
Fol.doc:1998/05/08:page 1 of 33

First-Order Predicate Logic

The classical motivating example:

All humans are mortal.
Socrates is human.

Therefore:
Socrates is mortal.

• This cannot be expressed in propositional logic.

• Propositions with variables are needed:

For all objects h:
Human(h) → Mortal(h).

Thus, substituting Socrates for h:
Human(Socrates) → Mortal(Socrates).

Since Socrates is human, the following may be
asserted:

Human(Socrates).

Modus ponens may now be applied to deduce

Mortal(Socrates).

We write “for all” as ∀, so
((∀h)(Human(h) → Mortal(h)) ∧ Human(Socrates))

→ Mortal(Socrates)

Fol.doc:1998/05/08:page 2 of 33

Further motivation: Some examples from the
blocks world:

No object can rest atop another object and lie on
the table at the same time.:

 (∀x)(∀y) (¬(On_table(x) ∧ On(x,y)))

If the number of objects is finite (as it is in our
blocks world), then this may be expressed using
propositional logic. However, with four objects,
there are sixteen possibilities, which must be
conjoined to realize an equivalent statement.

(¬(On_table[B1] ∧ On[B1,B1])) ∧
(¬(On_table[B1] ∧ On[B1,B2])) ∧
(¬(On_table[B1] ∧ On[B1,P1])) ∧
(¬(On_table[B1] ∧ On[B1,P2])) ∧
(¬(On_table[B2] ∧ On[B2,B1])) ∧
(¬(On_table[B2] ∧ On[B2,B2])) ∧
(¬(On_table[B2] ∧ On[B2,P1])) ∧
(¬(On_table[B2] ∧ On[B2,P2])) ∧
(¬(On_table[P1] ∧ On[P1,B1])) ∧
(¬(On_table[P1] ∧ On[P1,B2])) ∧
(¬(On_table[P1] ∧ On[P1,P1])) ∧
(¬(On_table[P1] ∧ On[P1,P2])) ∧
(¬(On_table[P2] ∧ On[P2,B1])) ∧
(¬(On_table[P2] ∧ On[P2,B2])) ∧
(¬(On_table[P2] ∧ On[P2,P1])) ∧
(¬(On_table[P2] ∧ On[P2,P2]))

Clearly, this form of propositional representation
can get out of hand in a hurry.

Fol.doc:1998/05/08:page 3 of 33

Every object is either on the table or else atop
another object.

Here we must use the “there exists” connective,
which is abbreviated ∃:

(∀x)(∃y)(On_table(x) ∨ On(x,y))
or

(∀x)(On_table(x) ∨ (∃y)On(x,y))

To expand this to propositional logic, for each x, the
alternatives for y must be disjoined.

(On_table[B1] ∨
 On[B1,B1] ∨ On[B1,B2] ∨
 On[B1,P1] ∨ On[B1,P2]) ∧
 (On_table[B2] ∨
 On[B2,B1] ∨ On[B2,B2] ∨
 On[B2,P1] ∨ On[B2,P2]) ∧
(On_table[P1] ∨
 On[P1,B1] ∨ On[P1,B2] ∨
 On[P1,P1] ∨ On[P1,P2]) ∧
 (On_table[P2] ∨
 On[P2,B1] ∨ On[P2,B2] ∨
 On[P2,P1] ∨ On[P2,P2])

Again, this propositional representation leads to a
combinatorial explosion of notation.

Fol.doc:1998/05/08:page 4 of 33

General notions of first-order predicate logics:

In comparison to a propositional logic, a first-order
predicate logic has the following features:

• The proposition names can take arguments.
Thus, instead of a simple proposition name A, we
will work with statements which look like

A(t1, t2, .., tn)

in which the ti’s are arguments to A. In this
context, A is called a relation symbol, and the
number of arguments which it takes (n in this
example) is called its arity. It is customary to use
upper-case letters such as P, Q, R, S, and T,
possibly with subscripts, as relation symbols,
although letters such as A, B, and C may be used
as well, as may more descriptive names, such as
those used in the blocks-world example:

Relation Symbol Arity
On 2

On_table 1
Is_cube 1

Is_pyramid 1

• Each relation symbol has exactly one arity; there
is no polymorphism in the first-order logics
discussed in these notes.

