
Technical documentation
Genomizer

Version 2.2

Publication date: 6/2/2014

Contents

1 Introduction 10

2 Target group and needs 11

2.1 Target group . 11

2.2 Client needs . 12

2.2.1 Storage . 12

2.2.2 Processing . 14

2.2.3 Conversion . 15

2.2.4 Analysis . 16

2.2.5 Visualization . 16

3 Service description 17

3.1 Usage . 17

3.2 Storage . 18

3.3 Annotations . 18

3.4 Processing . 18

3.5 Genome releases . 18

3.6 Mobile . 19

4 User manual 20

4.1 Desktop application . 20

4.1.1 Login and startup . 20

2

CONTENTS 3

4.1.2 Search . 21

4.1.3 Upload . 23

4.1.4 Process . 27

4.1.5 Workspace . 29

4.1.6 Administration . 31

4.2 Web application . 33

4.2.1 Using the interface . 34

4.2.2 Setting up the application 49

4.3 Android application . 50

4.3.1 Start the Application and Login 50

4.3.2 Settings . 50

4.3.3 Searching for files . 51

4.3.4 Pubmed Search . 52

4.3.5 Search Results . 53

4.3.6 Search Settings View . 54

4.3.7 Experiment File View . 55

4.3.8 Selected Files . 55

4.3.9 Converting Files . 56

4.3.10 Process View . 57

4.4 iOS application . 58

5 Deployment and maintenance 64

5.1 Configure server . 64

5.2 Manuals . 64

5.3 Configuration . 64

5.4 Administer the database . 65

5.4.1 Set up postgresql account 65

5.4.2 Upload SQL Script to server 67

4 CONTENTS

5.4.3 Create the Genomizer Tables 67

5.5 Set up processing . 67

5.6 Install the server . 68

5.6.1 Downloading the source code 68

5.6.2 Creating a runnable JAR file 68

5.6.3 Starting the server . 69

6 Interaction design 70

6.1 Desktop clients . 70

6.1.1 Windows/OS X /Linux application 70

6.1.2 Web application . 71

6.2 Android . 73

6.2.1 Login View . 73

6.2.2 Search View . 74

6.2.3 Search Results View . 75

6.2.4 Experiment View . 75

6.2.5 Search Settings View . 76

6.2.6 Selected Files View . 77

6.2.7 Convert View . 77

6.3 iOS . 78

6.3.1 Navigation bar . 78

6.3.2 Login Screen . 78

6.3.3 Search View . 78

6.3.4 Search Result View . 79

7 Architecture design 83

7.1 System overview . 83

8 System design 85

CONTENTS 5

8.1 Desktop application . 85

8.1.1 View . 85

8.1.2 Model . 86

8.1.3 Model . 86

8.1.4 Requests . 86

8.1.5 Response . 87

8.1.6 Controller . 87

8.1.7 Utilites . 87

8.1.8 System Administration . 87

8.1.9 Flow of the system . 90

8.2 Web application . 93

8.2.1 How our web application works 93

8.2.2 System overview . 94

8.2.3 Search . 94

8.2.4 Process . 95

8.2.5 Upload . 95

8.2.6 System administration - Web 96

8.3 Android application . 97

8.3.1 Class Descriptions . 98

8.3.2 Android activities . 98

8.4 iOS application . 102

8.4.1 Overall system design . 103

8.4.2 Segue controll . 105

8.5 Server . 105

8.5.1 Communication . 105

8.5.2 Data Conversion . 107

8.5.3 File-transfer . 116

6 CONTENTS

8.5.4 Data Storage . 118

8.5.5 Database Design . 120

8.5.6 The Data Storage Subsystem 120

8.5.7 Interaction . 121

8.5.8 Apache . 123

9 Implementation 124

9.1 Desktop application . 124

9.1.1 Testing . 124

9.2 Web application . 125

9.2.1 Frameworks . 125

9.2.2 Technologies used . 126

9.2.3 Testing frameworks . 127

9.2.4 Our Tests . 127

9.3 Android application . 127

9.3.1 Login request . 128

9.3.2 Search request . 129

9.3.3 Request for Genome releases from the server 132

9.3.4 Request for conversion of RAW files to profile-data 134

9.3.5 Request for status on conversions on the server 136

9.3.6 Testing . 138

9.4 iOS application . 138

9.4.1 Login . 138

9.4.2 Search . 138

9.4.3 Experiment Selection . 139

9.4.4 File Selection . 139

9.4.5 Convert Request . 139

9.4.6 Testing . 145

CONTENTS 7

9.5 Server . 145

9.5.1 Communication . 145

9.5.2 Conversion . 148

9.5.3 File-transfer . 149

9.5.4 Data Storage . 150

9.6 Limitations . 152

Bibliography 153

A User Stories 155

A.1 Implemented user stories . 155

A.2 Product backlog . 157

B Android application: UML-diagrams 162

C Desktop application: UML-diagrams 165

D Data Storage: UML-diagrams 166

E Server API 169

F Server commands 187

G Ubuntu 14.04 Installation and configuration manual 189

G.1 Introduction . 189

G.2 Installation and Configuration . 189

G.2.1 Java . 189

G.2.2 OpenSSH . 190

G.2.3 Apache2 . 190

G.2.4 Git . 193

G.2.5 Ant . 194

G.2.6 PHP5 . 194

8 CONTENTS

G.2.7 SRA Toolkit . 195

G.2.8 PostgreSQL . 195

G.2.9 PgAdmin . 197

G.2.10 PhpPgAdmin . 197

H Debian 7.5 Installation and configuration maunal 200

H.1 Introduction . 200

H.2 Installation and Configuration . 200

H.2.1 Installation of Debian . 200

H.2.2 Configure Debian repositories 201

H.2.3 Create a super user . 201

H.2.4 Locales . 202

H.2.5 Java . 202

H.2.6 OpenSSH . 203

H.2.7 Apache2 . 203

H.2.8 Git . 207

H.2.9 Ant . 207

H.2.10 PHP5 . 207

H.2.11 SRA Toolkit . 208

H.2.12 PostgreSQL . 208

H.2.13 Inject database copy . 210

H.2.14 PgAdmin . 211

H.2.15 PhpPgAdmin . 211

H.2.16 Genomizer configuration 213

I Migration of the Genomizer system 215

I.1 Introduction . 215

I.2 Steps of migration . 215

CONTENTS 9

J Backup 217

J.1 Introduction . 217

J.2 File backup . 218

J.3 Database backup . 219

J.4 Chrontab . 220

K Known problems 221

K.1 Web application . 221

K.1.1 Moving backwards in the browser does not hide modal
windows . 221

K.1.2 Error handling when uploading experiments 221

K.1.3 Old authorization token causes page redirect 221

K.1.4 Code duplication in SearchResults and Experiments . . . 222

K.1.5 No warning when closing tab during upload. 222

K.1.6 Uploading genome release - does not update list automat-
ically . 222

K.1.7 The annotation list can’t be sorted 222

K.1.8 Sidebar on adminpage dosen’t stay vertical 222

K.1.9 Missing error check on annotation values 222

K.1.10 No warning when closing tab during uploading genome
releases . 223

K.2 iOS application . 223

K.2.1 Unspecified behaviour on loss of internet connection . . . 223

K.2.2 Lack of security . 223

K.2.3 No administrative features 223

K.3 Server . 223

K.3.1 Communication and control 223

K.3.2 Upload and download . 225

K.3.3 Process limitations . 225

Chapter 1

Introduction

Genomizer is a system for storing and analyzing DNA-sequences. It was de-
signed for researchers in the field of epigenetics, who are interested in where
on a DNA string a certain protein binds. In order to get this information, ex-
periments are conducted and raw data files collected. These data files are then
converted, in a series of steps, to files suitable for analysis. Genomizer allows
the researchers to upload raw files to a server and automate the generation of
analysis data.

Genomizer was developed by students at Umeå University as part of a project
for the course Software Engineering. This documentation is directed towards
three main groups: end users, system administrators and developers.

The first part of this documentation describes the target group for the software.
This is followed by instructions on how to use the software. The next section
is aimed at administrators and developers and includes instructions on how to
deploy the server and software. The final chapters take an in depth look at
how the software has been designed and implemented and is aimed at the more
inquisitive reader.

10

Chapter 2

Target group and needs

The Genomizer system was designed with a specific target group in mind: Epi-
genitic researchers. This chapter will explain the needs of these users, the prob-
lems they faced before this system was provided and the requirements that were
collected and taken into account during the project.

2.1 Target group

The target group for the Genomizer system is the Epigenetic Cooperation Nor-
rland (EpiCoN), a diverse group of researchers at Umeå University made up of
many different nationalities. Their main communication language is English.

EpiCon are involved in the research of how proteins bind to DNA strings and
its effects. Experiments are carried out which yield large amounts of raw data.
This information, combined with knowledge about the location of genes within a
given genome, enable the researchers to gain valuable information about which
proteins are active in enabling and disabling genes. These results are important
in the study of how cells "remember" which genes should be enabled after cell
division.

Previous to the Genomizer project the raw data files retrieved from experiments
were manually processed by the researchers using inefficient Perl scripts. This
process also involved using Bowtie[1], a program used to unscramble the DNA
data, and LiftOver [2] which is used to adjust results to conform to different
genome releases.

The researchers at EpiCoN have varying computer skills. While they all have
basic computer knowledge, not all are familiar with more advanced computing
tasks such as running scripts at command line level. As such, some researchers
have become dependent on others to process the raw data. At EpiCon the
researcher that has the knowledge to use all the scripts and software performs
many of these time consuming tasks for other researchers.

11

12 2.2. CLIENT NEEDS

From time to time students are interested in working with the data, however
their access is limited to viewing and analyzing the data.

2.2 Client needs

The researchers at EpiCoN need a system to structure the large amount of
genetic data they use daily. The requirements, as described below, were col-
lected and handled as a number of user stories, each of which describe a desired
function from the end users perspective. A complete list of the user stories are
presented in Appendix A. When discussed below the title of the relevant user
story will be used.

There are three main data types used in the research and that the system
should handle: raw, profile and region data. Raw data is the raw output from
an experiment and cannot be analyzed directly. It is first processed to so called
profile data. Profile data describes the amount of reads found for every base–
pair in an organism’s genome. Region data is further processed profile data
consisting of the regions where every base–pair’s read strength is above a given
threshold and fault tolerance. The region gets a value based on the average of
the base-pair reads for the given region.

2.2.1 Storage

When conducting experiments the researchers treat DNA with a given protein
that binds to certain positions. The DNA–strings are then broken up and the
bound areas separated. Raw data can then be collected on what these pieces
look like on a base pair level. This data is the foundation for further research
and so must be stored securely and in a structured manner. A system that au-
tomates the archiving of raw data to a shared location is therefore desired. This
requirement was specified in the user stories “Single Upload” (see Figure 2.1)
and “Single Download” (see Figure 2.2).

Single upload

To store a single data file
the researchers
want to be able to upload a specific file.

Figure 2.1: User story for uploading a file to the central database

Another way researchers obtain raw data is from official publications. When
results are published in scientific articles the raw data from the experiments are
often also provided. One location where these raw data files can be published is
the GEO (Gene Expression Omnibus) database. A desire to be able to initialize

CHAPTER 2. TARGET GROUP AND NEEDS 13

Single download

To scrutinize a single data file
the researchers
want to be able to download a specific file.

Figure 2.2: User story for downloading a file from the central
database

a download of raw data to Genomizer from this source was also expressed and
written up in the user story “Download from GEO Database”.

It is not possible/highly impractical to gain knowledge of an experiment by view-
ing the characters that make up the raw data files. In order to save information
about an experiment and the resulting files, the researchers must be able to
annotate them upon entry to the database. There are several user stories to do
with the annotation of experiments/files and the manipulation of the annotation
fields. An example of such a user story is “Annotation” (see Figure 2.3).

Annotation

To structure the data files
the researchers
want to be able to annotate the data files.

Figure 2.3: User story for the annotation of files stored in the
database

As the database is filled with data, the researchers want to ensure that it is kept
safe. They therefore want to have an authorization system to protect the data
from unauthorized access. Another risk that must be mitigated is the risk of
hardware failure. These concerns were captured in the user stories “Password
Protected” and “Backup” respectively (see Figure 2.5 and Figure 2.4).

Backup

To prevent loss of data
the researchers
want the data to be backed up.

Figure 2.4: User Story for the protection from data loss due to
hardware failures

14 2.2. CLIENT NEEDS

Password protected

To protect the database from unauthorized use
the researchers
want the application to be password protected.

