
Prophorn.doc:1998/04/21:page 1 of 29

Horn Clauses in Propositional Logic

Notions of complexity:

In computer science, the efficiency of algorithms is
a topic of paramount practical importance.

• The best known algorithm for determining the
satisfiability of a set of wff’s in propositional logic
has worst-case time complexity Θ(2n), with n the
size of the formula. (The size is length of the
string representing the formula.)

• Resolution, Sequent inference, and semantic
tableaux, among others, have time complexity
Θ(2n) in the worst case.

• While testing for satisfiability in DNF, or for
validity in CNF, may be performed efficiently,
translation of an arbitrary wff to either of these
forms has time complexity Θ(2n) in the worst
case. Furthermore, the new formula may even
grow exponentially in size relative to the original
one.

• The situation is summarized in the table below.
CNF DNF General

Satisfiability Θ(2n) Θ(n) Θ(2n)
Tautology Θ(n) Θ(2n) Θ(2n)
Conversion of an
arbitrary wff to ..

Θ(2n) Θ(2n) −

Prophorn.doc:1998/04/21:page 2 of 29

Q: Has it been proven that no better algorithms
exist?

A: No.

Q: Is it likely that someone will discover more
efficient algorithms sometime soon?

A: No.

The problem of testing satisfiability of an arbitrary
wff in propositional logic belongs to class of
problems termed NP-complete, denoted NPC. (NP
= nondeterministic polynomial.)

This class contains hundreds, if not thousands, of
important problems

• Scheduling problems
• Resource-allocation problems
• Search problems
• Computational-geometry problems

• If one of these problems has a solution which is
better than Θ(2n) in the worst case, then they all
do.

• Many researchers have been working on these
problems for many years, without finding such
algorithms.

• Problem which are NPC (or which are at least
that difficult – the so-called NP-hard problems)
are often termed computationally intractable.

Prophorn.doc:1998/04/21:page 3 of 29

Thus, the above table has the true characterization
as follows:

CNF DNF General
Satisfiability NPC Θ(n) NPC
Tautology Θ(n) NPC NPC
Conversion of an
arbitrary wff to ..

Θ(2n) Θ(2n) −

Note: The conversion of an arbitrary wff to CNF and
DNF will cause the formula to grow in size
exponentially, in the worst case. No theory is ever
going to change this, hence the Θ(2n) entries in the
above table.

Q: Given that logical inference is such an important
issue in computer science, which other options are
available?

A: NPC is a worst case characterization. On can
look for important classes of formulas which admit
more efficient solutions.

Prophorn.doc:1998/04/21:page 4 of 29

1. One can look for algorithms which perform well
(statistically) over certain distributions of
formulas. Often, the formulas which result in
worst-case performance are “oddball,” and are
unlikely to occur in practical applications.

2. When addressing a specific application involving
satisfiability or logical inference, one can look for
algorithms which perform well on the formulas
which arise in that context. Such classes are
often defined by other structures (e.g., graphs)
arising from the application.

3. One can look for mathematically interesting, yet
practical, classes of formulas which admit
tractable inference.

In these slides, approach 3 will be followed,
exploring the class of formulas known as Horn
clauses.

Prophorn.doc:1998/04/21:page 5 of 29

Notions of deduction:

The type of deduction which we have looked at so
far falls into the following general category:

Given:
(a) A set Φ of formulas; and
(b) A goal formula ϕ.

Determine:
whether Φ ~ ϕ holds.

This may be performed by testing whether
• Φ ∪ {¬ϕ} is unsatisfiable, or
• - {¬ψ | ψ ∈ Φ ∪ {¬ϕ} } is a tautology.

The idea is the same in either case:

• We are given the candidate conclusion, as well
as the hypotheses, and we conduct a test with a
yes/no result.

We might consider the following more
comprehensive deduction problem:

Given:
A set Φ of formulas;

Determine
The set of all formulas ϕ for which Φ ~ ϕ
holds.

This is extremely ambitious. However, there is a
very important class of formulas for which this set ϕ
may be obtained.

Prophorn.doc:1998/04/21:page 6 of 29

Basic notions:

Working within the class of Horn formulas, both of
the following desiderata may be realized:

• Tractable inference (Θ(n) with appropriate
algorithms).

