Computational Properties of
Resolution and First-Order Logic

Soundness and Completeness:
Definition: The symbol .1 denotes the inference

mechanism of first-order resolution (without
paramodulation).

Theorem: First-order resolution is sound. That is,
for any set of clauses ® and for any clause ¢,

D tpest @ iMplies & = ¢.

Proof: The proof is straightforward, and similar to
the case for propositional resolution. []

Theorem: First-order resolution is complete for
refutation. That is, for any set of clauses O,

® =0 implies @D rpest L.

Proof: The proof will be examined shortly.

Fochar.doc:1998/05/26:page 1 of 16

Decidability:

Theorem: There is no algorithm which can take as
input an arbitrary set ® of clauses and determine
whether or not @ is satisfiable; that is, whether or
not @ = [holds.

Proof: It can be shown that this problem is
equivalent to the well-known halting problem. The
proof will not be provided here. []

Corollary: Resolution for first-order logic cannot
possibly be an algorithm which decides whether or
not ® = 0O holds. [

Q: What can go wrong?
A: The process can loop forever generating new
resolvents. In general, it is impossible to determine

whether or not this generation will be productive in
arriving at a deduction of [.

In other words:

- Resolution will find a proof if one exists, but may
loop forever in a hopeless search if no such proof
exists.

- Itis impossible to determine, in general, whether
or not the search is hopeless.

Fochar.doc:1998/05/26:page 2 of 16

Example: Shown below is a plan for generating
an infinite set of resolvents from a pair of clauses.
In general, it is impossible to determine whether
or not such a plan will be productive in generating
the empty clause, and hence a refutation.

~P(i(y)) DQ(i(y))

L‘P(x) - Q(f(x))
{f(y)/x}
- Q(f(f(y)) 0 Q((y))

/y} /

P(x) U-Q(f(f(x)))

< ‘ {f(y)/x

| o | -ty D)) |

| P9 O- Q(f(f(f(Xﬁ
{f(y)/x}

ﬁQ(f(f(f(f(y)))) 0Q(i(y)) ‘

Fochar.doc:1998/05/26:page 3 of 16

The Herbrand universe and the Herbrand base:

Informal definition (will be refined below): A ground
atom is an atom of the form P(ty, t,, .., t,) in which
none of the ti's contains any variables. Put another
way, ground atoms are built from terms consisting
only of constant and function symbols.

Examples: P(f(a,g(b,c)), a) is a ground atom.
P(f(x,g(b,c)), @) is not a ground atom.

The notion of ground atom is extremely useful in
establishing decidability, as well as the
completeness of resolution, and deserves a
somewhat fuller treatment.

Definition: Let T = (V, K, F) be a first-order term

algebra. The Herbrand universe #(T) for T is

defined inductively as the smallest set satisfying the
following conditions.

(@) If adK,thena OT).
(b) If K=10, then a special constant symbol 1

is included in #(T).
(c) If fOF hasarityn,and ty, t,, .., t, O(T),
then f(ty, to, .., t,) OT).

Condition (b) is necessary to avoid having an empty

Herbrand base, which would otherwise be the case
were K empty.

Fochar.doc:1998/05/26:page 4 of 16

Observation: As long as T contains at least one
constant symbol, the Herbrand universe for T

consists of precisely those terms which do not
include any variables.

Example: If T is a function-free term algebra, then
#(T) = K, provided that K is not empty. Otherwise,
#(T) = {1}.

Thus, for a function-free term algebra, the Herbrand
base is finite, provided that the number of constant
symbols is finite.

Example: Let T=(V, K, F) have K={a} and
F = {f}, with f a unary function symbol. Then

#(T) = {a, f(a), f(f(a)), f(f(f(2))), .. }

Observations:

- Aslong as T has at least one non-nullary function
symbol, the Herbrand universe of T is infinite.

- If the number of constant symbols and function
symbols is finite, then the Herbrand universe will
be at most countably (denumerably) inifinite.

