
Intro.doc:1998/04/27, page 1 of 19

Logic and Computer Science

Why should computer scientists learn about logic?

1. Modelling of tasks for computer automation:
• Computers are often used to automate

processes previously performed by people.
• This automation requires precise modelling of

processes which are handled by humans in
completely different ways.

2. Specific applications:
• Description of programming language

semantics
• Correctness of computer systems and

protocols
• Description of computer hardware (“logic

design”)
• Automated reasoning
• Modelling for intelligent systems

Intro.doc:1998/04/27, page 2 of 19

The Idea of a Logic

Two fundamental components:

• Semantics: A collection of configurations or
possible worlds to be modelled. In formal
mathematics, these are sometimes called
structures or interpretations. The number of
configurations is often extremely large,
sometimes infinite, and so it is impossible to
describe them and reason about them directly.

• Syntax: A language for describing properties of
possible worlds, together with a set of rules for
reasoning about them.

One cannot understand logic unless one
understands these two ideas, and the
relationship between them. A logic consists of
both components, together with precise rules for
relating one to the other.

Despite this fact, many (if not most) books which
deal with logic in an applied manner (e.g., books on
artificial intelligence) fail to make this distinction
clear.

We therefore begin with a simple example,
designed to illustrate these two notions.

Intro.doc:1998/04/27, page 3 of 19

P1
B1

B2

P2

A Blocks-World Example

• Two cubes and two pyramids sitting on a table.

Assumptions:

• Cubes may be stacked, and pyramids may be
placed atop cubes.

• Only one-on-one stacking is allowed.

Allowed: Not allowed:

P1
B1 B2

P2

B1B2

P1

P2

Intro.doc:1998/04/27, page 4 of 19

There are 13 possible worlds in this simple block
setting.

One with this arrangement:

Two variations with each of these two
arrangements:

Four variations with each of these two
arrangements:

Intro.doc:1998/04/27, page 5 of 19

A syntax for the blocks world:

In the table below, x, y ∈ {B1, B2, P1, P2}.

Proposition Schema Meaning
On_table(x) Object x is on the table.
On(x,y) Object x is atop object y.
Is_cube(x) Object x is a cube.
Is_pyramid(x) Object x is a pyramid.

Examples: On_table(B1), On(P1,B1), Is_cube(B1),
Is_Pyramid(B2).

• Some propositions are true in all possible worlds.
Example: Is_cube(B1), Is_Pyramid(P1).

• Some propositions are false in all possible
worlds.
Examples: Is_cube(P1), On(B1,P1).

• Some propositions are true in some worlds and
false in others.
Examples: On(P1,B1), On_table(P2).

A possible world in which a proposition P is true is
called a model of P.

The set of all models of P is denoted Mod(P).

Exercise: How many models of On(P1,B1) are
there? List them.

Intro.doc:1998/04/27, page 6 of 19

Logical connectives may be used to combine
propositions. The common logical connectives are
identified in the following table:

Symbol Arity Precedence Meaning
∧ 2 2 Logical conjunction (and)
∨ 2 3 Logical disjunction (or)
¬ 1 1 Logical negation (not)
→ 2 4 Logical implication (implies)

↔ ≡ 2 4 Logical equivalence (iff)

• ∧ and ∨ are commutative and associative.
• ¬ is its own inverse.
• Usually, it is safest to assume that all binary

operators have the same precedence, and to use
parentheses to avoid any ambiguity.

• With logical connectives, propositions may be
combined to form well-formed formulas (wff’s).

Examples of wff’s which are true in all possible
worlds:

• Is_cube(B1)

• Is_cube(B1) ∨ On_table(P1)

• Is_cube(B1) ∨ On(B2,P2)

• ¬Is_pyramid(B1)

• (On_table(B1) ∨ ¬On_table(B1))

Intro.doc:1998/04/27, page 7 of 19

• (On_table(B1) ∨ On_table(B2))

• (On(B1,B2) → (On_table(P1) ∨ On_table(P2))

Wff’s which are false in all possible worlds:

• Is_Cube(P1)

• ¬Is_Cube(B1)

• (On_table(B1) ∧ ¬On_table(B1))

• On(B1,P1)

• On(B1,B2) ∧ On(P1,B2)

Wff’s which are true in some worlds and false in
others:

• On_table(B1) ∧ On_table(P1)

• On_table(B1) → (On_table(B2) ∨ On(P1,B1))

Note: The concept of Mod extends to wff’s in an
obvious fashion.

Intro.doc:1998/04/27, page 8 of 19

P1
B1 B2

P2

Describing a single possible world:

In the blocks-world example, it is possible to obtain
a description of a given world by listing all of the
propositions which are true for that world.