Figure 2.5: User story for the protection of the database from
unauthorized access

2.2.2 Processing

The unordered raw data gained from an experiment requires processing in order
to be analyzed. The researchers have written a number of scripts and, when
combined with the BowTie algorithm, generate profile data. In this format the
DNA pieces are ordered and mapped to the DNA string. It is important that
the system automates this process so that all researchers can easily process the
large raw files, see Figure 2.6.

Raw to profile

To be able to analyze
the researchers
want to process raw data to profile data.

Figure 2.6: User story for converting raw data to profile data

As new discoveries are made in the area, new standards for the order of the
base pairs in a DNA string are set. This results in a new Genome Release for a
specific species. These are obtained as a set of files specifying this order and are
used in the processing of raw data. Genomizer must support the uploading of
new sets of genome release files to be used in processing otherwise the system
will very quickly become outdated. This is specified in the user story “Add
Genome Release” shown in Figure 2.7.

Add genome release / reference genome

To be able to annotate the data properly and extract genome reference
the researchers
want to be able to add genome releases and reference genome.

Figure 2.7: User story for the addition of Genome Releases

It would also be an advantage if the system could carry out further processing
from profile to region files and is captured in the user story “Profile to Region”

CHAPTER 2. TARGET GROUP AND NEEDS 15

shown in Figure 2.8.

Profile to region

To be able to find regions of interest
the researchers
want to process profile data to region data (Per’s code).

Figure 2.8: User story for the processing of profile to region files

After processing, the resulting data files should be annotated and saved in the
database alongside their parent files. It is important that the parent files remain
traceable and that the parameters used in processing are saved so that the
process can be repeated and confirmed (see Figure 2.9).

File traceabillity

To be able to access the underlying raw data or profile data
the researchers
want the raw data files to be traceable from profile files and the profile files
to be traceable from the region data (if available) when the files have been
generated on the server.

Figure 2.9: User story for the traceability of processed data

2.2.3 Conversion

Genomizer should also provide a way to convert profile data files between dif-
ferent genome releases as specified in Figure 2.10. This involves the ability to
upload new Chain Files which enable conversion using LiftOver and the em-
bedding of this program, see Figure 2.11.

It is not uncommon for errors in a new release to be discovered after publication.
It is therefore also important to store files generated using older genome releases
for some time after a new release is published.

16 2.2. CLIENT NEEDS

Convert genome release

To easier handle files
the researchers
want to convert files between genome releases (LiftOver).

Figure 2.10: User story for the conversion of processed data be-
tween different genome releases

Add chain file

To be able to convert between genome releases
the researchers
want to upload chain files (LiftOver).

Figure 2.11: User story for the addition of new Chain Files

2.2.4 Analysis

The researchers also want to be able analyze data using the server. This involves
combining regions using logical arithmetic and in such a way construct new
regions (“Combine regions”). It should also be possible to create new regions
from a reference point (“Create region subset”). Another interesting analysis
is overlap analysis which shows how much a number of genome experiments
overlap (“Overlap analysis”).

2.2.5 Visualization

In order to view analysis results, the researchers would like a graphical pre-
sentation of the results (“Plot overlap analysis”, “Plot average regions”). They
also want to be able to use the Integrated Genome Browser (IGB)[3] software
to view results (“IGB Session”). They therefore want to be able to download a
session-file to immediately start the browser.

For a full list of the user stories used in the project see Appendix A. They are
divided into two sections, Implemented User Stories and Product Backlog. The
Product Backlog is the set of user stories that were not completed during the
project and will be the target for further development projects.

Chapter 3

Service description

This chapter will present an overview of the services that the Genomizer system
currently provides.

3.1 Usage

Figure 3.1: Communication diagram of the product

In order to give the users flexibility when using the service there are clients for
many different platforms (Windows, Linux, OSX, Web, Android and iPhone).
When a user chooses a given task, for example start raw to profile processing,
that task is sent by Internet to the server as shown in Figure 3.1 which will
handle the request and send a response back to the user.

17

18 3.2. STORAGE

3.2 Storage

The main purpose of the Genomizer system is to centralize all data. To enable
this a user can annotate and upload data to the server using both desktop
and web based clients. Advanced database searches can be performed on the
annotations to find previously uploaded data. When the required data is found
the user can choose to download the files or request that they be processed on
the server.

3.3 Annotations

Genomizer not only allows the annotation of files and experiments, but also
enables the addition of new annotation fields. For example, if the user has an
experiment that was conducted in zero gravity and the database does not have
the annotation field “Zero Gravity” the user can add this as a new annotation.
In this case a Drop Down annotation type may be appropriate, with the simple
choices “yes” or “no”. Of course it is also possible to leave the annotation type
as Free Text which enables users to write freely the value of the annotation.

Dynamic annotations must also be managed in order to keep the system clean
and up to date. Genomizer therefore provides full editing options for existing
annotations. This includes the editing of Drop Down annotation choices and
the removal of unused annotations.

3.4 Processing

Users can request that a raw file set be processed to profile files. This proce-
dure is carried out on the server to avoid heavy workload on the clients. The
processing carried out between raw data and profile data involves a number of
different steps. The user can choose which steps are carried out and the various
parameters used.

3.5 Genome releases

Users can upload new genome release files and use them in the processing of
raw to profile data.

CHAPTER 3. SERVICE DESCRIPTION 19

3.6 Mobile

Due to the limited storage available on mobile devices it is not appropriate
to enable uploading and downloading of files, however the mobile applications
enable the searching of files in the database and the scheduling of processing
procedures for the conversion of raw to profile data.

Chapter 4

User manual

This chapter explains how you use each of the Genomizer clients. First instruc-
tions on how to use the desktop and the web clients are presented. These are
the clients which provide the most functionality. The mobile clients are more
lightweight and offer a subset of the functionality presented by the desktop
client. Instructions on using the smartphone applications for Android and iOS
are presented in their own sections at the end of the chapter.

4.1 Desktop application

This is a user manual for the desktop client. It will provide guides on how to
use the client and the different functionalities it holds. The screen shots shown
in this document are made from a Linux machine, but the application also runs
on Windows or Mac, and will follow the design principles thereafter. Because
of this, some details of the look of the client may vary, but the functionality is
the same.

4.1.1 Login and startup

When you start this application the first thing that’s displayed is a login screen,
as illustrated in Figure 4.1. In this screen you enter your username, password
and the IP-Address for the server and then press enter or login to enter the
Genomizer Desktop.

The application is built with tabs, as illustrated below in Figure 4.2. Each
tab contains separate features of the application. There are five tabs: Search,
Upload, Process, Workspace and Administration.

20

CHAPTER 4. USER MANUAL 21

Figure 4.1: Screenshot of the login screen.

Figure 4.2: Illustration of the different tabs of GenomizerDesktop
and displaying the Search tab.

4.1.2 Search

The first tab that meets the user after logging in is the Search tab, illustrated
in Figure 4.3. The Search tab uses the same query building technique as the
“Pubmed Advanced Search Builder”[6]. It has one text field where you either can
type in the query yourself or you can use the query builder below it. To switch
between manually editing the query and using the query builder there are two
radio buttons to the left of the text field. Each row in the query builder has at
most five components. These are a logical expression, an annotation name field,
a free text field or a drop down menu to insert search words, a minus button
and a plus button. The minus button removes a row and the plus button adds
a row. These buttons are however not available in each row. The plus button is
only available in the last row. The minus button is available in every row except
if there is only one row in the query builder. The logical expressions combines
the annotations, so they are available in every row but the first. By writing in
the annotation text field or selecting a value in the drop down menu you can
specify the query the row will produce. Together each row builds a full query.
As illustrated in Figure 4.3 below.

22 4.1. DESKTOP APPLICATION

Figure 4.3: Illustration of a query, made by the query builder.

4.1.2.1 Search results

When the search button is clicked the search tab will change it’s view to display
the search results as illustrated in Figure 4.4. The results are displayed as ex-
periments in a tree table. The experiment nodes in the table can be expanded
to view the files associated with the experiment. The tree table can be sorted
both vertically by clicking the headings and horizontally by dragging and drop-
ping the columns. The user can choose which columns to display by using the
menu in the upper right corner of the table. In the same menu there are also
buttons for expanding and collapsing all experiments in the search results. To
go back to the previous view, the user can click the Back button. There is also
a button called Add to workspace for adding the selected files or experiments to
the workspace.

CHAPTER 4. USER MANUAL 23

Figure 4.4: Illustration of search results.

4.1.3 Upload

If the user needs to upload files to the database it can be done through the
upload tab. When the tab is pressed the user gets presented with a text field
and two buttons. The textfield and the first button is used for searching for
existing experiments. The second button is used for creating new experiments.
This is illustrated in 4.5.

4.1.3.1 Existing experiment

In order to upload files to an existing experiments the users needs to write the
experiment name in the textfield and press the "Search for existing experiment"-
button shown in figure Figure 4.6. When this is done the experiment information
get retrieved from the server and presented for the user. For an existing experi-
ment no editing of the annotations can be done. So after retrieving the wanted
experiment the user presses the "Browse files"-button. Then a file browser win-
dow pops up, it is illustrated in ??. Here the user selects the files that are
supposed to be added to the experiments and then presses "open". The files
will be added to the upload tab and there will be some new choices available for
the user. Each file will be associated with one file row, this is also shown in ??.
The new choices are whether the new files are either raw, region or profile files.
And if it is region or profile there is another choice for which genome release.
There is also the possiblity to delete the file row, by clicking the "X"-button, in
case this file is not suppose to be added to the experiment. After all is decided
and the files are correct the user simply clicks the "Upload files"-button. Then

24 4.1. DESKTOP APPLICATION

the progress bar starts to progress and if all goes well it will reach 100% and
the files is added to the existing experiment.

4.1.3.2 New experiment

The first thing a user needs to do when creating a new experiment is pressing the
"Create new experiment"-button in the upload tab. After pressing this button
all the different annotations get retrieved from the server. If the annotation is of
the type that should be filled with text there is an textfield to be filled out, and
if it’s a multiple choice annotation there is a dropdown menu of the different
choices. The boldtexted annotations are forced and needs to be filled out in
order to create the experiment. There are also three buttons added to the view.
This is illustrated in 4.7. In order to add files to this experiment the user needs
to press the "Browse files"-button and choose in the file browser window which
files are to be added. When the files are added they each get displayed in a
file row. The file row consists of the file name and a progress bar. And apart
from this there are also three button and a checkbox. The checkbox will be
explained in section 4.1.3.3 below. The other three button are used in the same
manner as in section 4.1.3.1 above. When all the annotations that are needed
is filled and the associated files are added the user presses the "Create with all
files"-button. The "Create experiment with selected files"-button is discussed
in section 4.1.3.3 below.

4.1.3.3 Batch upload experiments

In order to batch upload experiment the workflow of this application is suggested
as follows: First the user start of as usual when uploading one experiment, as
explained in 4.1.3.2. But instead of choosing the wanted files for that experiment
the user chooses all the files that are supposed to be uploaded to all the different
experiments that are supposed to be batched. When the annotations for the
first experiment to be uploaded are chosen the user selects the files to be asso-
ciated to this experiment by click the "select"-checkbox. Then presses "Create
experiment with selected files"-button. This creates the first experiment and
starts to upload the files to it. And then the user changes the annotations that
needs to be changed for the second experiment and then selects the files for that
experiment in the same manner. The user then clicks the "Create experiment
with selected files"-button again and then changes the annotations to match the
third experiment and the selects the files for it and starts the upload. Every file
that is finished will disappear from the view and for each finished experiment a
popup window will be shown. So when all files are gone from the view they are
all added to the different experiment that the user filled out.

CHAPTER 4. USER MANUAL 25

Figure 4.5: Illustration of the starting view of the upload tab.

Figure 4.6: Illustration of the add to existing experiment part of
the upload tab.

26 4.1. DESKTOP APPLICATION

Figure 4.7: Illustration of the create new experiment part of the
upload tab.

Figure 4.8: Illustration of the file browsing window.