Fochar.doc:1998/05/26:page 5 of 16

Example: Even for relatively simple term algebras, it
can be complex to enumerate the elements of the

Herbrand universe. Let K = {a, b}, and let
F = {f, g}, with f unary and g binary. Then

#(T) ={a, b, f(a), f(b), g(a,a), g(a.b), g(b.a), g(b.b),
f(f(a)), 1(i(b)), f(g(a.a)), f(g(a.b)), f(g(b,a)), f(g(b.b)),
9(f(a).a), g(a.f(a)), g(f(b), b), g(b, #(b))., ... }.

Example: Consider the blocks world. The term
algebra has constant set {B1, B2, P1, P2}, and,
due to Skolemization, there is one unary function
symbol, base. Thus, the Herbrand universe is

{B1, B2, P1, P2, base(Bl), base(B2), base(P1),
base(P2), base(base(B1)), ... }.

Fochar.doc:1998/05/26:page 6 of 16

Definition: Let L = (R, C, A, T) be a first-order
logic, with T = (V, K, F).

(a) A ground atom over L is any atom of the form
P(ty, to, .., tn), With ty, to, .., t, O(T). The set of
all ground atoms for L is called the Herbrand
base for L, and is denoted #(L).

(b) A ground clause is any clause built up from
members of the Herbrand base.

(c) Given any clause ¢, a grounding of ¢ is any
ground clause of the form ¢ao, in which g is a

substitution which replaces all variables in ¢
with ground terms.

Example:
= ls_pyramid(base(P1)) 0-On(B2,base(P1))

is a ground clause obtained by applying the
substitution {base(P1)/x, B2/y} to the clause shown
below

= ls_pyramid(x) [-0n(y,X)
while

= Is_pyramid(base(P1)) O-0On(B1,base(base(B2)))

Is a ground clause which is not a grounding of the
above clause with variables.

Fochar.doc:1998/05/26:page 7 of 16

Definition: Let ® be a set of clauses.
Groundings(®)
denotes the set of all groundings of members of ®.

Herbrand theorem: Let @ be a finite set of clauses.
Then
ONSSN

iff there is a finite set W [Groundings(®) such that
W= L

In words, @ is unsatisfiable iff it has a finite set of
groundings which is. []

- The Herbrand theorem is remarkable in that it
asserts that questions of satisfiability within first-
order logic may be reduced to questions of
satisfiability within a propositional logic: the logic
of ground clauses.

- The fly in the ointment, of course, is that the
number of propositions in this grounded logic may
be infinite.

- Even though we need to use only a finite number

of ground clauses to establish undecidability, we
do not know, in general, which finite set.

Fochar.doc:1998/05/26:page 8 of 16

Application of the Herbrand theorem:

Theorem: Let ® be a finite set of clauses in a first-
order predicate logic. Then

® FRest1 L]

iff there is a finite subset W 0O Groundings(®) such
that

l'IJ |_R€S |:|.

Here +gres denotes resolution within propositional
logic.

Proof: The full proof will not be provided here, but
some illustration of the technique will be. [

Fochar.doc:1998/05/26:page 9 of 16

Suppose that we are given the following clauses @:
P(a, x, f(g(y))),
~P(z, 1(2), f(w)) 0 Q(w, 2),
= Q(g(u), u).
Here is a resolution refutation, taken from previous
slides:

P x fgw)) | | P @) fw) DQw. 2)

{a/z, f(a)/x, g(y)/w}

~Q(g(u), u)

Q(a(y). a)
{aly, alu}

Fochar.doc:1998/05/26:page 10 of 16

Here is an equivalent refutation from
Groundings(®).

Think of the process as one of applying very strong
substitutions to the initial axioms.

The trick is, of course, to identify appropriate
substitutions, without knowing the original proof.

In this case, they have been constructed from the
above proof.

Pa. f(a). f(g@)) | | ~P(a. f(a). f(9())) DQ(g(a). a)

~Q(9(a), a)

If we can show that one can go back and forth
between these two types of representations, then
completeness of first-order resolution is established,
based upon the completeness of propositional
resolution.

Fochar.doc:1998/05/26:page 11 of 16

Decidability and Finiteness issues:

Although full first-order logic is undecidable, there
are some important subsets which are.