Example:

The propositions which are true in this world are:
{Is_cube(B1), Is_cube(B2), Is_pyramid(P1),
Is_pyramid(P2), On_table(B1), On_table(B2),
On_table(P1), On(P2,B1).}

The wff
Is_cube(B1) ∧ Is_cube(B2) ∧

 Is_pyramid(P1) ∧ Is_pyramid(P2) ∧
 On_table(B1) ∧ On_table(B2) ∧
 On_table(P1) ∧ On(P2,B1)
is satisfied by only the state illustrated above.

Note that
On_table(B1) ∧ On_table(B2) ∧

 On_table(P1) ∧ On(P2,B1)
and even

On_table(B1) ∧ On_table(P1) ∧ On(P2,B1)
Suffice to identify the state uniquely.

Intro.doc:1998/04/27, page 9 of 19

P1
B1 B2

P2

It must be emphasized that this is a consequence of
the modelling process, and is not true in general.
For example, suppose that we drop the propositions
of the form On_table(x) from the language. We can
still model this blocks world example:

The formula
On(P2,B1) ∧ ¬On(P1,B2) ∧ ¬On(B1,B2)

describes only the above state. However, no set of
propositions describes it.

• In general, to describe a single state, both the
propositions which are true and the propositions
which are false must be identified.

• In some infinite situations (e.g., any logic which
describes the natural numbers N = {0, 1, 2, …}
with addition), it is impossible to describe each
unique possible world, even with propositions and
their negations.

Intro.doc:1998/04/27, page 10 of 19

Semantic Entailment:

Let :�denote the set of the 13 possible worlds in
our simple blocks environment. Let ϕ be any wff.
Write

~:�ϕ
to denote that ϕ is true in every element of :��i.e.,
in every possible world. This operation is called
semantic entailment.

Example: ~:�(On_table(B1) ∨ On_table(B2))

Now let Ψ be a set of wff’s. Write
Ψ ~:�ϕ

to denote that ϕ is true in every element of W in
which every element of Ψ is true. This is also called
semantic entailment.

Example:
 {(On(B1,B2)} ~:�(On_table(P1) ∨ On_table(P2))

Note that
 ~:�(On(B1,B2) → (On_table(P1) ∨ On_table(P2))
also holds. The relationship between the above two
statements is in illustration of the deduction
theorem, which will be discussed in detail later.

Intro.doc:1998/04/27, page 11 of 19

Reasoning about the blocks world

Here is what we have so far:

1. A set of possible worlds.
2. A language for describing properties of the

possible worlds.

What is missing?

• A means to reason about properties of the
possible worlds.

Example: Consider the following statement: Either
B1 is on the table, or else B1 is on B2. This may be
represented by the formula

On_table(B1) ∨ On(B1,B2).

To verify the validity of this formula, the only means
which we have right now is to check the conditions
against each of the thirteen possible worlds.

Most reasonable applications will have a huge
number of possible worlds, and this approach will
not be feasible.

The alternative is to realize an inference machine,
as illustrated on the next slide.

Intro.doc:1998/04/27, page 12 of 19

A formal inference machine:

To realize this arrangement, a set of formulas Ω:�
which provide a logical description of the set of
possible worlds, must be found.

The relation d which the inference machine
computes has the property that, for any formal
conjecture ϕ,

~:�ϕ holds if and only if W d ϕ holds.

Key points:
• The relation ~:�is defined by the semantics of the

domain to be modelled. It cannot be computed
directly, but must be checked against the possible
worlds.

• The relation d is computed by the inference
engine.

The focus of this course, in a nutshell, is the design
of such a logical inference machine.

Logical Inference
Machine

(computes d)

Formal description
 of the

domain to be modelled
(A logical description of :�

Formal
conjecture

(expressed in logic)
about the domain

Yes/No
answer as to

whether or not the
conjecture is true

Intro.doc:1998/04/27, page 13 of 19

Classes of Logics

In this course, we will study two classes of logics:
• Propositional logic
• First-order logic

In propositional logic, the basic assertions are
parameterless assertions. The blocks-world logic
which has been presented is basically a
propositional logic.

Advantages of propositional logic:
• Simple.
• No decidability problems.

Disadvantages of propositional logic:
• Limited representational power.
• Simple statements may require large and

awkward representations.