Fol.doc:1998/05/08:page 5 of 33

• The arguments of the relation symbols are called
terms. The set of terms includes at least the
following:

• A countably infinite set 9 of variables.
Usually, lower-case letters from the end of
the alphabet, possibly with subscripts, will be
used to denote variables; e.g., x, y, x1, z12.
In the blocks world example, x, y, and z were
used a variables.

• A set . of constant symbols. This set may
be empty, but in practical applications in
computer science it almost never is.

In the blocks world example, the set of constant
symbols consists of {B1, B2, P1, P2}.

• A set of function symbols, which may be
applied recursively.

Fol.doc:1998/05/08:page 6 of 33

The blocks-world example did not include any
function symbols. However, we could augment the
existing description with some simple functions.

Consider the functions other and opposite, defined
informally as follows:

x other(x) opposite(x)
B1 B2 P1
B2 B1 P2
P1 P2 B1
P2 P1 B2

In words, Other identifies the other block of the
same type, and Opposite identifies the block of the
opposite type, but with the same index.

We may thus write formulas such as:

(∃x)On(x, other(x))
(∃x)On(other(x),opposite(x))
(∀x)(∀y)((¬On(x,other(opposite(y)))

These functions are always total; they may not be
undefined for any arguments.

These functions may be composed indefinitely:

On(x,other(other(other(other(opposite(x))))))))

Fol.doc:1998/05/08:page 7 of 33

In addition to the connectives of propositional logic,
there are two new quantifiers:

• The universal quantifier ∀. (“for all”)

• The existential quantifier ∃. (“there exists”)

Use of these has already been illustrated in the
blocks world.

(∀x)(∀y) (¬(On_table(x) ∧ On(x,y)))

(∀x)(∃y)(On_table(x) ∨ On(x,y))

We will see that either one may be defined in
terms of the other.

Fol.doc:1998/05/08:page 8 of 33

• An extremely important relation within first-
order predicate logic is equality. It occurred in
several of the sentences in the blocks-world
example.

An object can rest atop at most one object.
(∀x)(∀y)(∀z) ((On(x,y) ∧ On(x,z)) → y=z))

At most one object can rest atop another object.
(∀x)(∀y)(∀z) ((On(y,x) ∧ On(z,x)) → y=z))

Equality is an extremely important operation.
However, it also complicates the presentation of a
logic substantially, and so it will be omitted from
the initial presentation. It will be introduced in
due course.

Unfortunately, the textbook does not develop the
notion of equality within first-order predicate logic
at all.

Fol.doc:1998/05/08:page 9 of 33

There are many flavors of first-order predicate logic.

We will look at several of the most common.

• Function-free first-order logic.
This is the simplest form. It will be studied first,
in order to gain familiarity with the basic notions
while incurring the least amount of overhead
from new ideas. Despite its simplicity, it has
substantial application in computer science, for
example, in the formulation of knowledge in
deductive databases.

• First-order logic with functions.
This is the most common, general form. It is

the one which the textbook uses throughout.

• First-order logic with equality.
This is an extremely important class of first-
order logics, which allows us to write sentences
using the equality predicate “=”, such as

An object can rest atop at most one object:
(∀x)(∀y)(∀z)((On(x,y) ∧ On(x,z)) → y=z)

Unfortunately, this logic is not developed in the
textbook at all, although it is used in some
examples.

Fol.doc:1998/05/08:page 10 of 33

Term Algebras:

Definition: A function-free term algebra 7� ��9��.�
consists of the following:

• A countable set 9 of variables.
• A (possibly empty) set . of constant symbols or

constant names.

It is always assumed that 9�∩�. = ∅.

T is called finite if . is a finite set.

