1] ∨ On[P2,B2] ∨ On[P2,P1] ∨ On[P2,P2]) ¬On(P2,P2)

(On[P2,B1] ∨ On[P2,B2] ∨ On[P2,P1]) ¬On(P2,P1)

(On[P2,B1] ∨ On[P2,B2])
(¬On[B2,B1] ∨ ¬On[P2,B1]) On[B2,B1]

¬On[P2,B1]

On[P2,B2]On[P2,B2] (¬On[P1,B2] ∨ ¬On[P2,B2])

¬On[P2,B2]

⊥

On[P1,B2]

From previous
derivation

Propres1.doc:1998/04/04:page 22 of 41

Simplification Strategies:

In general, when a resolution is performed, the
clauses which were resolved may not be discarded,
since they may be needed again in a subsequent
resolution.

Example: Let Φ = { A ∨ ¬B, B ∨ ¬C, C ∨ ¬A,
 ¬A ∨ ¬B ∨ ¬C, A ∨ B ∨ C }.
It is easy to see that Φ is unsatisfiable, as illustrated
by the following resolution proof graph.

However, note that there are three clauses which
are used in each of two distinct resolutions. In
general, this multiple use of clauses cannot be
avoided.

A ∨ ¬BB ∨ ¬C C ∨ ¬A ¬A ∨ ¬B ∨ ¬C A ∨ B ∨ C

¬A ∨ ¬B

¬B

¬C
A ∨ C

A¬A

⊥

Propres1.doc:1998/04/04:page 23 of 41

Definition: A clause ϕ1 is a subclause of clause ϕ2 if
every literal of ϕ1 is also a literal of ϕ2. If, in
addition, ϕ2 contains some literal which is not in ϕ1,
then ϕ1 is a proper subclause of clause ϕ2.

Examples:
• A ∨ ¬C is a proper subclause of A ∨ B ∨ ¬C

• A ∨ ¬C is a subclause of itself, but not proper.

• ⊥ is a subclause of every clause, and a proper
subclause of every clause except itself.

• A ∨ C is not a subclause of A ∨ B ∨ ¬C. It is the
literals, and not just the associated atoms, which
must satisfy the containment condition.

Observation: Let ϕ1 be a subclause of clause ϕ2.
Then

{ϕ1} ~ ϕ2. ¹

This observation may be translated into a practical
simplification strategy for the resolution process.

Terminology: If ϕ1 is a (proper) subclause of clause
ϕ2, then ϕ2 is a (proper) superclause of ϕ1.

Simplification strategy: Suppose that Φ is a set of
clauses. Then each clause which is a superclause
of some other clause of Φ may be removed without
changing whether or not resolution will find a
refutation of Φ.

Propres1.doc:1998/04/04:page 24 of 41

Example: Suppose that
A ∨ ¬C, A ∨ B ∨ ¬C, ¬A ∨ D, ¬B ∨ D ∈ Φ.

We will illustrate why A ∨ B ∨ ¬C (which is a
superclause of A ∨ ¬C), may be removed without
compromising the resolution process.

First consider the following two resolutions, in which
the first “resolvee” of the pair on the left is a
superclause of the corresponding one on the right.
Note further that the literal of resolution is contained
in both clauses. In this case, the result of the first
resolution is a superclause of the result of the
second.

Now suppose that the literal of resolution is
contained only in the superclause. No resolution is
possible for the right pair, but the result of the left
resolution is a superclause of the first clause on the
right.

In both cases, the resolution involving the
superclause adds nothing useful. The clause
A ∨ B ∨ ¬C may be discarded!

A ∨ B ∨ ¬C ¬A ∨ D

B ∨ ¬C ∨ D

A ∨ ¬C ¬A ∨ D

¬C ∨ D

A ∨ B ∨ ¬C ¬B ∨ D

A ∨ ¬C ∨ D

A ∨ ¬C ¬B ∨ D

Propres1.doc:1998/04/04:page 25 of 41

Here is a more formal statement.

Let Φ be a set of clauses. Define Base(Φ) to be the
subset of Φ obtained by deleting each clause which
is a superclause of some other member of Φ.

Example: Let
 Ψ = { A ∨ ¬B, B ∨ ¬C, C ∨ ¬A, ¬A ∨ ¬B ∨ ¬C,
 A ∨ B ∨ C, A ∨ C, ¬A ∨ ¬B }.
Then
Base(Ψ) = { A ∨ ¬B, B ∨ ¬C, C ∨ ¬A,
 A ∨ C, ¬A ∨ ¬B }.