• The ability to compute all consequences of a set
of clauses.

Definition: A literal is positive if is a proposition
name. A literal is negative if it is the complement of
a proposition name.

Definition: A Horn clause is a clause which contains
at most one positive literal. The general format of
such a clause is thus as follows:

¬A1 ∨ ¬A2 ∨ .. ∨ ¬An ∨ B

This may be rewritten as an implication:

(A1 ∧ A2 ∧ .. ∧ An) → B

A Horn formula is a conjunction of Horn clauses.

There are various special cases of Horn clauses.

Prophorn.doc:1998/04/21:page 7 of 29

1. If there are no negative literals, the clause
consists of a single positive literal, which is called
a fact.

Examples from the blocks world:

On[P1,B1]
On[B2,B1]

2. If there are both positive and negative literals, the
clause is called a rule.

(A1 ∧ A2 ∧ .. ∧ An) → B

Example from the blocks world:

On[P1,B1] ∧ On[B1,B2] → On_table[P2]

3. If there are only negative literals, the clause is
called a compound negation. It takes the
following form:

(A1 ∧ A2 ∧ .. ∧ An) → ⊥

Examples from the blocks world.

On[P1,B1] ∧ On[P1,B2] → ⊥
On[P1,B1] ∧ On[P2,B1] → ⊥
On[P1,B1] ∧ On_table[P1] → ⊥
On[P1,P1] → ⊥

4. The empty clause ⊥ is also a Horn clause.

Prophorn.doc:1998/04/21:page 8 of 29

Rule-based systems:

Facts and rules can together be used to deduce
new information. This format has been widely used
in so-called rule-based expert systems, which were
popular from the mid-1970’s to the mid 1980’s.
Here are a few examples of rules from such
systems:

MYCIN: MYCIN is an expert system which was
designed to assist physicians in the diagnosis of
and prescription of treatment for infectious blood
disease.

Example of a rule from MYCIN:

If:
1. The site of the culture is blood.
2. The stain of the organism is gramneg.
3. The morphology of the organism is rod.
4. The aerobicity of the organism is anerobic.
5. The portal of entry of the organism is GI.

Then:
• There is strongly suggestive evidence (0.9)

that the identity of the organism is
bacteroides.

MYCIN is the "grandaddy" of all rule-based expert
systems, but was never used in a practical clinical
setting because of its brittleness.

Prophorn.doc:1998/04/21:page 9 of 29

R1: R1 is a rule-based expert system which was
designed by Digital Equipment Corporation (DEC)
in the late 1970’s for configuration of VAX computer
systems.

Examples of a rule from R1:

If:
1. The most current active component is

distributing massbus devices.
2. There is a single-port disk drive that has not

been assigned to a massbus.
3. There are no unassigned single-port disk drives
4. The number of devices that each massbus

should support is known.
5. There is a massbus that has been assigned at

least one disk drive and that should support
additional drives.

6. The type of cable needed to connect the disk
drive to the previous device on the massbus is
known.

Then:
• Assign the disk drive to the massbus.

Unlike MYCIN, R1 was a commercial success,
partly because the domain was sufficiently
restricted.

R1 also incorporated the RETE matching algorithm,
which provided a very efficient method for matching
rules to applicable facts.

Prophorn.doc:1998/04/21:page 10 of 29

 General notions of rule-based systems:

• Nowadays, the rule-based approach is regarded
as too limited, by itself, for most intelligent
applications.

• The expert systems of today make use of many
other technologies, such as case-based
reasoning and intelligent agents.

• Nonetheless, rule-based components are still an
important component of the systems of today.

• (First-order) Horn-clause inference also forms the
basis of programming languages such as Prolog.

Prophorn.doc:1998/04/21:page 11 of 29

A toy example of an expert system:

An automobile-problems system.

Abbrev. Meaning
EGG Engine is getting gas.
ETO Engine turns over.
ETON Engine does not turn over.
LW The lights work.
LWN The lights do not work
FT Fuel in the tank.
FC Fuel in the carburetor.
TL Temperature is very low.
TLN Temperature is not very low.
MW Motor warmer in operation.
MWN Motor warmer not in operation.
PBAT Problem with the battery.
PSTM Problem with the starter motor.
PIGN Problem with the ignition.
PTMP Problem with low temperature.