Example: Let .BW = {B1, B2, P1, P2}, and let
9 = {x0, x1, x2, …}. Then 7BW� ��9�.BW� is a
function-free term algebra for the blocks world.
Note that it is finite.

Remark: Except in the instance of some very formal
definitions and proofs, it is customary to assume
that 9�consists of lower case letters from the end of
the alphabet, as well as such letter subscripted: x,
y, z, x1, y10, za.

A function-free term over 7� ��9��.�� is just an
element of 9�∪�.. The set of all such terms is
denoted Terms(7).

Fol.doc:1998/05/08:page 11 of 33

Definition: A full term algebra (or just term algebra)
is a triple�7� ��9��.��)�� subject to the following
conditions.

• �9��.� is a function-free term algebra.

• F is a set of non-nullary function symbols (or just
function symbols).

• With each f ∈) is a associated a positive
integer Arity(f), called the arity of f. Informally,
Arity(f) identifies the number of arguments which f
takes.

The terms over 7��denoted Terms(7), are defined
inductively as follows.

(a) Each v ∈ V is in Terms(7).
(b) Each k ∈ K is in Terms(7).
(c) If t1, t2, .., tn ∈ Terms(7), and if f ∈) with

Arity(f) = n, then f(t1,t2,..,tn) ∈ Terms(7).

Fol.doc:1998/05/08:page 12 of 33

Definition: A first-order logic is a quadruple
/� ��5��&��$��7� in which:

• 5 is a set of relation names. With each such
name R ∈ 5 is associated a natural number
Arity(R), called the arity of R.

• & = {¬, →, ⊥, ∀} is the set of logical
connectives.

• $ = { (,) } is the set of auxiliary symbols.
• 7� ��9��.��)���is a term algebra.

/�is termed function free if�7�is function free.

It is assumed that the names in these sets are such
that there are no collisions. For example, ∀ cannot
be a constant symbol.

Example: Let 5 be as defined in the following table.

Relation Symbol Arity
On 2

On_table 1
Is_cube 1

Is_pyramid 1

And let 7%:� ��9�.BW� be the term algebra for the
blocks world defined previously. Then
/BW� ��5BW��&��$��7BW� is a function-free first-order
logic for this world.

Fol.doc:1998/05/08:page 13 of 33

Semantics:

In propositional logic:
• an interpretation provides a truth value for each

proposition.

In first-order logic:
• The “propositions” are relation symbols which

take arguments.
• Thus, there is not a single truth value.
• An interpretation identifies those arguments

(tuples) for which the relation is true, and those
for which it is false.

Definition: Let /� ��5��&��$��7���be a first-order logic,
with 7� ��9��.��)����An interpretation J for / consists
of the following:

• A set Dom(J), called the domain of the
interpretation. This set need not be finite.

• For each relation symbol R, a relation RJ of
Arity(R) columns over Dom(J).

• For each constant symbol K ∈ ., an associated
element KJ of Dom(J).

• For each function symbol f ∈)�of arity n,�an
n-ary function fJ: Dom(J)n → Dom(J).

Fol.doc:1998/05/08:page 14 of 33

P1
B1 B2

P2

Example: Here is an interpretation J describing the
state of the blocks world which is shown below.

D = {d1, d2, d3, d4}

Item Interpretation in J
B1J d1

B2J d2

P1J d3

P2J d4

On_tableJ { (d1), (d2), (d3) }
OnJ { (d4, d1) }
Is_cubeJ { (d1), (d2) }
Is_pyramidJ { (d3), (d4) }

Note:
• Constant symbols are not in the interpretation. It

is not correct to write OnJ = { (P2,B1) }.
• The names of the elements in D is not important.
• Any set with four or more elements could serve

as the domain. Not all domain elements need be
“used.”

Fol.doc:1998/05/08:page 15 of 33

Suppose that we wish to extend this interpretation
to include the functions other and opposite defined
earlier.