Observation: Let Φ be a set of clauses. Then
Φ ~ ⊥ iff Base(Φ) ~ ⊥. ¹

We already know that resolution is sound, and we
will soon see that resolution is complete, so that

Φ ~ ⊥ iff Φ d5HV�⊥.

Thus: Let Φ be a set of clauses. Then
Φ d5HV� ⊥ iff Base(Φ) d5HV� ⊥. ¹

The process of removing superclauses from the
database of clauses may even be performed on the
fly.

Propres1.doc:1998/04/04:page 26 of 41

For example, in the proof on slide 22, which is
reproduced here:

• A ∨ B ∨ C may be deleted from the clause base
when as A ∨ C is derived.

• ¬A ∨ ¬B ∨ ¬C may be deleted from the clause
base when ¬A ∨ ¬B is derived.

• A ∨ ¬B and ¬A ∨ ¬B may be deleted from the
clause base when ¬B is derived.

• B ∨ ¬C may be deleted from the clause base
when ¬C is derived.

• C ∨ ¬A may be deleted from the clause base
when ¬A is derived.

• A ∨ C may be deleted from the clause base
when A is derived.

This will simplify the search process for new
resolvents greatly!

A ∨ ¬BB ∨ ¬C C ∨ ¬A ¬A ∨ ¬B ∨ ¬C A ∨ B ∨ C

¬A ∨ ¬B

¬B

¬C
A ∨ C

A¬A

⊥

Propres1.doc:1998/04/04:page 27 of 41

Unit and Input Resolution:

A unit clause is one which consists of a single
literal.

A unit resolution is one in which one of the clauses
which are resolved is a unit clause.

A unit refutation of a set Φ of clauses is a refutation
proof Φ d5HV ⊥ in which each resolution is a unit
resolution.

Example: The previous blocks-world proof is a unit
refutation.

Given a set Φ of clauses, an input resolution with
respect to Φ is a resolution in which one of the
clauses to be resolved is an element of Φ.

An input refutation of a set Φ of clauses is a
refutation proof Φ d5HV ⊥ in which each resolution
is an input resolution.

Example: Let
Φ = {A, ¬A ∨ B, ¬B ∨ C ∨ D, ¬D ∨ E, ¬E, ¬C}.

Here are three distinct refutations of Φ, with distinct
properties.

Propres1.doc:1998/04/04:page 28 of 41

A unit refutation which is not an input refutation:

An input refutation which is not a unit refutation:

A ¬A ∨ B ¬B ∨ C ∨ D ¬D ∨ E ¬E

B

C ∨ D

¬C

¬D

C

⊥

A ¬A ∨ B ¬B ∨ C ∨ D ¬D ∨ E ¬E

B

C ∨ D

¬C

C

⊥

C ∨ E

Propres1.doc:1998/04/04:page 29 of 41

A refutation which is neither unit nor input:

A ¬A ∨ B ¬B ∨ C ∨ D ¬D ∨ E ¬E

¬A ∨ C

¬C

C

⊥

¬A ∨ C ∨ D ¬D

Propres1.doc:1998/04/04:page 30 of 41

Despite the differences, the following remarkable
result holds.

Theorem: A set Φ of clauses has a unit refutation iff
it has a input refutation. ¹

Q: Why are unit resolution and input resolution
important?

A: For these forms of resolution, very efficient
algorithms exist. Although they are not complete,
they can solve a very large class of interesting
subproblems. Sometimes, a tradeoff of
completeness for efficiency is warranted.

Important: There are sets of clauses which are
inconsistent, yet which admit no input or unit
refutation.

Example: {A ∨ B, ¬A ∨ B, A ∨ ¬B, ¬A ∨ ¬B}.

Clearly, this set cannot have a unit resolution (since
it has no unit clauses), so by the above result, it
cannot have an input refutation either.

Let us now examine the complexity of unit
resolution more closely.

Propres1.doc:1998/04/04:page 31 of 41

The Complexity of Unit Refutation:

Observation: Let ϕ1 be any clause, let ϕ2 be a unit
clause, and suppose that ϕ1 and ϕ2 are resolvable.
Then the (unique) resolvent of ϕ1 and ϕ2 is a
subclause of ϕ1. ¹

Example: Let ϕ1 = A ∨ ¬B ∨ ¬C;
ϕ2 = C.

The resolvent is A ∨ ¬B, which is a subclause of
ϕ1.

Definition:
(a) Let ϕ be a clause. Define Length(ϕ) to be the
number of literals in ϕ.
(b) Let Φ be a set of clauses. Define Length(Φ) to
be the sum of the lengths of its elements.

Example: Let
Φ = {A, ¬A ∨ B, ¬B ∨ C ∨ D, ¬D ∨ E, ¬E, ¬C}.

