
A Crash Course in the Unified
Modeling Language

Jürgen Börstler
jubo@cs.umu.se
http://www.cs.umu.se/~jubo

UML Copyright © jubo@cs.umu.se 2

A Little History
◆ Situation in the early ´90s

❏ Explosion of OO methods/notations
❏ No agreed terminology
❏ No standards
❏ No method that satisfy a users´ needs completely
❏ Booch, OMT, and OOSE among the most popular

methods
➨ New generations of methods/notations

◆ Unification efforts
Rational

Booch, Rubaugh
(10/94), Jacobson (fall
´95), UML consortium
(during ´96)
Unified (v0.8, 10/95)
UML (v0.9, 06/96)
OMG Standardization

OPEN consortium
Firesmith, Graham,
Henderson-Sellers,
Yourdon,…
Toolbox approach
Tailorable
Integration with
UML?

UML Copyright © jubo@cs.umu.se 3

Current Status
◆ OMG approval of version 1.1 in Nov ´97
◆ Version 1.3 released in fall ´98
◆ XMI (a kind of XML/UML standard)
◆ Version 2.0 is work in progress
◆ Notations

Use case diagram
Class diagram
Interaction diagram

Sequence diagram
Collaboration
diagram

Statechart diagram
Activity diagram
Object diagram
Component diagram
Deployment diagram

UML Copyright © jubo@cs.umu.se 4

Class Diagrams
◆ Static model of the problem (analysis) or the

solution (design)
◆ Describe the types of objects and their (static)

interrelationships
◆ Main elements:

❏ Classes
❏ Attributes
❏ Methods
❏ Relationships

❍ Dependency
❍ Association
❍ Aggregation/Composition
❍ Generalisation
❍ Realisationst

re
ng

th

<class name>

<attribute list>

<method list>

UML Copyright © jubo@cs.umu.se 5

Class Notations

Window

+size: Area = (100, 100)
#maxSize: Rectangle
-xWindowPtr
+create()
+resize(in f: real = 1,25): Area
#repaint(in gc: Graphics)

{author = Joe,
status = tested }

Window
size: Area
maxSize
create()
resize()
repaint()

Window

◆ Analysis ◆ Design

UML Copyright © jubo@cs.umu.se 6

Dependency
◆ Dependencies define a usage relationship
◆ A change in the used thing may affect things

that use it
◆ Dependencies can have names

Channel

VideoClip
name
play(on: Channel)
start()
stop()
rewind()

UML Copyright © jubo@cs.umu.se 7

Association 1
◆ Associations specify structural relationships
◆ It specifies that objects are interconnected
◆ Associations can be navigated in both directions

(default)
◆ Associations are quite similar to the relationships

known from ER modelling
◆ Associations have cardinalities
◆ Associated classes may have roles

Company Person1..**
employer employee

Works-for

UML Copyright © jubo@cs.umu.se 8

Association 2
◆ Associations may have attributes and behaviour

(association classes)
◆ Association classes are quite similar to the

relationship types known from ER modelling
◆ Association names may have reading directions

Company Person1..**
employer employee

Works-for

Job
salary

boss

worker

0..1
*

Manages

UML Copyright © jubo@cs.umu.se 9

Aggregation and Composition
◆ Aggregation and composition are specific

associations
◆ They denote the part-of or has relationship
◆ Composition is the stronger form

❏ Parts are not shared
❏ Parts are existence dependent on the whole

Polygon

Point
Graphics

color
Texture

1

11

3..*

Aggregation Composition

UML Copyright © jubo@cs.umu.se 10

Generalisation
◆ Generalisation specifies the is-a relationship
◆ It is the strongest relationship between classes
◆ Subclasses inherit properties from superclasses
◆ Shown as class hierarchies
◆ Also known as specialisation or inheritance

Person

EmployeeStudent

ManagerMentor

UML Copyright © jubo@cs.umu.se 11

Notes, like this one
can be attached to any
notational element

gender: {female, male}
Person

Notes, Constraints,
Qualifiers, and Interfaces

Corporation
BankAccount

wife
0..1

husband 0..1

Responsibilities:
-- keep current balance
-- handle deposits and
 withdrawals

{or}balance

{> 0}

{self.wife.gender = #female and
 self.husband.gender = #male}

CID

PersNr

Sortable

compare ()

A constraint written
in OCL (Object Constraint
Language)

UML Copyright © jubo@cs.umu.se 12

Some Guidelines for Class
Diagrams
◆ Keep the analysis model simple
◆ Many simple classes are better than a few

complex ones
◆ Use meaningful and familiar names
◆ Avoid “god classes,” behaviour should be

distributed among classes
◆ Use multiple inheritance very sparely
◆ Associate methods with the providers of a

service, i.e. the “responsible” classes
◆ Name all associations
◆ Document your model carefully