Rule clauses:

1. EGG ∧ ETO → PIGN
2. ETON ∧ LWN ∧ TL ∧ MWN → PTMP
3. ETON ∧ LWN ∧ MW → PIGN
4. ETON ∧ LWN ∧ TLN → PIGN
5. ETON ∧ LW → PSTM
6. FT ∧ FC → EGG

Prophorn.doc:1998/04/21:page 12 of 29

Suppose that the following facts are given:

FT, FC, TL, MW, ETO

The system may then diagnose the problem as an
ignition problem, as illustrated by the following
graph.

Note that:

• The system reasons by "firing" rules based upon
known facts.

• These firings generate new facts.
• The system can provide an explanation of its

reasoning process by noting how the rules fired.

FT FC

EGG ETO

PIGN

Rule 6

Rule 1

Prophorn.doc:1998/04/21:page 13 of 29

The role of compound negations:

Compound negations cannot be used to deduce
new facts. However, they may be used to detect
inconsistent states.

Example: The statements MW and MWN are
mutually exclusive. The full representation of this
fact is recaptured by the following sentence.

(MW ↔ ¬MWN)

This is equivalent to

(MW → ¬MWN) ∧ (¬MWN → MW)

which is equivalent to the two clauses:

(¬MW ∨ ¬MWN) ∧ (MWN ∨ MW)

The first clause is equivalent to

(MW ∧ MWN) → ⊥

The second clause is not Horn, and illustrates the
fundamental limitation of the Horn representation:
positive disjunction is not representable.

Nonetheless, the knowledge that MW and MWN
cannot occur simultaneously is sufficient for this and
many other systems. The compound negation may
be used as check for inconsistency in the
knowledge base.

Prophorn.doc:1998/04/21:page 14 of 29

The Closed-World Assumption:

Often, information is presented with the intent that
statements which are not explicitly identified to be
true must be false.

Example: The list of students for this class contains
41 names. The presumption is that students whose
names are not on this list are not enrolled in the
course.

In knowledge representation, this idea is termed the
semantic closed-world assumption or semantic
CWA for short. In words it is formulated as follows:

Semantic CWA: The only propositions which are
taken to be true are those for which can be
established that they are true from the given
information. All others are taken to be false.

From a more formal point of view, the semantic
CWA proposes that the following meta-rule be
followed:

Formal Semantic CWA: Let Φ be a set of wff’s, and
let A be a single proposition name (a positive
literal). Then,

If Φ ~/ A then Φ ~ ¬A.

Prophorn.doc:1998/04/21:page 15 of 29

Clarification:

Let Φ be a set of wff’s, and let A be a single
proposition name (a positive literal). Regarding the
question,

“Does Φ entail A?”

there are three possibilities:

(a) Φ ~ A
• A is true in every model of Φ.

(b) Φ ~ ¬A
• A is false in every model of Φ.

(c) Neither Φ ~ A nor Φ ~ ¬A holds.
• A is true in some models of Φ and false in

others.

• The semantic CWA attempts to exclude condition
(c), by forcing it to be equivalent to condition (b).

Question: When does this work just fine, and when
does it cause serious problems?

Short answer: Modulo some reasonable
adjustments, It works just fine when Φ is a set of
Horn clauses, and it fails otherwise.

This issue will now be examined in some detail.

Prophorn.doc:1998/04/21:page 16 of 29

Definition: Let Φ be any set of propositional
formulas over a propositional logic /� ��3�&�$�.
Define the set of atomic consequences of Φ to be
the following set:

AtCons(Φ) = { A ∈ 3 | Φ ~ A }.

The set Φ has the least model property if the
interpretation

is a model of Φ.

Not every set of wff’s has the least model property.
For example, let Φ = {A ∨ B}. Then

AtCons(Φ) = ∅
Yet the associated function

v⊥
Φ(A): A x 0, B x 0

is not a model of Φ, since at least one of A or B
must be true. However, the following remarkable
fact is true.

Theorem: Let Φ be a satisfiable set of Horn clauses.
Then Φ has the least model property. ¹

Before looking at how to compute the least model,
we take an alternate view at its characterization,
which justifies the terminology.