CHAPTER 4. USER MANUAL 27

4.1.4 Process

In the process tab there is a list of files to the left. These files are chosen from
the Workspace tab for process, see 4.1.5. From this list the user can mark RAW-
files and choose to create profile data. By left clicking on the files they will be
marked. If the user left clicks once again on the same file it will be unmarked.
For each file there exists only one specie, the list shows the user which specie
a file has. When a file is marked the Genome release files dropdown list will
be filled with all genome versions that exists for that specie. If the user then
enters the create profile data tab and presses the Start process button which
is visible in the middle of the tab see Figure 4.9, all the files that are marked
will now be processed to profile data. This list of files will be empty unless
the user has chosen to process selected RAW-files from the workspace tab. If
that is the case then those selected RAW-files will then be visible in the list of
files in the process tab. When the user has selected some RAW files the user
has the option to change processing parameters that is above the Start process
button as illustrated in Figure 4.9. These parameters has pre-set values and
allowed intervals. The conversion parameters are Flags, Genome release files,
Window size, Smooth type, Step position, Step size, Print mean and Print zeros.
Information about all the different parameters can be found in a popup windows
showed in Figure 4.10. For the user to reach this window he/she needs to press
the information button that is on the upper right side in the process tab. To be
able to process files some parameters needs to be set in order for the process to
start. If the parameters are invalid, empty or wrong parameters then process
will not be able to start until that is fixed. Depending on what format the user
chooses to process to different parameters will be enabled. For example ratio
calculation parameters cant be set unless SGR format is used.

If the user has selected some RAW-files and pressed the Start process button,
then if all went well and the server could process the files a message "The
server has started process on file: <File> from experiment: <Experiment>"
will print in the Console for each file that was converted to profile data. If for
some reason the server couldn’t create profile data for any RAW-file another
message "WARNING - The server couldn’t start processing on file: <File>
from experiment: <Experiment>" will print in the console that is visible in the
middle bottom of the process tab see Figure 4.9. If the user wants to perform
a ratio calculation while processing a file the user has the option to press the
Use ratio calculation button. When pressed a popup window appears and the
user gets the option to write in several ratio calculation parameters. These
parameters consists of eight parameters Ratio calculation, Input reads cut-off,
Chromosomes, Window size , Smooth type, Step position, print mean and print
zeros. If the Console area gets filled with messages then the user has the option
to clear the Console area from text. This is possible when pressing the Clear
console button which is positioned bottom/center in the process tab. When a
user has started a process he/she can choose to check which priority that process
currently have. This is done by pressing the Get process feedback button which
is located in the bottom/right corner of the process tab se Figure 4.9.

28 4.1. DESKTOP APPLICATION

Figure 4.9: Screenshot of the process tab in the program.

Figure 4.10: The parameter information popup window.

Figure 4.11: The popup window for ratio calculation parameters.

CHAPTER 4. USER MANUAL 29

4.1.5 Workspace

The workspace Tab seen in Figure 4.12 seen in Figure 4.12 is a tab where
a user can temporarily store experiments and their files, and choose different
options for action. Results from various searches can be stored here, and the
contents of the workspace is saved as long as the program is running. Files
and/or experiments are chosen by clicking them, multiple files by using either
Shift-click, Ctrl-click or simply holding down the mouse button and dragging
the cursor over multiple files. By choosing an experiment, all of the containing
files are selected. Items can be deleted from the Workspace by pressing Remove
from workspace.

4.1.5.1 Delete from database

To delete the selected data from the database the Delete from database button
should be used instead. When pressing the delete button a small popup window
with a progress bar will be displayed. By closing this window the deletion of
data can be aborted.

4.1.5.2 Upload to

If the user wants to upload files to an experiment they have in the workspace,
they can simply click the Upload to button to switch to the upload tab and
upload to the experiment they have selected. If multiple experiments have been
selected, only the first one will be uploaded to.

4.1.5.3 Process

If the user wants to add files to the process tab there is a Process button which
transfers the selected files to the process tab file list.

4.1.5.4 Download

The user can make the choice to download files to their local computer. If the
user presses the Download button seen in Figure 4.12, then the user gets to
choose a directory where the files will be saved. When a directory has been
chosen, the files get downloaded and all current and completed download can
be seen in the tab downloads, see Figure 4.13. The current downloads can be
aborted by clicking the X button and completed downloads can be removed in
the same way. The down

30 4.1. DESKTOP APPLICATION

Figure 4.12: Screenshot of the workspace tab in the program.

Figure 4.13: The downloads tab of the workspace

CHAPTER 4. USER MANUAL 31

4.1.6 Administration

The system administration tools for the desktop client is available under the
Administration tab. There are two different tools: Annotation and Genome files.
The annotation tab is the first sub tab in the Administration tab. Annotations
are used for specifying properties of uploaded data. For example, if new data
from an experiment done with rat tissue is uploaded, the data shuld have an
annotation called "species" with the value "rat". The Annotations sub tab
in the Administration tab gives the user the tools to create, edit and remove
annotations and annotation values.

Figure 4.14: The annotation view

In the annotations tab, when a user selects the "Add" button in the sidepanel
a new popup window appears. It is possible to write the name of the new
annotation and name of new values in this popup, as well as check a "forced"
annotation box. The "forced" value determines if the annotation will have to
be present in all future file uploads. See Figure 4.15

If the user wants to have free text as a value, for example if the annotation
is pubmedID, the value of that annotation will not be able to be chosen from
a drop-down menu, since the number available values is enormous. The user
might then want to use a freetext annotation, which allows them to type any
value they want. To create a freetext annotation the user clicks on the freetext
tab on the "add" popup.

To remove an annotation, the user selects an annotation from the table in the
center of the view, and clicks on the remove button on the right side. The
user then has to confirm this deletion. After that the annotation is completely

32 4.1. DESKTOP APPLICATION

Figure 4.15: The add annotation popup

removed and cannot be brought back to life, see Figure 4.16. Some annotations
cannot be removed for security reasons, ’Species’ is such an annotation. Trying
to remove it will generate an error message.

Figure 4.16: The remove annotation popup.

CHAPTER 4. USER MANUAL 33

The genome files tab shown in Figure 4.17 contains a table with information
about which genome release versions are stored on the server. If the user clicks
on one of the entries, a smaller frame is displayed at the bottom of the table
showing which files are included in the selected genome release. To the right of
the genome release tab are the tools for adding new genome releases. The user
can name the new genome release in the text field and is then able to upload the
files associated with that genome release. When the desired files are selected,
progress bars representing the upload of those files appear at the bottom of the
"Add Genome Release" frame. When the user presses "Upload", the upload of
the selected files will commence and the user can follow the upload progress from
the progress bars. After the upload is finished, the user will be notified of its
success or failure with a message dialog. Genome releases can also be removed
by selecting the release version from the table and pressing the "Remove genome
release" button which appears at the bottom of the table when a release version
is selected. This will remove the genome release and all associated files.

Figure 4.17: The genome release view.

If the user wants to add a new species to add or remove genome releases for,
this can be done in the top right corner of the genome release tab. The user
simply writes the name of the new species and presses the "add" button and
the species will be added to the "Species" annotation.

4.2 Web application

To access the web application, navigate to a domain and directory that publicly
serves the web page. An example of this could be: scratchy.cs.umu.se:8000/app/.
All functionality of the web application is (or rather should be) fairly self-

34 4.2. WEB APPLICATION

explanatory and intuitive. A short description and explanation will be given
for each component that have been implemented so far.

4.2.1 Using the interface

This section will describe how to use the interface and how to interact with it.

4.2.1.1 Start view

Figure 4.18: The login modal.

When first entering the webpage the login modal in Figure 4.18 is shown and
the user will have to enter their username and password to gain access to the
application.

Figure 4.19: The welcome screen of the webpage.

When the user has logged in, the user is taken to the search page as shown in
Figure 4.19.

The navigation bar at the top has four buttons to the left and two buttons to
the right with the following functionality:

CHAPTER 4. USER MANUAL 35

• Clicking the “Genomizer” logo takes the user right back to the start view.

• The “Search” button will bring up the search view where the user can enter
search strings to be sent to the server, and view search results.

• The “Upload” button will bring up the upload view where the user can
select files to be uploaded and input annotation to a new experiment.

• The “Admin” button will bring up the admin view where the user can
handle genome releases and annotations.

• The inbox icon on the left side opens a process status dropdown.

• The "Log out" button will log out the user.

This navigation bar is persistent through all sub pages and can easily be ac-
cessed.

4.2.1.2 Search view

Below the navigation bar a “search-and-functionality” bar is visible, there is a
search field and there are six buttons, Query-builder, Search, Download, Upload
to and Process. However, when first entering the page some buttons will be
disabled. When you enter something in the search field the search button will
become enabled and clickable. To search the user can either write a pubmed
style query (for example: Exp1[ExpID]) or use the query builder, by clicking
the paperclip icon.

Figure 4.20: Will be shown while searching for data in the database
before any results are found.

After having typed a query and pressed search, the search results will load
displaying the loading spinner as can be seen in figure Figure 4.20.

The view shown in Figure 4.21 contains two major elements; a “search-and-
functionality” bar and a list of search results retrieved after searching for ‘Exp1[ExpID]’.
The buttons next to the search bar do the following:

36 4.2. WEB APPLICATION

Figure 4.21: The search tab after a search for ‘Fly[Species]’.

• The paperclip brings up a Query builder.

• “Search” searches for the query in the search bar.

• “Process” brings up a new window in front of the search view with options
for file processing. This feature is demonstrated further in Figure 4.25.

• “Download” downloads the selected files.

• "Upload to" opens the upload view with the selected experiments selected
where the user can upload new files to an already existing experiment.

• "Remove" opens a new view where the files which are going to be deleted
are presented along with a confirmation dialog that the user really wants
to delete those files and experiments.

Figure 4.22: The query builder.

The search query builder as shown in Figure 4.22 can be used to easily build
pubmed-styled search queries. Just select a value in the three fields and press
add. The correct pubmed-styled query will be shown in the search field and the
three query fields will be reset so the user can add more things to search for in
their query.

CHAPTER 4. USER MANUAL 37

Below the search bar in Figure 4.21 is the “search results” list. This list contains
all experiments returned from a search. Every experiment can be expanded to
show the file types it contains. Each file type can be expanded to show all files
of that type in the experiment. All files and experiments has a check box next
to it that is used to select what to process, download, remove or upload to.

Figure 4.23: The search results table zoomed in, displaying a raw
file’s information after having expanded an experiment.

If a search is successful, you will be met with a table of results. This table
has a header displaying the annotation types. Below that, all the experiments
returned from a search and their corresponding annotation values, as can be
seen in Figure 4.23.

Figure 4.24: The search view if no data was found given the search
query entered by the user.

38 4.2. WEB APPLICATION

If the search is unsuccessful, the Search Results table will be empty stating “No
search results found” as can be seen in Figure 4.24.

CHAPTER 4. USER MANUAL 39

4.2.1.3 The processing modal

Figure 4.25: The processing modal.

When the user has selected some files that are going to be processed the user
will be presented with the view from Figure 4.25. The user can here choose
which level of processing should be done on the raw files. By clicking the radio
buttons on the left side that much processing will be done on the raw files. All
the steps above the selected will also be executed since they are needed to reach
that level of processing. At the top of the modal the experiments currently
going through processing are presented.

40 4.2. WEB APPLICATION

Figure 4.26: The process modal with selected parameters.

When the user has decided the parameters as shown in Figure 4.26 and wants to
start the processing the process button in the bottom right should be pressed.

CHAPTER 4. USER MANUAL 41

Figure 4.27: Success message.

When results are received from the server and they were all successful the pro-
cessing modal will disappear and a success message indicating that the process-
ing is starting will be displayed to the user like in Figure 4.27. If some of the

Figure 4.28: Fail message.

files that was going to be processed did for some reason fail the user will learn
this by a warning message that tells the user which experiment did not start
processing and which did as shown in Figure 4.28. The ones which started to
process will be removed from the modal and the ones that did not start to pro-
cess will remain. The user can now choose other parameters or do something
else to make it work and try to submit a processing request again.

42 4.2. WEB APPLICATION

4.2.1.4 The remove modal

Figure 4.29: The remove modal.

When the remove button is pressed the modal in Figure 4.29 is shown displaying
which files and experiments will be removed when the remove button is pressed.

4.2.1.5 The process status dropdown

Figure 4.30: The process status dropdown.

When pressing the inbox icon a dropdown is shown as in Figure 4.30displaying
processing status of experiments being processed. There are four different status
a processing can have: Waiting, Running, Complete and Failed. These are

CHAPTER 4. USER MANUAL 43

grouped together with a yellow color for waiting, blue for running, green for
complete and red for failed.

4.2.1.6 The process status dropdown

Figure 4.31: The process status dropdown with no status available.