The chart presented earlier

x other(x) opposite(x)
B1 B2 P1
B2 B1 P2
P1 P2 B1
P2 P1 B2

is a bit deceptive. The interpretation acts on
domain elements, not constant symbols. For the
interpretation on the previous slide, this chart
should read:

X other(x) opposite(x)
d1 d2 d3

d2 d1 d4

d3 d4 d1

d4 d3 d2

The assignment of domain values to constant
symbols effectively defines the first chart above,
however.

Fol.doc:1998/05/08:page 16 of 33

Well-Formed Formulas:

In first-order logic, the fundamental object,
analogous to a proposition in propositional logic, is
called an atom. It is defined as follows.

Definition: Let /� ��5��&��$��7���be a first-order
logic. Let t1, t2, .., tn ∈ Terms(7), and let R ∈ 5
with�Arity(R) = n.
Then R(t1,t2,..,tn) is termed an atomic formula, or
atom, of L. The set of all such atoms is denoted
Atoms(/).

Note: An atom is just an uninterpreted string of
symbols, and is not to be viewed as a function
applied to arguments.

Examples: In the logic /BW, On(x1,x2), On(P1,x1),
and On_table(P1) are all examples of atoms.

Definition: A ground atom is one in which no term
involves a variable.

Examples: Of the above three, only On_table(P1)
is a ground atom. On(P1,B1) is another example of
a ground atom.

Important: It must be emphasized that terms are not
wff’s. Terms are arguments to relations, and do not
themselves have truth values.

Fol.doc:1998/05/08:page 17 of 33

Definition: Let /� ��5��&��$��7���be a first-order
logic. The class of (strict) well-formed formulas
over / (denoted SWF(/)), is the smallest set of
strings which is closed under the following rules:
(a) ⊥ ∈ SWF(/).
(b) If t1, t2, .., tn ∈ Terms(7), and R ∈ 5��with

Arity(R) = n, then R(t1,t2,..,tn) ∈�SWF(/).
(c) ϕ ∈�SWF(/) implies that (¬ϕ) ∈�SWF(/).
(d) ϕ1, ϕ2 ∈�SWF(/) implies that

 (ϕ1 → ϕ2) ∈�SWF(/).
(e) ϕ ∈�SWF(/) and v ∈�9��implies that

(∀v)(ϕ) ∈�SWF(/).

Notes:

• A formula of the form R(t1,t2,..,tn) is called an
atom.

Example: In the logic /BW:

• On(x1,x2), On(P1,x1), and On_table(P1) are all
examples of atoms.

(∀x1)(∀x2)(∀x3)
(On(x1,x3) → (¬On_table(x2)))

is an example of a strict well-formed formula.

Fol.doc:1998/05/08:page 18 of 33

All of the following abbreviations, except the last, is
familiar from propositional logic.

Definitions:
(ϕ1 ∨ ϕ2) is an abbreviation for ((¬ϕ1) → ϕ2).
(ϕ1 ∧ ϕ2) is an abbreviation for (¬(ϕ1 → (¬ϕ2))).
(ϕ1 ≡ ϕ2) is an abbreviation for

 ((ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)).
® is an abbreviation for (¬⊥).
(∃x)(ϕ) is an abbreviation for (¬(∀x)(¬ ϕ)))

The last abbreviation is easily understood by
considering a simple example. Compare the
following pairs of statements, and convince yourself
that they mean the same thing.

(∃x)On(P1,x)
and

(¬(∀x)(¬On(P1,x)))

(∀x)On_table(x)
and

(¬(∃x)(¬On_table(x)))

As with propositional logic, we let WF(/) denote the
class of all well-formed formulas over /. This class
includes the elements of SWF(/), as well as
formulas involving the abbreviations identified
above. From now on, we will use wff or wf as an
abbreviation for well-formed formula.

Fol.doc:1998/05/08:page 19 of 33

The scope of quantifiers:

The truth value of formulas such as

(∃x)On(P1,x)

(∀x)(On_table(x) ∨ (∃y)On(x,y))

Is understandable in fairly intuitive terms. However,
others may not be so simple. Consider, for
example:

(∀x)((Is_cube(x) ∧ On_table(x))) → (∃y)On(y,x)

(∀x)(∃y)((Is_cube(x) ∧ On_table(x))) → On(y,x)

(∀x)((Is_cube(x) ∧ On_table(x)) → (∃x)On(x,x))

(∀x)((Is_cube(x) ∧ On_table(x)) → On(y,x))

On(P1,x)

Such formulas are legal under the definitions
provided, and we must establish their meanings.