Φ∉
Φ∈Φ

⊥).AtCons(A if 0

).AtCons(A if 1
:)A(Y

Prophorn.doc:1998/04/21:page 17 of 29

Definition: Let v1, v2 ∈ Interp(/). Define the
relation þ on Interp(/) by

v1, þ v2 iff for each A ∈ 3, v1(A) ≤ v2(A).

In other words, whenever v1 is true, so too is v2.

Observation: The relation þ forms a partial order on
Interp(/).

Proposition: Let Φ be a set of clauses with the least
model property. Then

v⊥
Φ = infþ{v | v ∈ Mod(Φ)}. ¹

Here infþ means the least element under the
ordering þ.

Thus, the least model of Φ, when it exists, is the
model whose true propositions are precisely those
which are true in all models of Φ.

Prophorn.doc:1998/04/21:page 18 of 29

Constructing the least model of a set of Horn
clauses:

The construction proceeds by starting with the facts,
and then repeatedly firing the rules whose left-hand
sides match existing facts. The final set of facts so
obtained defines the least model. The compound
negations do not contribute to this process, other
than as a check of satisfiability.

Example: Let 3 = {A1, A2, A3, A4, A5, A6, A7}, and let
Φ = { A1, A2, (A1 ∧ A2) → A3,

A3 → A4,
A3 → A5,
(A5 ∧ A6) → A7}.

Then the least model v⊥ is defined by

If the constraint (A4 ∧ A6) → ⊥ is added to Φ, the
least model does not change. A compound
negative does not change the least model.

However, if the constraint (A4 ∧ A5) → ⊥ is added
to Φ, the entire set becomes inconsistent.

Effect of compound negation: A compound negation
does not change the minimal model; it can only
cause the entire set of clauses to become
inconsistent.

>
≤

=⊥ 5.i if 0

5.i if 1
)A(v i

Prophorn.doc:1998/04/21:page 19 of 29

Genericity:

One might propose that the property of having a
least model is a characterization of Horn formulas.
However, this is not the case, as the following
example illustrates.

Example: The formula A1 → (A2 ∨ A3) has the least
model in which all three propositions are false, yet it
is clearly not a Horn formula.

A better way to think of the situation of constructing
the least model is as follows:

• There are facts and rules built into the base
system (Φ), which do not change.

• There are external facts supplied by the user (∆),
which may vary from instance to instance of use.

• The goal is to compute the least model of this
combination v Φ ∪ ∆

⊥ , defined by AtCons(Φ ∪ ∆).

Φ

Base Facts
(Built into the

system.)

Rules
(Built into the

system.)

Input Facts
(Supplied by

the user.)

∆

Factual Conclusions
(Computed under CWA.)

AtCons(Φ ∪ ∆)

Prophorn.doc:1998/04/21:page 20 of 29

• Under this setup, the rules define a least model
for any set of facts, and not just certain ones.
This is formalized as follows.

Definition: A set Φ of clauses admits generic
assignments if for every set ∆ of positive literals, if
Φ ∪ ∆ is satisfiable, then it has a least model.

Example: Note that Φ = {A1 → (A2 ∨ A3)} does not
admit generic assignments, since if we define ∆ =
{A1}, the resulting set Φ ∪ ∆ = {A1 → (A2 ∨ A3), A1}
does not have a least model.

Lemma: Let ϕ be a satisfiable clause. Then {ϕ}
admits generic assignments iff ϕ is Horn.
Proof: If ϕ is a Horn clause, then {ϕ} ∪ ∆ is a set of
Horn clauses for any set ∆ of atoms. Thus, if
satisfiable, {ϕ} ∪ ∆ has a least model, and so {ϕ}
admits generic assignments.
Conversely, suppose that ϕ is not Horn. Then it
must have the form

(p1 ∨ p2 ∨ .. ∨ pm ∨ ¬q1 ∨ ¬q2 ∨ .. ∨ ¬qn)
It must be that m≥ 2, but n may be 0. Now define

∆ = {q1, q2, .., qn}.
It is easy to see that {ϕ} ∪ ∆ has no generic
assignment. ¹

Prophorn.doc:1998/04/21:page 21 of 29

This result applies not only to a single Horn clause,
but to any set of such clauses:

Theorem: Let Φ be a set of wff’s. Then Φ admits
generic assignments iff it is equivalent to a set of
Horn clauses.
Proof: The proof is based upon the above lemma,
but requires some that some rather picky details be
heeded. The complete proof is thus not presented
in these slides. See the reference by Makowsky
noted at the end of these slide for the details.¹

Key conclusion: To be able to take

(a) a set ∆ of input facts, and
(b) a set Φ of constraints,

and deduce a least or canonical possible world from
these, it is necessary and sufficient that Φ be a set
of Horn clauses.