If there are no processes status available the user will see the text as shown in
Figure 4.31

4.2.1.7 The upload view

Figure 4.32: The upload view.

When the user clicks the upload tab in the navigation bar, the view in Fig-
ure 4.32 will appear. The user has the option to create a new and fresh ex-
periment or to load an existing experiment by entering its experiment name.

After clicking the “Create new experiment” button, the view in Figure 4.33 will
appear. Here the user can input the annotations for the experiment through
either free text fields or drop-down lists. If a free text field has a red border
around it, that annotation is required and the experiment can not be uploaded
before all required fields have been filled in and at least one file has been added.
The user can create more empty experiments by clicking the "Create new ex-
periment" button and a new, empty, experiment will be placed below the first
experiment.

The user can fill in annotations in one experiment that should be the same for
several experiments. By clicking the "Clone experiment" button, a copy of the

44 4.2. WEB APPLICATION

Figure 4.33: Creating a new experiment.

experiment’s annotations will be appended as a new experiment. The user can
change the annotations that should be different from the cloned experiment.

Up in the corner of the experiment is a button that can remove the unwanted
experiment from the view.

To add files to the experiments the user can browse for local files and upload
them by clicking the “Select files to upload” button. The user will only see file
types that have to do with experiments but have the ability to search for all file
types. There is also a way of adding files to the experiment by dragging them
from a file browser and dropping it onto the experiment "drag and drop".

An experiment can only contain two RAW-files and if the user tries to upload
more a message with this information will appear and the experiment cannot
be uploaded before the extra RAW-file/s is removed.

To add files to a existing experiment the user types the name of the experiment
in the field next to the "Upload to existing experiment" and clicks the button.
If the experiment exists on the server it will appear in the experiment view
the same way that a new experiment is shown. The annotations of an existing
experiment cannot be changed from this view and if there are files already
in this experiment they cannot be manipulated. Adding new files to existing
experiments works the same way as to a new experiment.

When the user selects files, they will appear below the annotations as in Figure
Figure 4.34. The file name is displayed in a text field on the left side of the file
view. Next to the file name is a box that shows the size of the selected file in a
human friendly format (B, KiB, MiB, GiB, TiB). On the right side there is an
option to select what type of file is being uploaded and an option to remove the
file from the experiment. If the file type is either profile or region, there is an
option to select what genome release the file is mapped to. The file type option
will automatically be filled in with a guessed value depending on the file ending
as follows: fastq files are considered raw and all other formats (sgr, wig, gff) are
interpreted as profile.

When the user is done selecting files, filling in annotations and clicks the “Upload

CHAPTER 4. USER MANUAL 45

Figure 4.34: Files selected for upload.

experiment” button the experiment view will be minimized showing only the
name of the experiment and the progress bar of the files being uploaded. When
the progress bar is done it turns green and now the experiment with all the files
have been uploaded to the server. The user also has a way of uploading several
experiments at the same time by clicking "Upload all experiments".

4.2.1.8 System administration view

This part of the web application is only accessible if the user have administrator-
rights. It is integrated with the rest of the web UI and accessible through an
admin-tab. The administrator can through this site see all

annotations, add new annotations and edit existing ones.

The start page of this section has a ”Create New Annotations” button, a list of
existing annotations in the database and an edit button per existing annotation.
The view looks like in Figure 4.35.

For each annotation in the annotations list, an Edit button is available. When
pressed, it will take you to a page in which you can edit the selected annotation
to change its name and what values the drop-down list will have if it’s not a
free text field (See Figure 4.36).

In the edit page the admin can see the attributes of the chosen annotation and
is able to delete the chosen annotation or change it’s information. The delete
Annotation button will delete the whole annotation and for that reason two

46 4.2. WEB APPLICATION

Figure 4.35: The start page for the administrator in the web client

Figure 4.36: The edit annotation view

popup windows will appear to make sure that the administrator is sure of the
action.

The administrator can change the list of annotation values and the site will
automatically check whether something is added, removed or both and sends a
request to change the annotation values to the server when the Update Anno-
tation button is clicked.

If the admin clicks on Create new annotation from the admin start page, another
view will open with the following structure:

• Annotation Name

Admin can enter a name for the annotation

• Annotation Types

Yes/No/Unknown - this will create a drop-down list with those three
options.

CHAPTER 4. USER MANUAL 47

free text - will create an annotation that the users will be able to
enter anything.

Drop-down list - will enable a fourth field enabling the admin to enter
which items that this list will contain.

• Forced Annotation

Admin can choose if the new annotation should be forced for users to
enter.

A Create Annotation will, if all necessary information has been entered, result
in a popup (see Figure 4.37) showing the resulting annotation and if confirmed,
the annotation is added to the database. If canceled the administrator can keep
making changes or go back to exit this view. If not all values is entered the
admin will be alerted of the mistake and nothing will be created.

Figure 4.37: The confirm annotation popup

The example in Figure 4.37 will result in a drop-down annotation with the name
Number of toes and possible values: 0, 1, 2, 3, 4, 5 with 0 as default and is not
forced.

48 4.2. WEB APPLICATION

Figure 4.38: The view for administrators where new annotations
can be created

A back button which takes the user back to the annotations start page is also
available in this view. In Figure 4.38 the create annotation view can be seen.

The ”Genome-releases” link on the sidebar takes the administrator to a page
where it’s possible to add and remove genome releases to and from the server
(see Figure 4.39.

Figure 4.39: The genome-release view

The button ”Select files to upload” opens the native file explorer where the user
can select one ore multiple files and click on ”OK”. This will open a popup-
window, seen in Figure 4.40, showing what files that where chosen and asks for
species and genome version before uploading.

When the upload begins the popup closes and a progress-bar appears showing
the progress, showing ”Upload completed” when done. The user can at this
stage move between pages without disturbing the upload but should not close
or refresh the web browser.

CHAPTER 4. USER MANUAL 49

Figure 4.40: Popup for uploading genome releases

Every genome release in the table can be deleted by clicking on the ”delete”
button next to the release. This will prompt a small popup asking for user
confirmation and if given a positive response, deletes the genome release from
the server and updates the view.

If any genome release is used by an experiment already a error will appear telling
the user exactly that.

4.2.2 Setting up the application

To setup the application, move the content of the folder called app in genomizer-
web to the desired location from where the application should be run. To run
the webpage open a web browser and enter the url to the folder which contains
the index.html file(where the content of app was placed). Ex. given that the
genomizer-web folder is placed in my home folder and i want to put the webpage
in a folder called public_html which is also in my home folder. In linux i do the
following steps.

1. Navigate to the app folder: “cd /genomizer-web/app/”

2. Move the contents of app to the folder called public_html: “mv * /public_html/”

3. Given that the url to the public_html folder is: “www8.cs.umu.se/ c11abc/”

4. To run the application start a web browser and type “www8.cs.umu.se/ c11abc/”

50 4.3. ANDROID APPLICATION

This will open the webpage in the browser.

4.3 Android application

In this section instructions for the usage of the Genomizer Android application
is presented. In subsection 4.3.1 there is a description on how to start the appli-
cation and subsection 4.3.3 gives instructions on how to search for experiments.

4.3.1 Start the Application and Login

The user needs to login in order to start working with the Genomizer app. The
user name and password is inserted in the corresponding boxes and the clicking
the Sign in button initiates the main application. If you dont have a user name
or password, the system administrator should be contacted to help with the
creation of an account.

Figure 4.41: Login View

In Figure 4.41, the tool button in the upper right corner leads to the Settings
View, described in subsection 4.3.2 below.

4.3.2 Settings

The Settings view acts to enable the user to choose which server to connect
to when using the Genomizer application. As of the current release of the
application, in the Settings View, the user is able to:

1. Select one of previously used server URLs

CHAPTER 4. USER MANUAL 51

2. Add a server URL

3. Remove a server URL

4. Edit an existing server URL

The left most image in Figure 4.42 show three buttons in the top right corner
of the view. These buttons are used to access the functionalities listed above.
The button with a green plus sign enables the user to add a new server URL, as
illustrated in the image in the middle of Figure 4.42. The button in the middle
with a paint brush icon will on selection show the server URL edit view, as
illustrated in the right most image in Figure 4.42. And the left most button
with a red cross icon will upon selection enable the user to remove the currently
selected server URL from the drop down menu containing all saved server URLs.

Any selection, removal, edit or addition of server URLs are stored locally on the
device and and are loaded upon subsequent application launches.

Figure 4.42: Settings View

4.3.3 Searching for files

When entering the Search View, as illustrated in Figure 4.43 all annotations
are automatically downloaded from the server and displayed as a list. Each
annotation consists of an annotation-identifier, a dropdown table/text-input
field where the user may specify desired value, and a checkbox. When putting
a check-mark in the checkbox, it means that this particular annotation type
should be used when searching for files in the database. The search is initiated
by pressing Search at the bottom of the view.

Once the user has been logged in to the system, three buttons will always be
visible in the top right corner of each view:

52 4.3. ANDROID APPLICATION

1. Search button

2. Selected Files button

3. Process Status button

Clicking these buttons switches the context of the application and allow the user
to quickly navigate between different functionalities.

The search view also contain a button visible in the top right corner, used to
activate the advanced search mode described in the following subsection 4.3.4.

Figure 4.43: The Search View

4.3.4 Pubmed Search

The Pubmed Search view provide the means of free-text search using Pubmed-
Style queries as seen in Figure 4.44. This view include a text-input field together
with two buttons. The text field is populated with the annotations that the user
may have selected within the regular Sarch View. However, if no annotations
have been previously selected in the Search View, the user must input all anno-
tations manually. The annotations selected in the Search View are associated
with logical connectives. These logical connectives, as well as annotation values,
can be manually modified by the user. The supported logical connectives are:

1. AND

2. NOT

3. OR

The user may also choose to provide perentheses to device more specific searches.

CHAPTER 4. USER MANUAL 53

Figure 4.44: The Pubmed Search View

4.3.5 Search Results

When searching the user will be redirected to the search results view that dis-
plays a list of available experiments matching the search annotations. Every
experiment is listed showing the experiment name. To receive more information
about data files that are available for each experiment, click on an experiment
in the list. By clicking an entry you will be taken to a new view displaying all
available data files for that experiment, presented in the Experiment List View.

Clicking on the cogwheel button in the top right corner of the view enables the
user to modify which annotations are presented within the Search Results View,
and is described further in the following subsection 4.3.6.

54 4.3. ANDROID APPLICATION

Figure 4.45: The Search Results View

4.3.6 Search Settings View

The Search Settings View display settings for the files presented to the user
after a search is done, as illustrated in Figure 4.46 below. The Search Settings
View contains all different annotations the user will be able to display about
the experiments presented in the Search Results View. The user are able to
select annotations by marking the checkbox next to the annotation name and
then clicking the Save settings button to save changes. If the user has no special
requests it is also possible to use default settings, which will display (experiment-
Id, created by, pubmed and type) annotations for the files displayed.

Figure 4.46: Search Settings View

CHAPTER 4. USER MANUAL 55

4.3.7 Experiment File View

The Experiment File View is used to present the user with all files associated
with an experiment. This includes all raw, profile and region files derived from
the experiment. A user may select and add an arbitrary number of files to
the Selected Files view, which is described in subsection 4.3.8, by marking the
checkbox of the desired files, as done in Figure 4.47, and pressing Add to selec-
tion.

Clicking on a file presented within this view creates a popup containing all
different annotations for the selected file, as illustrated in the right most image
in Figure 4.47.

Figure 4.47: The Experiment File View

4.3.8 Selected Files

Once the user has signed in to the server, the user is presented with a Selected
Files view, as illustrated in Figure 4.48. This is the main part of the application
where all work and conversions are done to files, when the user has searched and
found files that are interesting for further use, it can be moved to the selected
files area. The page contains three different tabs that the user may use to show
different type of files saved in the selected files workarea. All files stored in this
page are only saved during the current session and is meant to be used as a
temporary grouping area for files.

56 4.3. ANDROID APPLICATION

• Raw, will diplay all the Raw files that the user has choosen to save to
the temporary work area. The files here can be marked and used for
converting to profile data.

• Profile, will display the Profile files that the user has choosen to move to
the selected files area. No conversions or other work can be done at this
stage to profile files.

• Region, this page will display all the region files the user has selected to
move to the selected files area for further work. No conversions or other
work can in this stage be done to region files.

Similar to the Experiment View, clicking on a file will present the user with a
popup containing the annotations for that file.