Then Length(Φ) = 10.

Observation: Let Φ be a set of clauses. If
superclauses are discarded at each step, then the
total number of unit resolutions which may be
applied to Φ is bounded by Length(Φ). ¹

The number of (unrestricted) resolutions which may
be applied to Φ is Θ(2Length(Φ)) in the worst case, so
the number of possible unit resolutions is much
smaller than the total number of possible
resolutions.

Propres1.doc:1998/04/04:page 32 of 41

A Comparison to Semantic Tableaux:

Semantic Tableaux:

• The basic input unit is a conjunction of literals.
• A general input must be in DNF.
• Satisfiability is established when one of the

conjunctions of literals is found to be satisfiable.
• Unsatisfiability is established only when all

conjunctions of literals are found to be
unsatisfiable.

• Most of the complexity is emodied in converting
the problem to a DNF representation.

Resolution:

• The basic input unit is a disjunction of literals
(clause).

• A general input must be in CNF.
• Unsatisfiability is established when a proof of the

empty clause is found.
• Satisfiability is established only when all

resolvents are computed, and the empty clause is
not amongst them.

Many problem statements are naturally in CNF, or
something close. The complexity lies in the
resolution process.

Propres1.doc:1998/04/04:page 33 of 41

Some implementation issues surrounding
resolution:

The implementation of a resolution-based theorem
prover is a course in itself. However, there are
some simple points which should be emphasized.

Data structures which capture the following
information must be maintained:

• The pairs of clauses, with the associated literals,
which have already been resolved. (Note that a
pair of clauses may have more than one
resolvent.)

• The collection of all hypotheses and resolvents
which have been found.

These structures are necessary in order that it may
be determined:

• that no more resolvents may be obtained.

• that a given pair of clauses has already been
resolved on a given literal pair.

• That resolution of a given pair of clauses on a
given pair of literals will generate a clause which
has already been found.

Propres1.doc:1998/04/04:page 34 of 41

The Completeness of Resolution:

A thorough, formal proof of the completeness of the
resolution principle will now be presented. Note
that such a proof is not presented in the textbook.

Recall that resolution is
(a) a clause-based procedure, and
(b) a refutation procedure.

Thus, the result which is to be established is the
following.

Theorem: Let Φ = {ϕ1, ϕ2, .., ϕn} be a finite set of
clauses. Then

Φ ~ ⊥ implies Φ d5HV�⊥.

Propres1.doc:1998/04/04:page 35 of 41

Convention: Throughout this proof, it is assumed
that all clauses are taken over a fixed finite
propositonal logic /� ��3��&�$���in which
3� �{A1, A2, .., An}. Furthermore, it will be assumed
that these proposition letters have an order imposed
upon them

θ� �(A1, A2, .., An)
The actual ordering is of no consequence; any will
do.

Definition: The semantic tree corresponding to θ is
the full binary tree Tθ whose edges are labelled as
follows:
(i) The left edge from any node at level r is

labelled with Ar.
(ii) The right edge from any node at level r is

labelled with ¬Ar.

In a picture:

A1 ¬A1

A2 A2

A3 A3 A3
A3

¬A2
¬A2

¬A3 ¬A3
¬A3¬A3

� � � �

Propres1.doc:1998/04/04:page 36 of 41

Definition: A partial function f: X t Y is a function
which may be defined only on some of the elements
of X. An ordinary function, which is defined on all
elements of X, is a special case of a partial function.

Definition: Let N be a node in Tθ. Define the partial
function

Definition: A partial function
w: P t {0,1}

Is called a partial interpretation (of /).

Definition: Let w be a partial interpretation, and let
Φ ⊆ WF(/).

(a) If w has an extension w$: 3 t {0,1} ∈ Mod(Φ),
then w is called a partial model of Φ.

(b) If, for each ϕ ∈ Φ, w has an extension w$ ϕ : P t
{0,1} ∈ Mod(Φ), then w is called a weak partial
model of Φ.

Observation: Clearly, every weak partial model is a
partial model. However, the converse is false.
Examples: Let Φ = {A ∨ B, A ∨ ¬B}. Then
• f : 3 t {0,1} : A x 1; B x undefined is a partial

model.
• g : 3 t {0,1} : A x 0; B x undefined is a weak

partial model, but not a partial model.







¬=θω
 otherwise. undefined

N. to root the from path the on is A if 0

 N. to root the from path the on is Aif 1

)A)(,N(j

j

j

Propres1.doc:1998/04/04:page 37 of 41

Definition: Let Φ be a finite set of clauses. A node
N in Tθ is, with respect to Φ:
(a) a safe node if ω(N,θ) is a weak partial model of

Φ;
(b) an inference node if it is a safe node, but no

descendant of it is a safe node;
(c) a failure node if it is not a safe node, but every

ancestor of it is a safe node.