Important: Here we are in effect deducing a single
state or possible world, and not a formula which
defines a set of possible worlds.

We now turn to the question of how to implement
this sort of computation efficiently.

Prophorn.doc:1998/04/21:page 22 of 29

Resolution and Horn clauses:

Recall that for general sets of clauses, the best
algorithms have complexity Θ(2n), where n is the
size of the input. We will now establish that the
situation is much better in the case of Horn clauses.

Example: Let 3 = {A1, A2, A3, A4, A5, A6, A7}, and let
Φ = { A1, A2, (A1 ∧ A2) → A3, A3 → A4, A3 → A5,
 (A5 ∧ A6) → A7}.
The set Φ may be rewritten as
{ A1, A2, ¬A1 ∨ ¬A2 ∨ A3, ¬A3 ∨ A4, ¬A3 ∨ A5,

¬A5 ∨ ¬A6 ∨ A7}.

Here is a resolution on these clauses:

A1 A2¬A1 ∨ ¬A2 ∨ A3 ¬A3 ∨ A4 ¬A3 ∨ A5

¬A5 ∨ ¬A6 ∨ A7

¬A2 ∨ A3

A3

A4 A5

Prophorn.doc:1998/04/21:page 23 of 29

Note the following:

• The positive unit clauses which are the result
define exactly the least model of the set of
clauses. This is not a refutation, but a direct
proof. Thus, we are computing the least model
directly. We do not need to conjecture at a
conclusion and then test for its satisfaction, as
with ordinary deduction.

• Every resolution is a positive unit resolution; that
is, a resolution in which one clause is a positive
unit clause (i.e., a proposition letter).

• At each resolution, the input clause which is not a
unit clause is a logical consequence of the result
of the resolution. (Thus, this input clause may be
deleted upon completion of the resolution
operation.)

• Following this deletion, the size of the database
(the sum of the lengths of the remaining clauses)
is one less than it was before the operation.)

• Thus, if n is the size of the database, then at most
n positive unit resolutions may be performed on it.

Prophorn.doc:1998/04/21:page 24 of 29

A closer look at positive unit resolution:

Recall that in unit resolution, at least one of the
resolvents must be a literal. A unit refutation is a
resolution refutation of a set of clauses such that
every resolution operation is a unit resolution.

Further, a unit refutation is positive if the unit clause
is a positive literal; i.e. a proposition name.

In general, unit resolution is not complete. That is,
there are sets of clauses which are unsatisfiable,
but which do not admit unit refutations. This cannot
happen for sets of Horn clauses.

Theorem: Let Φ be an unsatisfiable set of Horn
clauses. Then there is a positive unit refutation of
Φ. ¹

Unit resolution has some other key properties:

Observation: Let ϕ be any clause, and let � be a
literal which is resolvable with ϕ. Let R[ϕ,�] denote
the resolvent of ϕ and �. Then R[ϕ,�] ~ ϕ. ¹

Example: Let ϕ = ¬A1 ∨ ¬A2 ∨ A3, and let � = A1.
Then R[ϕ,�] = ¬A2 ∨ A3.

This leads to an important simplification within the
context of unit resolution.

Prophorn.doc:1998/04/21:page 25 of 29

Simplification: When performing the unit resolution
of ϕ and �, and the clause R[ϕ,�] is added to the
database of clauses, the clause ϕ may be removed.

Example: In the above, instead of just adding
¬A2 ∨ A3 to the set of clauses, we may replace
¬A1 ∨ ¬A2 ∨ A3 with it.

Define the size of a clause to be the number of
literals it contains. Define the size of a set of
clauses to be the sum of the sizes of its elements.