Figure 4.48: Selected Files View

4.3.9 Converting Files

When the user has choosen a file (or several files) for conversion, the user will be
presented with the Conversion View as seen in Figure 4.49. In this view the user
may enter the parameters needed to perform a Raw-to-Profile-file conversion.
There are 9 different parameters to be specified in this page for the conversion
to be done in a proper way. All parameters do not have to be filled, but they
have to be specified in the order that is presented to the user. In order to fill
out parameter number 3, both parameter 1 and 2 have to be filled out first.

CHAPTER 4. USER MANUAL 57

1. Bowtie, is a freetext field where the different parameters for the bowtie
program are to be inserted.

2. Genome Version, is a dropdown menu where the user is presented with
all the different genome versions that can be used for the conversion.

3. Sam to GFF, is an on/off option.

4. GFF to SGR, is an on/off option.

5. Smoothing, free text field for the parameters for smoothing if it is to be
used.

6. Stepsize, free text field for which stepsize is to be used for the conversion.

7. Ratio calculation, on/off field which determines if the ratio calculation is
to be used. If checked it will require both next two fields to be filled out.

8. Ratio, free text field with the parameters for the ratio, if ratio calculation
is wanted.

9. Smoothing, free text field for parameters regarding the smoothing for the
ratio calculation.

Figure 4.49: The Conversion View

4.3.10 Process View

The process view, as illustrated in Figure 4.50 below, is used to visualize the
current workload on the server. The view contains a list of tasks that has been
assigned to the server. Each task contains the name of the experiment in which
the process is currently operating in, the time when the process was added, the
time when the process was started and the time when the process was finished.
Each item also contains information about the process current state.

58 4.4. IOS APPLICATION

Each process may have one of these four states:

1. Waiting - The task is awaiting processing by the server

2. Started - The task is currently being processed by the server

3. Finished - The task has been completed

4. Crashed - The task was not successfully completed

Figure 4.50: The Process View

4.4 iOS application

In order to use the program, import the project from github into Xcode from the
following repository: https://github.com/genomizer/genomizer-iOS.git

To compile and run the program, press cmd+R. A simulator will start and the
login screen will be shown as seen in Figure 4.51. A user gets logged in when
accepted credentials are entered in the ‘username’ and ‘password’ fields and the
‘Sign in’ button is pressed. If incorrect credentials are entered, a popup message
is shown, informing the user that the username or password is incorrect. The
user can also change the server to connect to by pressing the symbol in the top
rightmost corner. The user will then be presented with a popup window as seen
in the rightmost view in Figure 4.51.

https://github.com/genomizer/genomizer-iOS.git

CHAPTER 4. USER MANUAL 59

Figure 4.51: The login screen.

After logging in, the user is presented with a search view as seen in the leftmost
view in Figure 4.52. The bottom menu bar is used to navigate between the
Search-, Selected files-, Processes- and More-view in accordance with Apple’s
current GUI standards for iOS 7. In the current state, the More-menu only
contains a logout button which is used to log out. The Selected files-menu
contains a list of files selected by the user, sorted by file type.

Figure 4.52: The search screen.

In the search view, the user can search the database for results matching any
number of search criteria. To be able to modify the search quickly, a toggle
button is available in the rightmost edge of each search field which enables or
disables each search field. For example, if the user wants to search for exper-
iments where species is ‘human’, the user clicks on ‘Species’, chooses human,
clicks done and the toggle button will automatically switch to active as seen in
in the view in the middle in Figure 4.52. In top rightmost corner, there is a
button for opening an advanced search view as seen in the rightmost view in
Figure 4.52. Here the user is supposed to enter a search query in ’pubmed-style-
format’. If a user fills in fields in the regular search view and then opens the
advanced search view, the fields that currently have values set at the regular

60 4.4. IOS APPLICATION

search view will apper as a query in the advanced search view.

When the search button has been pressed, the user is presented with all matching
experiments in the Search Results view shown to the left in Figure 4.53. To
manage which annotations should be displayed for every experiment, the user
can press the edit button in the top rightsmost corner and will then be presented
with the middle view in Figure 4.53. Here the user can set the visibility for each
annotation. When the user then presses the ’back’-button, the annotations
chosen will be shown for each experiment as seen in the rightmost picture in
Figure 4.53. To see which files are associated with each experiment, the user can
click on the experiment in order to get to the Files view shown in the leftmost
view in Figure 4.54.

Figure 4.53: The search result screen.

In the Files view, the user can see all files connected to the selected experiment,
sorted by type. The user can also get additional information about a file by
simply clicking the blue information sign close to the filename. The file infor-
mation is shown in a popup window as shown in rightmost view in Figure 4.54.
If the user selects files and presses the ‘Convert files’-button, the user is shown
the Select task view as seen in Figure 4.57. More about that later.

CHAPTER 4. USER MANUAL 61

Figure 4.54: The files screen.

The user can also move files to the selected files view. This is done by sim-
ply turning the switch to the right of the filename as seen in the left view in
Figure 4.55 and then pressing the ’Add to Selected files’-button. The user will
then be presented with a popup window as shown in the rightmost view in
Figure 4.55.

Figure 4.55: The files screen.

If the user presses the ‘Selected Files’-button in the menu, the Selected Files
screen is presented, containing all files the user has added to selected files, as seen
in the leftmost view in Figure 4.56. If the user wishes to see more information
about a file, it is possible to simply click the blue information sign close to the

62 4.4. IOS APPLICATION

filename. This shows file information in a similar way as in the files view seen in
Figure 4.54. In the selected files screen the user can select files and then press
the trashcan icon in the top rightmost corner to delete the currently selected
files, as seen in the two rightmost views in Figure 4.56. The user can also select
a task to perform on the currently selected files by pressing the ‘Select task to
perform’-button. The user will then be presented with the Select task screen as
seen in the leftmost view in Figure 4.57.

Figure 4.56: The selected files screen.

In the Select Task view, the user is presented with a list of possible tasks that
can be performed on the currently selected files. To perform a task, the user
can simply click on that task.

Figure 4.57: The select task screen.

If the user chooses ‘Convert to profile’, the Convert Raw to Profile screen is
shown as seen in the middle view in Figure 4.57. In this view the user can enter
parameters used in the converting process. Every step of converting (i.e. SAM
to GFF or GFF to SGR) requires that all previous fields are filled in, since every
convert step uses results from the previous steps in the process. The minimum
number of parameters are the first two, Bowtie and Genome file. When the
user has entered the desired parameters, a convert request is sent by clicking

CHAPTER 4. USER MANUAL 63

the ‘Convert’ button. The user will then be presented with a popup window,
showing the number of convert requests that were sent as seen in the rightmost
view in Figure 4.57. If the user wants to see the status for the processes on
the server, the user can click on the ‘Processes’-button in the menu and the
Processes view will be shown as seen in Figure 4.58.

Figure 4.58: The select task screen.

In the Processes view, the user can see all processes that the server have com-
pleted in the last two days and also all processes that users have added that are
either currently running or waiting to be executed. If the ‘More’-button in the
menu is clicked the More screen is shown as in Figure 4.59.

Figure 4.59: The more screen.

In the more view the user has the possibilities to log out from the server and to
see pictures of the development team.

Chapter 5

Deployment and maintenance

This chapter is directed towards administrators and developers that wants to
set up a server and install the software needed to get a fully functional system.
It also gives instructions on how to maintain the system in case of problems
that can arise.

5.1 Configure server

This chapter is directed towards administrators and developers who want to set
up a server and install the software needed to get a fully functional system. It
also contains instructions on how to maintain the system in case problems arise.

5.2 Manuals

To set up the server with the necessary software and configurations two guides
are available. These two manuals are created to help a system administrator
in the installation process of the server machine needed for the project. The
manuals are written for configuration of the server on two different operating
systems, Ubuntu 14.04 and Debian 7.5.

The manuals can be found in Appendix G and H.

5.3 Configuration

The Genomizer system needs special configuration to work properly. See the
manual for the running operating system to get the correct settings for the
Genomizer server machine. All settings can be changed, but when changed the

64

CHAPTER 5. DEPLOYMENT AND MAINTENANCE 65

system may not work properly anymore. Please only make changes that are
documented in the corresponding manual.

5.4 Administer the database

The following guide assumes access to a server with postgresql installed. If
you do not yet have a database, username and password for Genomizer to use
proceed to Set up postgresql account.

This guide was written using Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic
i686) and postgres-9.3.4.

5.4.1 Set up postgresql account

This step is only required if you do not already have a psql username and
password. If you have been assigned this from a sysadmin proceed to Upload
SQL Script to server.

1. Log in to the server:

> ssh <username>@<host>

2. Become sudo-user “postgres”:

> sudo su postgres

3. Add yourself as a postgresql user:

> createuser <username>

4. Log into postgresql as root:

> psql

5. Set your password:

> \password <username>

6. Create database:

> create database genomizer;

66 5.4. ADMINISTER THE DATABASE

7. Grant yourself all permissions on the Genomizer database:

> grant all on database genomizer to <username>;
> \q

8. Navigate to postgresql configuration folder:

> cd /
> cd etc/postgresql/9.3/main

9. Navigate to postgresql configuration folder:

> sudo nano postgresql.conf

10. Change connection settings:
Locate line:

#listen_adresses = ‘<settings>’ # what IP address(es) to listen on;

Change to:

listen_addresses = ’*’ # what IP address(es) to listen on;

11. Write changes and exit:
Hold down ctrl and press o
Hold down ctrl and press x

12. Open configuration file:

> sudo nano pg_hba.conf

13. Change Client Authentication Configuration:
Locate the heading:

IPv4 local connections:

Under the heading, add the line:

host all all 127.0.0.1/32 md5

14. Write changes and exit:
Hold down ctrl and press o
Hold down ctrl and press x

15. Restart postgresql:

> cd /
> sudo /etc/init.d/postgresql restart

CHAPTER 5. DEPLOYMENT AND MAINTENANCE 67

5.4.2 Upload SQL Script to server

1. In a termainal window navigate to the folder where the genomizer_database_tables.sql
script resides.

2. Establish secure ftp connection to the server:

> sftp <username>@<host>

3. Create a new folder on the server:

> mkdir SqlScripts

4. Upload genomizer_database_tables.sql:

> put genomizer_database_tables.sql SqlScripts/

5. Exit sftp:

> exit

5.4.3 Create the Genomizer Tables

1. Log in to the server:

> ssh <username>@<host>

2. Log in to the database:

> psql genomizer

3. Run genomizer_database_tables.sql

> \i SqlScripts/genomizer_database_tables.sql

The Genomizer database is now ready to use.

5.5 Set up processing

To be able to run the processes such as raw to profile convertion the right
scripts and programs need to be in the folder resources. The scripts needed for
converting will be there but bowtie need to be downloaded and extracted to
resources, which need to be a folder in the servers root directory.

68 5.6. INSTALL THE SERVER

5.6 Install the server

To start the server, java needs to be installed on the computer and a runnable
JAR file needs to be created. This requires the following things to be installed
on the computer: Git, Ant and Java JDK. Refer to Appendix H on how to
install these. If these are already installed refer to 5.6.1 on how to download
the source files.

5.6.1 Downloading the source code

The source code for the Genomizer server is hosted at Github and is com-
pletely open source. It can be downloaded in two ways. Either manually from
http://www.github.com/genomizer/genomizer-server where there is a button to
download the entire project as a zip file or using Git from command line in the
following way:

git clone https://github.com/genomizer/genomizer-server.git

This will create a directory named genomizer-server in the current directory.

5.6.2 Creating a runnable JAR file

5.6.2.1 Command line

When the source code is downloaded (and unzipped if downloaded manually),
use the terminal to navigate into the genomizer-server directory.

ant jar

A file called server.jar should be created in the same directory.

5.6.2.2 Eclipse

To create the runnable JAR file with Eclipse, follow these steps:

1. Open eclipse and import all the code into a project.

2. Right-click on the project and choose export.

3. Expand the folder "java" and then choose "runnable JAR file".

4. Make or choose an already existing launch configuration where ServerMain
is the class containing the main-method.

5. Choose an export location for the runnable JAR file.

CHAPTER 5. DEPLOYMENT AND MAINTENANCE 69

5.6.3 Starting the server

Here the actual startup of the server will be explained in a step by step manner.
In order for this to work, the runnable JAR file must have been created.