Fol.doc:1998/05/08:page 20 of 33

The scope of a quantifier is the part of the formula
immediately to its right, excepting that part which is
scoped by a quantifier of the same name. This is
most easily illustrated by example.

 Scope of x

(∀x)((Is_cube(x) ∧ On_table(x)) → (∃y)On(y,x))

Scope of y

Scope of x

(∀x)(∃y)((Is_cube(x) ∧ On_table(x)) → On(y,x))

 Scope of y

Scope of outer x

(∀x)((Is_cube(x) ∧ On_table(x)) → (∃x)On(x,x))

Scope of inner x

Fol.doc:1998/05/08:page 21 of 33

With regards to using the same variable more than
once, the situation is identical to that of lexically
scoped programming languages. For example, in a
the following program

procedure outer
var x;

 …
procedure inner

var x:
 begin

x := x+1
end; {inner}

 …
end: {outer}

the variable x declared in procedure outer is not
visible in procedure inner. It is said to be
shadowed by the inner variable.

Similarly, in the following formula, the variable x
which is universally quantified is shadowed by the
one which is existentially quantified.

(∀x)((Is_cube(x) ∧ On_table(x)) → (∃x)On(x,x))

In programming languages, the advisability of
shadowing is debatable. In logical formulas, it is
always to be avoided.

Fol.doc:1998/05/08:page 22 of 33

Scoping may also be represented using a parse-
tree style representation. The following exemplify
the process. To find the variable which applies to a
given component of the formula, just back up the
tree until encountering an instance of that variable.

(∀x)((Is_cube(x) ∧ On_table(x)) → (∃y)On(y,x)):

(∀x)(∃y)((Is_cube(x) ∧ On_table(x)) → On(y,x)):

x

∀

∧

Is_cube(x)

y

On(y,x)On_table(x)

→

∃

x

∀ y

∃ →

∧

Is_cube(x)

On(y,x)

On_table(x)

Fol.doc:1998/05/08:page 23 of 33

(∀x)((Is_cube(x) ∧ On_table(x)) → (∃x)On(x,x)):

x

∀

∧

Is_cube(x)

x

∃ On(x,x)On_table(x)

→

Fol.doc:1998/05/08:page 24 of 33

Free variables:

The formula

(∀x)((Is_cube(x) ∧ On_table(x)) → On(y,x))

presents quite a different situation from the previous
three. The variable y is not bound by any quantifier
at all. It is said to be a free variable.

The above formula cannot be regarded as a
statement which is true or false unconditionally.
Rather, it must be viewed as a parameterized
statement, which is either true or false, depending
upon the value of y. A request to supply the set of
all values for y for which it is true is called a query,
and is illustrated in the following.

{ y | (∀x)((Is_cube(x) ∧ On_table(x)) → On(y,x))}

This query identifies the set of all objects which are
atop every block which is on the table. Of course,
in this simple example, there can be at most one
such y.

Notationally, ÇϕÈ, is the relation defined by the
formula ϕ. We will not give a completely formal
definition, but the idea will be clear from an
example.

Fol.doc:1998/05/08:page 25 of 33

This idea is the foundation of query languages in
relational database systems, including the standard
query language SQL. Here is an extremely simple
example.

(PSOR\HH
1DPH 661 6DODU\ 'HSDUWPHQW
Smith 123-45-6789 50000 Admin
Jones 987-65-4321 60000 Maintenance
Nordmann 000-11-2222 70000 Research
Levesque 333-44-5555 85000 Admin

There is a single relation named Employee, with
four attributes. The associated instance has exactly
four tuples.

Here is the query which requests the name and
salary of everyone who works in the Admin
department.