Intro.doc:1998/04/27, page 14 of 19

Example: Consider the statement “There is a stack
of three objects.” There are four ways in which
this can happen. The formula is:

(On(B1,B2) ∧ (On(P1,B1) ∨ On(P2,B1)) ∨
(On(B2,B1) ∧ (On(P1,B2) ∨ On(P2,B2)

Example: Consider the statement “There are at
least two objects on the table.” This statement is
always true, but to represent it in the propositional
form of the logic is awkward, requiring explicit
statement of each of the six possibilities.

(On_table(B1) ∧ On_table(B2)) ∨
(On_table(B1) ∧ On_table(P1)) ∨
(On_table(B1) ∧ On_table(P2)) ∨
(On_table(B2) ∧ On_table(P1)) ∨
(On_table(B2) ∧ On_table(P2)) ∨
(On_table(P1) ∧ On_table(P2))

Intro.doc:1998/04/27, page 15 of 19

First-order predicate logic:

First-order logic admits:
• Variables which may range over domain

elements.
• Quantifiers (“for all” and “there exists”).

• This results in much more compact and readable
representations:

Example: “There is a stack of three objects.”

(∃x)(∃y)(∃z)(On(y,x) ∧ On(z,y))

(This formula works for any number of objects.
Consider how complex the propositional version
becomes as the number of objects increases.)

Example: “There are at least two objects on the
table.” This is a bit trickier. A first attempt is as
follows:

(∃x)(∃y)(On_table(x) ∧ On_table(y))

However, this is not quite correct, because there is
nothing to guarantee that x and y are not the same
object. To recapture this example satisfactorily, it is
necessary to employ a first order logic with equality.

(∃x)(∃y)(On_table(x) ∧ On_table(y) ∧ (x≠y))

Equality complicates the logic substantially,
particularly from a computational point of view.

Intro.doc:1998/04/27, page 16 of 19

Advantages of first-order logic:
• Powerful representational capability.
• Many problem cannot be modelled

adequately using propositional logic.

Disadvantages of first-order logic:
• Difficult computational problems.
• Inference is undecidable.

Intro.doc:1998/04/27, page 17 of 19

Describing the blocks world using logic:

Identifying a set of axioms which characterize the
set of possible worlds is often far from trivial, but is
nonetheless an essential component of modelling in
computer science. Here is an attempt at such a
characterization for the simple blocks world.

Everything is either a block or a pyramid:
(∀x)(Is_cube(x) ∨ Is_pyramid(x))

Nothing is both a block and a pyramid:
(∀x)(¬(Is_cube(x) ∧ Is_pyramid(x)))

Domain closure; the only objects are those which
are identified explicitly:
(∀x)(Is_cube(x) ↔ (x=B1 ∨ x=B2))
(∀x)(Is_pyramid(x) ↔ (x=P1 ∨ x=P2))

Objects are distinct:
(B1 ≠ B2) ∧ (P1 ≠ P2) ∧ (B1 ≠ P1) ∧ (B1 ≠ P2)
 ∧ (B2 ≠ P1) ∧ (B2 ≠ P2)
(Only the first two statements are necessary, strictly
speaking, since the others are deducible.)

No object can rest atop a pyramid.
(∀x)(∀y)(¬(Is_pyramid(x) ∧ On(y,x)))

No object can rest atop another object and lie on
the table at the same time.
(∀x)(∀y)(¬(On_table(x) ∧ On(x,y)))

Intro.doc:1998/04/27, page 18 of 19

Every object is either on the table or else atop
another object.
(∀x)(∃y)(On_table(x) ∨ On(x,y)))

No object can rest atop itself.
(∀x)(¬On(x,x)))

An object can rest atop at most one object.
(∀x)(∀y)(∀z) ((On(x,y) ∧ On(x,z)) → y=z))

At most one object can rest atop another object.
(∀x)(∀y)(∀z) ((On(y,x) ∧ On(z,x)) → y=z))

Remarks:

Is this representation complete? Can “illegal” states
sneak in? This is a bit nontrivial even for this very
simple setting, and is extremely nontrivial for more
complex situations.

If the inference engine is to reason correctly, it must
be provided with a complete and correct
axiomatization of the set of possible worlds.

These characterizations could also be made in
propositional logic, but there would be many more
axioms.

Intro.doc:1998/04/27, page 19 of 19

Final remarks on logics:

There are many other classes of logics which are of
importance in computer science.

• Modal logics
• Temporal logics
• Dynamic logics
• Multi-valued logics
• Fuzzy logics
• Feature logics
• Higher-order logics

To understand these logics, one must first have a
thorough understanding of the two basic forms of
logic to be covered in this course.

	Logic and Computer Science
	The Idea of a Logic
	A Blocks-World Example
	Reasoning about the blocks world
	Classes of Logics