Example: The size of
{ A1, A2, ¬A1 ∨ ¬A2 ∨ A3, ¬A3 ∨ A4, ¬A3 ∨ A5,
¬A5 ∨ ¬A6 ∨ A7}
is 12.

Observation: In the unit resolution of Horn clauses,
if the above simplification is employed, the size of
the database decreases by one at each step. Thus,
the total number of resolutions is bounded by the
size of the input set of clauses.

Finally, we have that positive unit resolution
computes exactly what we need:

Theorem: Let Φ be a set of Horn clauses. Let
PRes(Φ) be the closure of Φ under the operation of
unit resolution. Then the set of all atoms in
PRes(Φ) is precisely AtCons(Φ). In other words,
positive unit resolution may be used to compute the
least model of Φ directly. ¹

Prophorn.doc:1998/04/21:page 26 of 29

An efficient algorithm for Horn clause inference:

While the number of steps in a positive unit
resolution of Horn clauses is bounded by the length
of the input, it is not quite true that the algorithm to
implement this strategy is necessarily linear in the
size of the input.

To ensure the linearity, it is necessary to be rather
careful about how data structures are chosen.

On the following slide, an algorithm which will run in
linear time under certain circumstances is shown.

• The algorithm supports “extended” Horn clauses
of the form

A1 ∧ A2 ∧ .. ∧ Am → B1 ∧ B2 ∧ .. ∧ Bn

This clause is equivalent to the n clauses:

A1 ∧ A2 ∧ .. ∧ Am → B1

A1 ∧ A2 ∧ .. ∧ Am → B2

�

A1 ∧ A2 ∧ .. ∧ Am → Bn

Such extended clauses increase the efficiency,
since only one rule “firing” can trigger is needed to
change the values of B1 through Bn.

Prophorn.doc:1998/04/21:page 27 of 29

The algorithm will run in linear time if:

• Data structures indexed by proposition names
may be accessed in constant time. (This is
possible if the proposition names are number in a
range (e.g., 1..n), so that array lookup is the
access operation.

• If propositions are accessed by name, then a
symbol table is necessary, and the algorithm will
run in time Θ(n • log(n)).

Details will be covered in class.

Prophorn.doc:1998/04/21:page 28 of 29

type clause = record
 antecedent_count: natural_number;
 {Initialized to the number of distinct antecedents.}
 consequent: list_of(ref atom)
 {Empty list implies right-hand side = false.}
 end; {clause}
type atom = record
 name: atom_name;
 clause_list: list_of(ref clause);
 truth_value: Boolean {Initialized to false.}
end; {atom}

var queue: clause_queue;
 clauses: list_of(clause);
 consistent: Boolean;

procedure initialize();
 var c: clause;
 begin
 consistent := true;
 for each c in clauses with c.antecedent_count = 0 do
 enqueue(clause_queue,c)
 end foreach;
 end; {initialize}

procedure main();
 var c,v: ref clause;
 x: atom;
 begin
 initialize();
 while ((not empty(clause_queue)) and consistent) do
 dequeue(clause_queue,c);
 if empty(c.consequent)
 then consistent := false
 else
 for each x in c.consequent
 if x.truth_value = false
 then
 x.truth_value = true;
 for each v in x.clause_list do
 report_antecedent_count_decrement(v);
 end foreach;
 end if;
 end foreach;
 end if;
 end while;
 end; {main}

procedure report_antecedent_count_decrement(v: ref clause);
 begin
 v.antecedent_count := v.antecedent_count - 1;
 if v.antecedent_count = 0 then
 enqueue(clause_queue,v)
 end if
 end; {report_antecedent_count_decrement}

Prophorn.doc:1998/04/21:page 29 of 29

For more information:

For more ideas on the notion of genericity and the
importance of Horn clauses in computer science,
consult:

Makowsky, J. A., "Why Horn Formulas Matter in
Computer Science: Initial Structures and Generic
Examples," Journal of Computer and System
Sciences, 34, pp. 266-292, 1987.

For more information on fast inference for Horn
clauses, consult:

Dowling, William. F., and Gallier, Jean A., “Linear-
time satisfiability of propositional Horn formulae,”
Journal of Logic Programming, 3, pp. 267-284,
1984.

	Horn Clauses in Propositional Logic