{ (x,y) | (∃z)Employee(x,z,y,Admin) }

It is defined by the relation
Ç(∃z)Employee(x,z,y,Admin)È.

Although a formal language known as the relational
tuple calculus expresses queries in a form very
similar to this, in practical use one uses SQL, which
would express this query as follows.

Select Name, Salary
From Employee
Where Department = “Admin”

Fol.doc:1998/05/08:page 26 of 33

Formulas and Sentences:

Definition: A sentence is a wff which has no free
variables.

Example: The following three formulas are all
sentences.

(∀x)((Is_cube(x) ∧ On_table(x)) → (∃y)On(y,x))

(∀x)(∃y)((Is_cube(x) ∧ On_table(x)) → On(y,x))

(∀x)((Is_cube(x) ∧ On_table(x)) → (∃x)On(x,x))

The following formulas are not sentences:

(∀x)((Is_cube(x) ∧ On_table(x)) → On(y,x))

On(P1,x)

• Sentences have truth values.

• Formulas which are not sentences define
relations.

Fol.doc:1998/05/08:page 27 of 33

Distributivity and Quantifiers:

Q: Are the following two formulas equivalent?
(∃x)(On(P1,x) ∨ On(P2,x))

 (∃x)On(P1,x) ∨ (∃x)On(P2,x))
A: Yes.

Q: Are the following two formulas equivalent?
(∀x)(Is_cube(x) ∨ Is_pyramid(x))

(∀x)(Is_cube(x) ∨ (∀x)Is_pyramid(x)
A: No.

Observation: ∃ distributes over ∨, but ∀ does not. ¹

Q: Are the following two formulas equivalent?
(∃x)(On_table(x) ∧ On(P1,x))

(∃x)On_table(x) ∧ (∃x)On(P1,x)
A: No.

Q: Are the following two formulas equivalent?
(∀x)(On_table(x) ∧ Green(x))

(∀x)(On_table(x) ∧ (∀x)Green(x)
A: Yes.

Observation: ∀ distributes over ∧, but ∃ does not. ¹

Fol.doc:1998/05/08:page 28 of 33

Valuations:

We now turn to the question of how to assign a truth
value to a wff ϕ, given an interpretation v.

• In propositional logic, this was quite simple; we
just substituted, into the formula ϕ, the truth
values for the propositions as defined by v, and
expanded.

• In first-order logic, the situation is complicated
somewhat, since:
• Truth is defined in terms of a relation containing

certain domain elements.
• The formal arguments of relation symbols in

formulas are terms.

• Thus, it is necessary to define an association
between terms and domain elements. This is the
role of the valuation.

Example: To determine the truth value of On(x,y)
relative to a given interpretation J, it is necessary to
associate domain elements with x and y.

Basically, the idea is to begin with a function which
associates a “membership value” with each
variable, and then use the interpretation J to extend
this function to arbitrary terms.

Fol.doc:1998/05/08:page 29 of 33

Definition: Let 7� ��9��.��)���be a term algebra, let
L be a first-order logic, and let J be an interpretation
of L. A J-valuation of 7 is a function

w : Terms(T) → Dom(J)
satisfying the following constraints.

(a) If t ∈ 9 is a variable, there are no constraints
on w(t), other than it be a member of Dom(J).

(b) If t is a constant symbol k, the J-valuation on k
is the domain value associated with k in the
interpretation J. Formally, if t = k ∈ ., then
wJ(t) = kJ.

(c) If t is a general term of the form f(t1, t2, .., tn),
then the J-valuation on t is defined by applying
this definition recursively to the components.
Formally, if t ∈ Terms(T) is of the form
f(t1, t2, .., tn), then

wJ(t) = fJ(wJ(t1), w
J(t2)

 .., wJ(tn)).

Fol.doc:1998/05/08:page 30 of 33

Tarskian Semantics:

We are finally in a position to define the semantics
of wff’s in first-order logic. The following formulation
is called Tarskian semantics, in honor of its
formulator, the logician Alfred Tarski.