Theorem: Let ® be a finite set of clauses which do
not involve any function symbols in their terms.
Then

O = [

Is decidable, and may in fact be decided by
resolution.

Proof: If there are no function symbols, then the
Herbrand base is finite, and so the problem is
reduced to one of propositional resolution on a finite
number of clauses. []

Note that this result applies to the set of clauses
actually involved in the deduction process, which is
the set obtained after normalization and
Skolemization is performed.

. If there are any Skolem functions (not constants),
then this decidability result does not apply.

Example: It does not apply to the simple blocks-

world example, since there was a Skolem function
(base).

Fochar.doc:1998/05/26:page 12 of 16

Classes of decidable formulas:

Definition:

(a) A logical formula ¢ in prenex normal form is
said to be in class [*[1* if every existential
quantifier precedes every universal quantifier.

(b) A set of formulas is function free if none of the
terms in any of the formulas contains a function
symbol.

(c) The formulas which are both in class [(*[1* and
function free is called Schénfinkel-Bernays.

Example:

(O)()(Ow)([O2)(P(f(x).y) - Q(w,z))

is in class [FJ*, but not function free. The formula
(O)([Qy)(Dw)(Dz)(P(xy) - Q(w,z))

is function free, but not in class [¥[1*. The formula
(OB Ew)([O2)(P(xy) - Qw,2))

Is both, hence Schonfinkel-Bernays.

Theorem: Let ® be a finite set of formulas in the

Schonfinkel-Bernays class. Then it is decidable
whether or not @ = L.

Proof: The Herbrand base is finite. [

Fochar.doc:1998/05/26:page 13 of 16

- In any practical application of logical deduction,
decidability is of the utmost importance.

- While the Schdnfinkel-Bernays class is a very
useful, and has seen much application, it is also
very limiting.

Q: Is there any way to extend the Schonfinkel-
Bernays idea to more general classes of formulas?

A: Yes, by using types.

Example: Suppose that we have a modelling
situation in which students attend universities, with
the following sentence.

(Ox)(Oy)(Is_student(x) —» Attends(x,y)).

This sentences says that every student attends a
university. Upon normalizing and Skolemizing, we
obtain

Is_student(x) - Attends(x,univ(x)),

with univ() the Skolem function obtained. In this
simple situation, the Herbrand universe will be
infinite, thus precluding its use to establish
decidability.

Fochar.doc:1998/05/26:page 14 of 16

Note, however, that it does not make sense
semantically to apply the function univ more than
once.

While univ(s) makes sense, univ(univ(s)) does not,
because universities are not students and do not
attend other universities.

We can preserve satisfiability by building this idea
into the logic. To do so, we use a typed logic.

We assume:

- There are two disjoint types of objects, students
and universities.
- Every term has a type, in particular.
. Vs = variables of type student = {x°, y°, ...}.
. Vy = variables of type university = {x°, y", ...}.
- Ks = constants of type student.
- Ky = constants of type university.
- Fs_u = function symbols of type [S] - [U].
- Other types of function symbols, as needed.
(See below).

Each function symbol has a type:
univ: [student] — [university]

In general, there may be function symbols for each
pair of types.

Fochar.doc:1998/05/26:page 15 of 16

Write the constraint as:
(Ox3)(Oy")(Is_student(x®) - Attends(x>,y")).
The normalization is;

Is_student(x®) - Attends(x>,univ(x®)),
which is equivalent to
Attends(x>,univ(x°)).

Now the Herbrand base will remain finite, because
the type constraint prevents terms such as

univ(univ(x®)).

Thus, the logic with this single sentence is
decidable.

In computational linguistics, it is critical that parsing
algorithms be decidable. This idea has been applied
successfully to such problems.

Hegner, S. J., “A family of decidable feature logics
which support HPSG-style set and list
constructions,” in Logical Aspects of Computational
Linguistics: First Annual Conference, LACL '96,
Nancy, France, September 1996, Selected Papers,
Springer-Verlag, 1997, pp. 208-227.

Remark: These techniques even apply to logics with
equality.

Fochar.doc:1998/05/26:page 16 of 16

	Computational Properties of Resolution and First-Order Logic