1. Choose a computer that should host the server.

2. Make a runnable JAR file of all the code and place it inside a folder on
the computer.

3. Start the terminal and navigate to the folder containing the runnable JAR
file.

4. In the terminal, type: java -jar filename.jar. Server configuration is ex-
plained in more detail in Appendix H.2.16.

Chapter 6

Interaction design

This chapter goes into detail on how the graphical and interactive parts of the
clients are designed. It starts with a general view of the interaction design and
then divideds into chapters based on the different clients.

6.1 Desktop clients

Screen clients use a tab based navigation between views, these tabs are shown
at the top of the user interface. The common views in the current system are
search, upload and process.

Search results are displayed in a table, experiments can be expanded to reveal
the files contained in the experiment. The files in an experiment are grouped
by types where each type consists of a row in the table that may be expanded
to reveal the files of that type.

The upload view consists of experiment groups. Each experiment group contains
a set of input fields for annotation and a list of files added to this experiment.
The user may create new experiments in this view or add files to an existing
experiment, multiple files may be added to multiple experiments simultaneously.

The base for the process view contains a set of input fields for the parameters
that are to be used when processing a file.

6.1.1 Windows/OS X/Linux application

The desktop application is constructed in a topdown approach that separates
all the different functionalities into groups. Similar functions will be grouped
together to utilize space. The application is built with tabs that simplifies work
by letting the user easily switch between different views. Each tab is described

70

CHAPTER 6. INTERACTION DESIGN 71

by appropriate name and contains related functionality.

The workspace tab lets the user easily manage files and experiments. It has
easy access to the download and process functions.

The administration tab design is centered around to have different views that can
be reached from the buttons on the left side of the screen. The the Annotations
view is where you can add new annotations to the database. This view has a
table of all current annotations in the middle of the screen and a toolbar on the
right side. Additional functions can be reached from pop up windows when a
user clicks on the buttons in the tool bar. A principle in the design is when
the user types in something wrong, an alert (popup) will be shown telling what
went wrong and why, for example if the user did not type in a name of the
annotation a popup telling that a annotation needs a name will be shown.

6.1.2 Web application

Generally the design of the user interface for the web application is an integra-
tion of the principles previously described with core design elements of web and
the twitter bootstrap element library.

6.1.2.1 Layout and Structure

The structure of the application is in most cases shallow, the navigational depth
is usually two steps but sub views with modal views may result in a depth of 3.
There are three types of views which are hierarchical in some way, main views
contain sub views and modal views, sub views may contain modal views.

• Main views: A main view covers the entire page. The structure among
main views is shallow and the user may freely navigate between all main
views using the navigation bar. Typically a main view contains a toolbar
and a set of panels.

• Sub views: A sub view is a part of a main view. In this case the main view
has a vertical navigation bar on the left side used to navigate between sub
views, sub views may not be directly navigated outside of its main view.
The user may navigate to other main views from a sub view. Except for
the sub navigation bar the sub view covers the entire main view, replacing
its content.

• Modal views: Modal views “rolls over” the current main view and are
used for specialized operations. Modal views can be navigated to using
buttons inside main views and sub views. Usually the user will be taken
back to the previous view when the modal is closed but navigation in a
sequence of modal views could be implemented in the future.

• Panels: Content that belong together is grouped using so bootstrap pan-
els. Main views and sub views should contain one or more panels.

72 6.1. DESKTOP CLIENTS

• Toolbars: In main views and sub views we use a toolbar at the top of
the view where operation controls available to the user are presented.

• Popovers: For elements that belong to a view but have no need to be
visible at all times are shown in bootstrap popovers. Popovers that do
not belong to a specific view may be placed in the nav bar.

6.1.2.2 Colors

Grayscale colors are mostly used, black or dark gray is used for text, icons and
borders while white or light gray is used for backgrounds. Colors of different hues
are used to distinguishing elements from each other and to highlight important
elements. Colors with high saturation are reserved for smaller elements while
colors with lower saturation can be used regardless of elements size. Light gray
of varying brightness may also be used to highlight or distinguish elements.

6.1.2.3 Icons

Buttons that perform actions should always contain an icon as well as text
so that the experienced user may more quickly desired actions by identifying
buttons at a glance instead of having to read the button text.

6.1.2.4 Batching

For operations performed on objects that there are multiples of e.g. experiments
or files, let the user perform these operations on multiple objects at the same
time in cases where it makes sense.

6.1.2.5 Systemadministration - Web

The admin page is built up by four views: the sidebar, the main view, the create
annotation view, the edit annotation view and the genome-release view. The
first one is main view which consists of a sidebar and a empty div-tag. The
empty div-tag is then replaced with the annotation list view which has a Create
new annotation button and a list of the available annotations on the database
with an option to edit.

When the user clicks on for example Create New Annotation, the div tag in the
main view is replaced with the create annotation view. The same goes for the
Edit buttons on each annotation. This way we only have to render that specific
div-tags current information and the sidebar is unaffected.

The design is made so that the user should be able to avoid mistakes. For ex-
ample in the create annotation page the user is not able to create an annotation

CHAPTER 6. INTERACTION DESIGN 73

without filling in all the fields. Futher more the field for Items in drop-down list
is disabled if the user don’t choose Drop-down list as the annotation type.

In the Edit annotation view the same principles apply, but also there is a Delete
Annotation button on this page which will delete the entire annotation on the
database. For that reason we decided to ask if the user is sure of this action
and ofcourse made the button red.

The back buttons on the different views work as one would expect and the
sidebar option Annotations takes the user back to the main adminview.

The sidebar item ”Genome-releases” takes the administrator to the page for
adding and editing genome-releases. This page have the same look and feel as
the previous. The delete buttons are red and will prompt a confirmation-popup.

The ”Select files to upload” will as expected open the file explorer and the user
chooses files according to normal operativesystem standards, then the ”Upload”
button will prompt the user for information about the files such as species and
genomeversion before uploading.

6.2 Android

The Genomizer Android application was designed to allow for a quick search of
the database while on the move. It also makes it possible to start file conversions
in advance so that the data is ready when further work and analysis is to be
done. The app will also provide a way to continuously view the status of the
users file conversions.

The application was designed in close collaboration with the iOS application in
order to provide a consistent experience on both plattforms. We did, however,
find it necessary to take into consideration some of the Android specific design
paradigms which distinguish Android applications from other smart phone plat-
forms. One of theses paradigms is the actionbar at the top of the screen that
provides navigational functions.In this section the layout and design decisions
will be described.

6.2.1 Login View

There are two textfields available for the user to type user name and password
and a button to click when user is ready to log in. This is a popular layout for
many login screens and thus a design many users are familiar with.

74 6.2. ANDROID

Figure 6.1: Login View

6.2.2 Search View

The design illustrated in Figure 6.2 show the search view, which is also the view
the user is presented with upon successful login. The search annotations are
displayed in a list and it is easy to learn how to search. Scroll bars are used for
multiple options and textfields are used for free text. At the bottom of the view
there is a button to press in order to start the search.

Figure 6.2: Search View

CHAPTER 6. INTERACTION DESIGN 75

6.2.3 Search Results View

The design illustrated in Figure 6.3 below show the search result view. The
result is shown in a list, sorted by experiments. The list displaying search
results is large to facilitate usage for user and to take advantage of the screen
space. It’s easy to learn how to navigate the list. Scrolling is available if the
list is long and if the user clicks on an experiment they are redirected to the
experiment view displaying more information about that experiment.

Figure 6.3: Search Result View

6.2.4 Experiment View

The design illustrated in Figure 6.4 shows more information about a specific
experiment. All files for the experiment selected in the search result view is
displayed here organised by data type. Checkboxes are commonly used and
most users are familiar with how to handle them when making choices and
selecting items. The button Add to selection will be used to send selected
files to the conversion view.

76 6.2. ANDROID

Figure 6.4: Experiment View

6.2.5 Search Settings View

The design illustrated in Figure 6.5 is showing the view for search settings.
This is a way for the user to select annotations to be displayed in the search
result view. The user can select annotations by checking the checkbox next to
the annotation name and then click the button to save changes. The changes
are stored on internal storage and saved between runs of the application. If
the user has no special requests it is also possible to use default settings. This
functionality gives the users the possibility to design the search result view the
way they want to have it which often is appreciated.

Figure 6.5: Search Settings View

CHAPTER 6. INTERACTION DESIGN 77

6.2.6 Selected Files View

The design illustrated in Figure 6.6 shows the view for selecting files. The view
has four tabs, one for each data type and one for results. To make it easy to
navigate the user can switch tab by sliding your finger horizontally. There is
also the option of clicking the tabs.

The files are displayed in a list which gives a clear view to the user. At the
bottom of the view there is a button with option to what to do with the data
files stored. For example in the view for raw data there is a button to click to
convert the files into profile data.

Figure 6.6: Selecting Files View

6.2.7 Convert View

The design illustrated in Figure 6.7 shows the conversion view. This view dis-
plays different parameters that needs to be set before starting to convert data
files. The view is clear with headlines and hints guiding the user to what pa-
rameters that needs to be set that facilitates the work for the user and also
prevents errors from occuring. At the bottom of the view there is a button to
press to start the conversion when all the parameters are set.

78 6.3. IOS

Figure 6.7: The Convert View

6.3 iOS

Focus has been on making a nice looking application with an intuitive work-
flow and to follow the iOS design principles. Some of the design decisions are
motivated in the text below.

6.3.1 Navigation bar

A navigation bar is used to make access to different main functionalities available
at all times. In the navigation bar iOS approved icons are used combined with
a short describing text directly under it.

6.3.2 Login Screen

The login screen has two responsibilities; to make a nice first impression and to
make it easy for the user to login. The design is kept simple and clean to avoid
distractions.

6.3.3 Search View

The search view is designed to be usable for both advanced and new users. A
list with available annotations is displayed to make it easy to do basic searches
fast. Some annotations can only be selected with a picker view, while others
are edited by typing free text. The reason for the occurance of the picker views
is to simplify searches and help the user to make correct search requests. For

CHAPTER 6. INTERACTION DESIGN 79

example, the sex of an individual can only be male, female or unknown. Other
values for the sex annotation would be nonsence!

Figure 6.8: The search screen.

Each annotation has a corresponding switch button as seen in Figure 6.8. The
button determines if the annotation should be included in the search request.
This make it easy to make small changes to the search, while not clearing the
annotation values.

The advanced user can customize the search query sent to the server. This gives
the user the possibility make more complex search queries and possibly make
use of already accuried PubMed-search skills.

6.3.4 Search Result View

The main purpose of the search result view is to give an overview of the search
results. The challenge with this view was to summarize large amount of in-
formation in a small area. The small screen of the iPhone made it impossible
to have columns for each annotation. Instead a decision was made to group
the files by experiment as seen in Figure 6.9. The table with the experiments
will only expand vertically, both when the number of shown annotations and
the number of experiments grows. Thus, the user never has to scroll sideways
which would be awkward.

80 6.3. IOS

Figure 6.9: The search result view.

The user can choose which annotations to display in the result view. This gives
the user the possibility to only show the annotations which are interesting at
the moment.

The file view (see Figure 6.10), which is shown when the user selects an exper-
iment, only contains the filename of the files in the specific experiment. The
annotations is not shown in this view to avoid information overload and to give
the user a good overview of the files.

Figure 6.10: The file view.

The functionality of the Convert files button can be reached from other views,
but was added to this view as well to improve the workflow. Instead of first

CHAPTER 6. INTERACTION DESIGN 81

selecting the files, then going to the Selected files view and initiate the convertion
from there, the user can quickly convert files directly from the search results.

6.3.4.1 Selected Files

The selected files view can be seen in Figure 6.11. The files are grouped into
four categories: raw, profile, region and other. This is done by showing each
type of files in its own tab. The reason for this is to avoid the possibility to
select files of different types since the tasks to perform are file type specific. It
also gives a better overview of the files when only one type is shown instead
of showing all files at the same time. Additionally, the top tab bar menu is
following the iOS design guidelines.

Figure 6.11: The selected files view.

6.3.4.2 Select task and Convert

The select task menu can easily be expanded when new functionality is added
to the application. The simplest way we could think of to select a task was to
simply press it and hence it’s implemented that way.

82 6.3. IOS

Figure 6.12: The convert view.

As seen to the right in Figure 6.12, the convert view, shows a number of pa-
rameters to be filled. Only the first two fields has to be filled before a convert
request can be sent. Our thought was that a user should be able to skip all
non-optional settings, and let the server have the standard parameter values.

6.3.4.3 Processes

Figure 6.13: The process status view.

As visible in Figure 6.13, we chose to build the processing status view with a
simple tableview, to make it dynamic and easy. We also think this gives the
user the best possible overview of current processes.