UML Copyright © jubo@cs.umu.se 13

Sequence Diagrams 1
◆ Graphical notation for scenarios
◆ Describe how objects collaborate to provide a

service
◆ Good tool to uncover missing behaviour and/or

missing objects/classes

:Registrar
Course Maintenance

Form tdbc18: Course

1: enter id
2: verify id

3: create course

4: enter course info

5: submit
6: create

7: save
8: close form

tim
e

add a
course

The lifeline
of the object

An activation
bar

UML Copyright © jubo@cs.umu.se 14

Sequence Diagrams 2
◆ Provide lots of annotations

❏ Comments (script text)
❏ Object creation and deletion
❏ Message return
❏ Conditional messages and Iteration
❏ ...

◆ Supports notations for concurrency
❏ Timing and activation
❏ Asynchronous messages

◆ Collaboration diagrams are semantically
equivalent, but focus on structural relationships
between objects

◆ Sequence diagrams ≈ OIDs ≈ MSCs

UML Copyright © jubo@cs.umu.se 15

Some Guidelines
for Sequence Diagrams
◆ Keep the analysis scenarios simple (do not

overspecify your OIDs)
◆ Analysis scenarios should usually be initiated by

an actor
◆ Discriminate instances of the same class
◆ Make all assumption clear, use pre- and

postconditions
◆ Concentrate on the major scenarios
◆ Manage consistency between use cases,

scenarios, and OIDs
◆ Focus on general behaviour, do not fix methods

too early
➨ Document your findings in your class diagram

(and glossary)

UML Copyright © jubo@cs.umu.se 16

The GSS Case Study Continued 1
◆ Assign a judge to an event

❏ An event has a judging panels assigned to it
❏ The judging panel consists of “qualified scorers for this

event”
◆ How could this work?

:League_Official
theEvent

assign(theJudge)

addJudge(theJudge)

is_assigned

is_qualified(theEvent)

Shouldn´t there
be a third party to
decide on that?

theJudge

[is_assigned == `false´ and
is_qualified == `true´]success

???

is_qualified(theEvent, theJudge)

UML Copyright © jubo@cs.umu.se 17

The GSS Case Study Continued 2
◆ Alternative 1: Let Event handle qualified scorers

❏ Make Event an abstract class
❏ Defer determination of qualified scorers to specific

event classes

Competition

is_assigned(): boolean
Judge

assign(Judge)
is_qualified(Judge)

Event
{abstract}

BalanceBeam Floor Vault

1 *

Judging Panel
1..n5

UML Copyright © jubo@cs.umu.se 18

The GSS Case Study Continued 3
◆ Alternative 2..n:

❏ Try to give other existing classes this responsibility
❍ League
❍ Equipment
❍ ...

❏ Define a special purpose class
❏ Find out where this responsibility lies in the “real world”

UML Copyright © jubo@cs.umu.se 19

Statechart Diagrams 1
◆ Graphical notation for class behaviour modelling
◆ Describe all possible states and state changes

triggered by external stimuli
◆ Good tool to describe complex object life cycles
◆ Good tool to uncover missing state information

and behaviour

<state name>

entry / <action>
exit / <action>
do / <action>

<event> / <action>
<event> / defer

event trigger
[guard condition] / action

if event then
 if condition then
 trigger transition;
 execute action
 else
 nothing happens;

start

stop

<state name><attribute list>
An internal
transition

A deferred
event

UML Copyright © jubo@cs.umu.se 20

Statechart Diagrams 2
◆ States can be nested
◆ Substates may be concurrent
◆ Transitions may have multiple sources and/or

destinations

UML Copyright © jubo@cs.umu.se 21

Some Guidelines
for Statechart Diagrams
◆ Use STDs when there is (complex) state-

dependent behaviour
◆ Use STDs when you are not sure when things can

(are allowed to) happen
◆ Ensure that all events are covered
◆ Ensure that all states are reachable
◆ Ensure that all states can be exited
◆ Ensure that all transitions can be triggered
◆ Check each pair of states for missing transactions
◆ Check consistency with other models

➨ Document your findings

UML Copyright © jubo@cs.umu.se 22

Activity Diagrams 1
◆ Graphical notation for workflow modelling
◆ Describe concurrent activities on a high level
◆ Useful to describe (business) use cases,

operations, or scenarios (instead of OIDs)
◆ A special kind of statechart

UML Copyright © jubo@cs.umu.se 23

Activity Diagrams 2
Customer Sales Warehouse

Request product

Process order

Pull materials

Ship order

Bill customerReceive order

Pay bill

Close order

[in stock][not available]

b: Bill
[unpaid]

b: Bill
[paid]

Object flow