Example: Let Φ = {A1 ∨ A2, A1 ∨ ¬A2, A2 ∨ ¬A3}.
The failure nodes are labelled with X’s.
The inference nodes are labelled with boxes.

A1 ¬A1

A2 A2

A3 A3 A3
A3

¬A2
¬A2

¬A3 ¬A3
¬A3¬A3

� � � �

Propres1.doc:1998/04/04:page 38 of 41

Proposition: Let Φ be a finite set of clauses, and let
N be an inference node for Φ in the tree Tθ. Let Q
and Q′ be the children of N. Select ϕ ∈ Φ such
that ω(Q,θ) cannot be extended to a model of ϕ.
(Such a ϕ must exist by the definition of a failure
node.) Similarly, select ϕ′ ∈ Φ with the property
that ω(Q′,θ) cannot be extended to a model of ϕ′.
Let Aj be the proposition name on which Q and Q′
branch, as illustrated in the figure below. Then,
ω(N,θ) cannot be extended to a model of the
resolvent of ϕ and ϕ′ on (Aj, ¬ Aj).

Proof: It is clear that ϕ = ψ ∨ ¬ Aj, and that
ϕ′ = ψ′ ∨ ¬ Aj, for clauses ψ and ψ′, since Q and Q′
are failure nodes. Let Λ = {�1, �2, .., �j-1} be the
literals along the path from the root to N. Let
Λ¬ = {¬�1, ¬�2, .., ¬�j-1} be the set of complements
of Λ. Then ψ must be a disjunction of some of the
elements of Λ¬, else Q could not be failure node.
Similarly, ψ′ must be a disjunction of elements of
Λ¬. But then N must be a failure node for ψ ∨ ψ′,
which is precisely the resolvent of ϕ and ϕ′ on
(Aj, ¬ Aj). ¹

Aj ¬Aj

N

Q Q′

Propres1.doc:1998/04/04:page 39 of 41

Definition: Let Φ be a finite set of clauses. Define
Res(Φ) to be the closure of Φ under the operation
of resolution.

Lemma: Let Φ be a finite set of unsatisfiable
clauses. Then every node of Tθ is a failure node
with respect to Res(Φ).
Proof: Suppose, to the contrary, that Tθ contains a
safe node N. This node N cannot be a leaf, else
ω(N,θ) would be a model for Φ. Let M be a safe
node which is furthest from the root. Then M must
be an inference node, else one of its children would
be safe, contradicting the assumption that is a safe
node which is furthest from the root. Since it is an
inference node, the preceding proposition asserts
that it is a failure node for an element of Res(Φ).
This is a contradiction, and so no such M can exist.
Hence every node of Tθ is a failure node with
respect to Res(Φ). ¹

Theorem: Resolution is complete as a refutation
procedure: If Φ be a finite set of unsatisfiable
clauses, then

Φ ~ ⊥ implies Φ d5HV�⊥.
Proof: In view of the above lemma, the root node of
Tθ must be a failure node with respect to Res(Φ).
This can only happen if ⊥ ∈ Res(Φ). ¹

Propres1.doc:1998/04/04:page 40 of 41

Summary:

Note that soundness of resolution states that
Φ ~ ϕ implies Φ d5HV�ϕ,

which holds in particular when ϕ is ⊥. Thus, in view
of the preceding theorem, the following combination
result holds.

Corollary: Resolution is sound and complete as a
refutation procedure: If Φ be a finite set of
unsatisfiable clauses, then

Φ ~ ⊥ iff Φ d5HV�⊥. ¹

It must be emphasized that this result does not hold
for general inference on clause. The last line of the
corollary cannot be replaced by
Φ ~ ϕ iff Φ d5HV�ϕ.

Propres1.doc:1998/04/04:page 41 of 41

Finiteness Issues:

Oservation: It is possible to implement d5HV�as a
decision procedure. That is, for the problem

Φ d5HV�⊥
it is possible it implement the inference engine in
such as way that either
(a) It establishes that Φ d5HV�⊥ holds, by finding a

proof, from Φ, of the empty clause ⊥.
(b) It establishes that Φ d5HV�⊥ does not hold, by

generating the resolution closure of Φ and
noting that it does not contain the empty
clause.

Note that this is not possible with the Hilbert
system. Since the axiom schemata of the Hilbert
system allow one to generate an infinite number of
axioms, it is always possible to generate something
new, so the analog of condition (b) above cannot be
realized.

	The Resolution Proof System �in Propositional Logic