Chapter 7

Architecture design

To get an understanding on how the system is designed as a whole, this chapter
will try to explain the architecture of the system on a more broad level.

7.1 System overview

The Genomizer is a server-client system, which involves four different clients, a
Java server and one postgresql database. The different kinds of clients are:

• iOS

• Android

• Web

• Desktop

All of these clients use the RESTful protocol together with Json to communicate
with the server, sent over a non persistent HTTP-socket. How the different
requests sent over this socket is specified in the API which can be found in the
appendix or at docs.genomizer.apiary.io.

The server is also divided in different parts, each with a specific responsibility.
These are:

• Communication - Handles requests and responses

• Data storage - Handles the database

• Data transfer - Handles URL and file paths aswell as routing

• Process - Handles processing of files

83

84 7.1. SYSTEM OVERVIEW

Figure 7.1 shows a simple flow diagram which describes how the client and
server communicates. The particular example shows the data flow when the
client process a file.

Figure 7.1: A simple flow diagram for the system

Every request the client does creates a non persistent connection to the server.
When the server receives a request it checks which kind of request it is and
routes it to either the communication part of the server or handles it directly.
This is done by the data transfer.

If the request is routed to communication a specific command is created. The
command is an object which consists of information from the RESTful -header
and Json body sent from the client. The command is then parsed and sent to
different parts of the server, usually the database first, which returns information
from a SQL query. Depending on the requests this information can later be used
to, for example processe a file or be sent back to the clients directly.

The clients are always going to receive a response code after each request, but in
some cases the respond also contains a Json body with information which can
be shown to the user. This is the case for requests like getAnnotations. The
response can also contain error messages, describing what went wrong when
executing the command.

After a client receives the response the connection with the server is lost until
the next request.

There is a special kind of user called system admin. A user with these priveleges
has the rights to add and delete annotations.

Chapter 8

System design

A more indepth look at how the system is designed with UML- and class-
diagrams. It is divided into two main sections for the server and clients. The
client section contains the different clients. After that follows the server section
that is divided into different parts that makes up the whole server.

8.1 Desktop application

The desktop client is constructed around the model-view-controller pattern. It
relies heavily on action events being performed in the graphical interface which
is then handled by the controller. The model is the part handling the commu-
nication and the storing of important information such as ongoing downloads
and the user token (used for communication authorization). In Appendix C a
UML-diagram of the desktop client is presented (??).

8.1.1 View

The view of the Genomizer Desktop client is constructed with tabs. There are
5 different tabs. These are Search, Process, Upload, Workspace and Adminis-
tration.

Each tab in the view is represented by its own java class. The QuerySearchTab
class which represents the search tab can display both a search view and a
results view. It uses the QueryBuilderRow class to construct the rows in the
query builder which is used to construct search queries. The QueryBuilderRow
class represents a row in the query builder and each row is dynamic and can
change accordingly to user interaction. The search results are also implemented
in the QuerySearchTab and the results are displayed with the TreeTable class
which is further described in the utilities section below.

85

86 8.1. DESKTOP APPLICATION

The UploadTab Class represents the upload view of the GUI. It has functionality
to both upload a file to an existing experiment (which is separately handled in
the UploadExistingExpPanel) and to create and upload a new experiment.

The ProcessTab class represents the process view in the GUI. It contains a
list where files to be processed can be stored and a large number of processing
parameters which can be changed by the user. There process tab also contains
a console for displaying direct feedback on processes and an area which contains
the status of all current processes which are being handled on the server. The
later can be updated manually with a refresh button.

The major part of the WorkspaceTab class consists of a TreeTable which holds
all the experiments and the corresponding data which the user has added to the
workspace. Then there is also five buttons implemented which allows the user
handle the data in the TreeTable. These buttons are Remove from workspace,
Delete from database, Upload to, Download and Process. The TreeTable view
can be changed to a view which displays all current and completed downloads.
This is made using a tabbed pane containing the TreeTable view and the Down-
loads view.

8.1.2 Model

The model part of the system contains methods for doing most of the logic in
the system. For example there are methods for sending login requests and for
downloading files. There are separate classes for downloading and uploading files
as well as a class for regular communication with the server called Connection.
New connections are created with the ConnectionFactory class. The model also
acts a storage for importating information such as the user token and list of
ongoing downloads and uploads.

The AnalyzeTab Class is not yet implemented.

8.1.3 Model

The model part of the system contains method for doing most of the logic in
the system. For example there are methods for sending login requests and for
downloading files. There are separate classes for downloading and uploading files
as well as a class for regular communication with the server called Connection.
New connections are created with the ConnectionFactory class.

8.1.4 Requests

The Request package contains the Request class , the RequestFactory and all
the classes that extends the Request class. Request is the super class and can
make a JSON package that all the other Request classes can use. All requests
must have a name, type and an URL, but can consist of more information. For

CHAPTER 8. SYSTEM DESIGN 87

example LoginRequest also has username and password. RequestFactory is a
class that can create all objects from all types of requests. It is a way to easily
create all requests from the same place.

8.1.5 Response

This package consists of all types of responses that the server can send to the
client-program. There is a class named Response that all the other response
classes extends from. For example there is a response class for the login request
called LoginResponse. All types of responses have different properties. There is
also a class ResponseParser that can parse the responses so that the important
information can be taken out of a JSON-package. This information can then be
used to tell the client program what should happen next in the user interface.

8.1.6 Controller

The controller part of the system consists of ActionListeners for the different
buttons and functionalities in the view. For example there are Listeners for
searching, downloading and processing. The Controller class has access to both
the view and the model and acts as a middle hand between those two parts of
the system. Usually a Listener in the controller reacts upon user input and then
modifies the model and gives information about the change to the view.

8.1.7 Utilites

There are several classes which represents different data in the system. There
are classes for experiment data, file data and annotation data. For example
when a search response is received from the server it is parsed into experiment
data and the experiment data contains file data and annotation data. There is
also a class representing Process feedback data.

The TreeTable class represents the table which displays experiment data, an-
notation data and file data in the Search and Workspace tabs. It is specially
constructed to handle the data classes and it allows vertical sorting.

8.1.8 System Administration

The system administration is developed separately from the rest of the GUI,
and therefore has a slightly different way of communicating.

88 8.1. DESKTOP APPLICATION

8.1.8.1 Communication with the Server

All communication between the server and the system administration tab follows
a line of steps. See Figure 8.1 below.

1. An event is triggered by the user clicking something.

2. The listener for the active tab receives the event and sorts out which type
it is, and calls the appropriate method in the SysadminController class.

3. The SysadminController has the connection to the Model, and calls the
associated method there.

4. The Model creates the corresponding request for the server, and then
creates a new connection.

5. The Connection receives the request from the Model and sends the request
to the server.

If the event triggers a request for data, the Model will use a parser to parse the
data before sending it back to the GUI to present it to the user.

Figure 8.1: Communication Overview

CHAPTER 8. SYSTEM DESIGN 89

8.1.8.2 A communication example

As an example, assume that the user clicks the ’Genome Files’ tab. This triggers
the SysadminTabChangeListener to receive an event. The desired behavior of
the tab is to directly show the available genome releases, so now they have to be
fetched from the server. The SysadminTabChangeListener therefore calls the
SysadminController. This class then retrieves the GenomeReleaseTableModel
to be able to use it when sending the data to the user view. After that it
calls the getGenomeReleases() method in the Model. This method creates a
GetGenomeReleaseRequest to be sent to the server by using the RequestFactory
class. The Model then creates a new Connection by using the ConnectionFac-
tory. The request is then sent to the server. The Connection receives the result
and the Model can read from it. In this case the response will be a JSON string
containing all the the genome releases on the server. This string needs to be
parsed into something more useful and thats when the ResponseParser is used.
It uses the Google Java library Gson, which is used to convert a JSON string
into a Java object. In this case the ResponseParser will convert the response
JSON string into an array of GenomeReleaseData objects. This array is then
returned back by to the SysadminController which updates the GenomeRe-
leaseTableModel with the GenomeReleaseData objects. And the user can now
see all available genome releases on the server.

8.1.8.3 Building the Tabs

8.1.8.3.1 Building the Administration Tabs

All tabs under the Administration tab are built in a similar fashion and then
added to a JTabbedPane in the SysadminTab class. Each tab has it’s own
package containing all classes associated to the particular tab. All tabs are also
built step by step by using smaller methods creating panels and components.
Each tab has at least one main listener that is added to all components that
require listeners. Once an event is triggered in a tab the corresponding listener
simply use a switch case based on button/tab names to decide which action to
take. The main listeners have an instance of the SysadminController to be able
to further handle requests from the user and send them forward to the Model if
neccessary.

8.1.8.3.2 Important classes

The system administration part of the desktop application depends on quite
a few classes and is based loosely on the model-view-controller design pattern.
Here follows a list of the most important classes and a short desciption of their
function and responsibilities.

• SysadminController - Handles the communication between the Sysad-
minTab and the GenomizerModel. The SysadminController creates all

90 8.1. DESKTOP APPLICATION

ActionListeners for the buttons in the different views. Some minor com-
mands are handled within the sysadmin package, but user commands re-
quiring input or output from the server are recieved from the different
components of the SysadminTab and sent to the GenomizerModel which
converts them to Request objects and sends them on to the server.

• SysadminTab - Builds all of the different views that are displayed within
the system administration tab. When creating the views it also adds the
ActionListeners to the buttons and fields. It also holds a reference to all
of the view components it has created so that information can be sent to
and from the controller when needed.

• The listener classes - These are added to all of the components of the view
that the user can interact with. When an action is performed, the listener
performs the action that is assigned to the command string associated
with the action. All of the command strings are stored in the SysStrings
class for easy access.

8.1.8.3.3 Button and Tab names

To simplify the naming of buttons and tabs a class called SysStrings is used.
All buttons or tabs are named here and then this class is used when setting
the actual names. This is to avoid hard code as well as making names easy to
change and hence more dynamic.

8.1.9 Flow of the system

The sequence diagram in Figure 8.2 describes the flow of the system when the
user presses the download file button and the diagram in Figure 8.3 describes
how the desktop clients reacts to a login.

CHAPTER 8. SYSTEM DESIGN 91

Figure 8.2: UML sequence diagram of downloading a file

92 8.1. DESKTOP APPLICATION

Figure 8.3: UML sequence diagram of login

CHAPTER 8. SYSTEM DESIGN 93

8.2 Web application

This section describes the overall design of our system, first with a system
overview and then with more in depth information about our tabs.

8.2.1 How our web application works

Figure 8.4: A general build of a backbone web app.

Figure 8.4 shows how a backbone[11] web application works in general. We have
a user that interacts with a browser. A browser renders the DOM1 of our web
application. How it does this is up to the browser. Different browsers might
display it differently. Models and Collections will talk to the server to update
themselves. For example, our Experiments collection will retrieve experiments
from the server and update itself with a call to it’s fetch() method. Out of
the components that go into this figure, we are in charge of and only capable
of changing a few of these; View, Template, Collection and Model. See
Backbone in section 9.2.1 more information.

1Document Object Model, a convention for representing and interacting with objects in
HTML.

94 8.2. WEB APPLICATION

8.2.2 System overview

Figure 8.5: Overview of the relations between the different
Javascript prototypes in the system.

Since our app is built using Backbone[11], our app is divided into the parts
Misc, Views, Collections and Models. In Figure 8.5, we can see the system
overview. The views are the parts in green, the collections the parts in yellow
and the model the parts in red. The parts in grey represent the router which
belongs in our Misc category. It is responsible for rerouting links. For example,
when a user clicks the search tab, the router navigates to /search, but instead
of loading the whole /search over the page we are currently on, our router will
open our search tab below our navigation bar. The Misc category also holds
our Main.js, which is in charge of setting up and starting the app. The views are
responsible for the user interface, displaying information and handling events.
The collections and models are responsible for holding the data.

8.2.3 Search

The search tab has three views, that together make up the "Search Views" as
we have denoted them in Figure 8.5. When searching for data, the models and
collections will update themselves to contain the new annotations, experiments
and files pertaining to that particular search, so the Search Views can display
them. Once new data has been retrieved, the user can perform a number of
actions on the displayed data. For example, when a user chooses to remove a
file, the Search Views will receive the event, and tell the file’s model to destroy
itself. The model will then send a delete request to the server, and disappear.