Definition: Let / be a first-order logic, let J be an
interpretation of L, and let w be a J-valuation for /.
The truth function

w- : SWF(L) t {0,1}
is defined as follows.

(a) w- (⊥) = 0.

(b) For a wff ϕ of the form R(t1, t2, .., tn),

(c) w- ((¬ϕ)) = 1 - w- (¬ϕ)

(d) w- ((ϕ1 → ϕ2)) = max(1 - w- (ϕ1), w- (ϕ2)).

(e) w- ((∀x)ϕ) = 1 if v-(ϕ) = 1 for every J-valuation v
with v(y) = w(y) for every y ∈ 9 # {x}.
In other words, ϕ must be true whenever we
use a valuation which differs from w only in the
way in which it assigns a value to x. That is, it
must be true for all assignments to x.

∉
∈=ϕ

J
n

J
2

J
1

J

J
n

J
2

J
1

J

R))(t w..,),(t w),(tR(w if 0

R))(t w..,),(t w),(tR(w if 1
)(w

Fol.doc:1998/05/08:page 31 of 33

Theorem: Let J be an interpretation of the first-order
logic /, and let ϕ ∈ SWF(/). If ϕ is a sentence, then
one of the following is true:

(a) For every J-valuation w of /, w- (ϕ) = 1.

(b) For every J-valuation w of /, w- (ϕ) = 0.
Proof: Let u and w each be J-evaluations of /, and
let X be the set of variables which occur in /. Note
that X must be finite. For any variable
x ∈ 9�#�X,�since x does not occur in ϕ, neither uG(ϕ)
nor wG (ϕ) can depend upon x. Therefore, without
loss of generality, it may be assumed that u and w
agree on all variables x ∈ 9�#�X. Since X is a finite
set, there must be J-valuations w1, w2, .., wk, with
the property that w1 = u, wk =w, and wi differs from
wi+1 on only one element of X. But then, in view of
part (e) of the preceding definition, it must be that
wiG (ϕ) = wjG (ϕ) for all i, j. Thus, uG(ϕ) = wG (ϕ), as was to
be shown. ¹

The following parallels the propositional case:

Definition: Let J be an interpretation of the first-
order logic /, and let ϕ ∈ SWF(/) be a sentence.
(a) J is a model of ϕ if, for every J-evaluation w,

 wG (ϕ) = 1.
(b) The sentence ϕ is satisfiable if it has a model.
(c) The sentence ϕ is a tautology if every

interpretation is a model.
(d) The symbol ~ has the same meaning as in

propositional logic.

Fol.doc:1998/05/08:page 32 of 33

The following extensions, except for (e), are
identical to those of propositional logic.

Facts: Let J be an interpretation of the first-order
logic /, and let w be a J-valuation of /. Extend

w- : WF(/) t {0,1} as follows.

(a) w- ((ϕ1 ∨ ϕ2)) = max(w- (ϕ1), w- (ϕ2)).

(b) w- ((ϕ1 ∧ ϕ2)) = min(w- (ϕ1), w- (ϕ2)).

(c) w- ((ϕ1 ≡ ϕ2)) = 1 - abs(w- (ϕ1) - w- (ϕ2)).

(d) w- (®) = 1.

(e) w- ((∃x)ϕ) = 1 if v-(ϕ) = 1 for some J-valuation v
with v(y) = w(y) for every y ∈ 9 # {x}. ¹

Fol.doc:1998/05/08:page 33 of 33

Decidability:

Contrary to the case of propositional logic, we have
the following negative result.

Theorem: There is no algorithm which takes as
inputs an arbitrary sentences in a first-order logic,
and decides whether or not that sentence is a
tautology. In other words, the question of whether
or not

~ ϕ
holds, for an arbitrary sentence in first-order logic, is
undecidable. ¹

This statement is equivalent to the unsolvability of
the halting problem (for Turing machines), which
you may have studied in other courses.

Corollary: The question of whether an arbitrary
sentence in first-order logic is satisfiable is
undecidable. ¹

Later, we will see that some special cases are
decidable.

	First-Order Predicate Logic