In Figure 8.6 is a simple sequence diagram for the search tab. If a user enters a
query in the search field and then presses the search button, the Search view will
update the SearchResults collection to have a new query. Once SearchResults
has a new query, it will try to fetch search results corresponding to the query
from the server. If successful, new experiment models for every experiment
retrieved will be created and set in the SearchResults collection. SearchResults

CHAPTER 8. SYSTEM DESIGN 95

Figure 8.6: a sequence diagram showing what happens when a user
enters a valid search query and results are fetched.

then triggers a ‘change’ event that SearchResultsView listens to. When that
event occurs, SearchResultsView knows that SearchResults has been changed,
and re-renders itself.

8.2.4 Process

Process has a single view that is a modal, meaning that it is not a full page
like the other tabs but a pop-up that appears over the search view when a user
chooses an experiment to process. Process has collections and models to store
and send data necessary for a process, like genome releases available for the
chosen experiment’s specie.

8.2.5 Upload

The upload tab has three views, that together make up the "Upload Views" as
we have denoted them in Figure 8.5. Unlike search (see section 9.2.1) that uses
experiment and file models to retrieve information about experiments and files,
upload uses the same models to create new experiments and files. To do this,
it needs to be aware of what annotations are available, so it uses an annotation
type collection to retrieve the current annotations offered when a user wants to
create a new experiment.

96 8.2. WEB APPLICATION

8.2.6 System administration - Web

The system administration part of the web client is developed using the same
tools and frameworks as the rest of the web client. This admin part of the
system is made up of view classes, model classes and collection classes. The
classes are described below:

Classes used by all views

Gateway - this is a model class used solely for communication with the server.
It is a static class in the sense that it doesn’t have to be created. It only needs to
be included and then its functions can be called immediately without having to
be instantiated. The gateway class retrieves the URL from the main JavaScript
file this way the URL only needs to be declared once. The URL can then be
fetched by any class that includes the Gateway class.

SysadminMainView - the main view for the admin tab, this view is used
together with every other admin view. It contains a sidebar menu used to
navigate between different admin views.

Classes used to handle annotations

Annotation - this is a backbone model that represents an annotation. An an-
notation consists of three fields. A name, a list of values and a forced field. The
name simply specifies the name of the annotation. The list determines whether
this annotation is a drop-down list, or a free-text field. If the list contains one
element called free-text, the annotation is a free-text field. Otherwise it is a
drop-down list with the values in the list. The forced field determines if the
annotation has to be filled in by the user when a file is uploaded.

Annotations - this is a backbone collections that consists of several Annotation
models. It also has a URL that it uses to fetch annotations from the server, the
URL is retrieved from the Gateway class.

AnnotationsView - this view is the basic view for displaying annotations.
It has a search field and a button for creating new annotations. Pressing the
button renders the newAnnotationView.

The AnnotationsView has a child view called AnnotationListView. This way
the list view can be rendered separately from the search field when the user
types in searches.

AnnotationListView - this view uses the Annotations collection to fetch all
the annotations from the server and renders them dynamically in a list. In
the list is an Edit button for every annotation, the edit button will retrieve
the name of the desired annotation and navigate through the router to the
EditAnnotationView with the name as a parameter. The view also has a button

CHAPTER 8. SYSTEM DESIGN 97

that will take the user to the NewAnnotationView.

EditAnnotationView - this view uses the name parameter received from the
AnnotationListView to retrieve a specific annotation from the collection of an-
notations. It then renders the fields with the values from the annotation. This
view has a button to delete an annotation. It will send a delete message to the
server using the Gateway model to delete the annotation. An annotation can
also be modified in different ways.

NewAnnotationView - this view is used to create a new annotation. It con-
sists of a couple of fields and a create button. Pressing the create button renders
a ConfirmAnnotationModal which displays the values for the annotation.

ConfirmAnnotationModal - this class extends the ModalAC class. It is sim-
ply used to display information that the user has to confirm. Pressing confirm
creates a message using the Gateway class and sends it to the server.

Classes used to handle genome releases

GenomeReleaseView - this view is used for viewing, adding and deleting
genome releases. It contains a button ”Select files to upload” which opens up
file explorer and lets the user select one or multiple files for uploading. When
the user then presses upload the UploadGenomeReleaseModal will open. Below
the button the view has a table showing the current genome releases available
on the server. The user can hold the mouse over files too see all files included in
that genome release. A ”Delete” button is shown next to every genome release
and if pushed sends a delete request to the server through the Gateway class.

UploadGenomeReleaseModal - this modal shows the user which files has
been selected for upload and asks for information about which species and
genome version they are for. Then at the press of ”Upload” the files starts to
upload and the user will see a progress bar over the complete upload progress.

GenomeReleaseFiles - this is a collection with GenomeReleaseFile as models.
It handles the ordering and filtering of its models.

GenomeReleaseFile - this model represent a genome release and can contain
multiple files in itself since one genome release is almost never just one file.
This class takes case of uploading itself to the server and thereby also updates
the progress bar through events that propagate up to the GenomeReleaseFiles
collection.

8.3 Android application

The following sections describe the architectural design of the Android applica-
tion. All functionality of the system components are described in this section.
Worth noting is that the figures refered to in this section can be found further

98 8.3. ANDROID APPLICATION

down in the document.

8.3.1 Class Descriptions

The focus of the Class Descriptions section is on describing the functionality of
each class. The connection between the classes labeled model can be seen in
Figure B.1 while the other classes can be seen in Figure B.2. Both are located
in Appendix B.

8.3.2 Android activities

Activities are in Android used to contain visual components, i.e. fragments.
For anything to be displayed it must be a part of a fragment that is a part of
an activity. Each activity used in this application extends the class SingleFrag-
mentActivity which main purpose is to create a new fragment of an arbitrary
type. This means that in its current implementation the application contains
one fragment per activity and each fragment described in this section is coupled
with an activity. By extending SingeFragmentActivity one can easily implement
and visualize new Fragments.

CHAPTER 8. SYSTEM DESIGN 99

Fragment Classes
LoginFragment LoginFragment is the first view to be visualized

when the application is started. It allows the
user to connect to a server by specifying user-
name and password. The static class ComHan-
dler is used to send and validate the login request.
If the username and password are incorrect the
user will be informed through an android toast
explaining what happened. Likewise if the server
cannot be reached.
A successful login will start the SearchListFrag-
ment.

SettingsFragment SewttingsFragment is used for selecting which
server to use. There is also choices for adding,
deleting and editing server locations.

SearchListFragment SearchListFragment is the search-view for the
Genomizer app, the annotations that can be cho-
sen are downloaded from the server and they are,
as such, dynamic.

SearchPubmedFragment SearchPubmedFragment is a fragment that han-
dles the search if the user want to manipulate it
with the PubMed style of input. When started
the current search from the searchFragment is
converted and displayed for the user, who can
continue using the choosen search values in a
PubMed style.

SearchSettingsFragment SearchSettingsFragment handles settings for
which annotations are displayed in the search
result. Available annotations is shown in a
ListView and there is option to select annotations
and save into internal storage. There is an option
to set default settings which will show first two
available annotations together with experiment
name and who the experiment is created by. Set-
tings for using available settings or using default
settings is stored in a file in internal storage.

ExperimentListFragment ExperimentListFragment handles the displaying
of search results to the user. The fragment in-
cludes a ListView with an ArrayAdapter set to it.
An OnItemClickListener is used to detect when
the user is selecting an item in the list and is cur-
rently starting FileListActivity when a list item
is selected. This fragment receives a HashMap
with search values from SearchListFragment and
when activity is starting an ASyncTask is started
to send and receive search results from the server
through the ComHandler class. When an exper-
iment is selected from the list the file names be-
longing to that experiment is sent to FileList-
Fragment that will display the file information.

100 8.3. ANDROID APPLICATION

Fragment Classes
FileListFragment FileListFragment displays all files associated with

a chosen experiment. The fragment is using three
ListViews, one for each data type. The data types
that are available are: raw, region and profile. Each
list element will show the name of the data file and
have a checkbox connected to it. A custom Ar-
rayAdapter is used to handle checkbox interaction
and displaying information to the user. There is
option to select multiple files in the view by check-
ing several checkboxes. The file names displayed
are the ones currently available from the server for
each available experiment.

SelectedFilesFragment SelectedFilesFragment gives the user an overview of
all files added to the selected files. The view con-
tains a TabHost which in turn consists of a number
of fragments. The selectedFilesFragment lets the
user explore the tabs by either swipe or by simply
pressing the tab the user wishes to see. The tabs
consists of the following fragments; RawFragment,
ProfileFragment, RegionFragment.

RawFragment RawFragment keeps track of all raw-files added to
the selected files. When this fragment is first cre-
ated it collects all saved raw files of the type raw
from the DataStorage and initializes a listview, vi-
sualizing the objects.

ProfileFragment ProfileFragment keeps track of all profile-files added
to the selected files. When this fragment is first cre-
ated it collects all saved files of the type profile from
the DataStorage and initializes a listview, visualiz-
ing the objects.

RegionFragment RegionFragment keeps track of all region-files added
to the selected files. When this fragment is first cre-
ated it collects all saved files of the type region from
the DataStorage and initializes a listview, visualiz-
ing the objects.

CHAPTER 8. SYSTEM DESIGN 101

Fragment Classes
ConverterFragment ConverterFragment displays to the user all the differ-

ent parameters the conversion can have and what is
expected of them. The different inputfields are con-
nected together, so that the user has to fill them out
in the right order to be able to get access to the next
field. There are some exceptions to that manner, the
first two parameters Bowtie and Genome-release has
to be used to start a conversion. After that the follow-
ing fields has to be filled out to gain access to the next
inputfield, the last two fields are also an exception to
that as they are linked together to form the parameters
for the ratio-calculation. When created the fragment
calls the server in an async-task and retreives infor-
mation about the different genome-releases that is to
be found on the server, a spinner with the choices are
setup when downloaded. The inputfields are collected
when the user press the convert button, by checking
which fields/toggleButtons that are enabled. When
collected the parameters are sent to the server in an-
other async-task, when the conversions are started and
confirmed by the server the ProcessFragment is started
up.

ProcessFragment ProcessFragment is a fragment that presents the user
with information about the status of the different con-
versions that is currently under progress on the server.
When created, the fragment will start an async-task
and retreive current conversion status from the server.
The information is visualized in a listview.

102 8.4. IOS APPLICATION

Model Classes
ComHandler ComHandler is a static object that is called by the

fragments in the view to gain access to the models
different functions. At this stage the ComHandler
can be used to login, search for files and to request
raw to profile conversions, although the latter is
not yet integrated. The url that ComHandler tries
to communicate with can be changed with a public
method which makes it possible to implement a
way for the user to change server.

Communicator Communicator is used to manage the sending and
receiving of messages between the server and the
application using a http connection.

MsgFactory MsgFactory creates the JSON messages that can
be sent to the server.

MessageDeconstructor MessageDeconstructor interprets JSON messages
and returns appropriate information.

GenomizerHttpPackage GenomizerHttpPackage stores the body and status
code of an http-response.

GeneFile GeneFile is used to store and transfer the informa-
tion of a genome file.

Annotation Annotation is used to store and transfer one or
several annotations and their value.

Experiment Experiment is used to store and transfer informa-
tion about an experiment.

ProcessingParameters ProcessingParameters is used to simplify the
transfer of parameters in a processing request.

DataStorage DataStorage is used to save lists of GeneFile ob-
jects on the device locally. DataStorage is a static
class, which makes it possiblr to access the saved
data anywhere in the application. This simplify
the transfer of files between activities.

GenomeRelease The GenomeRelease class is used to store informa-
tion about a genomerelease.

ProcessStatus ProcessStatus is used to store information about
the status of a process.

Genomizer The purpose of Genomizer is to make it possible
to create and visualize toasts anywhere in the ap-
plication. Genomizer is a static class that extends
Application.

8.4 iOS application

The following sections describes the system design of the iOS application. The
overall system design is discussed followed by a more detailed description of how
the segues are controlled.

CHAPTER 8. SYSTEM DESIGN 103

8.4.1 Overall system design

The system is designed using the model-view-controller principle. Each view
is controlled by its own controller class which reacts to user input and triggers
changes in the model and updates the view accordingly.

Figure 8.7: UML diagram.

Figure 8.7 gives an overall image of the system design. Some classes are excluded
from the figure to make it easier to get an overall idea of the system. The
controller classes of the table cells and some other controller classes are not
illustrated in the diagram. The non-excluded classes are described in Table 8.1.

104 8.4. IOS APPLICATION

Class Description
Annotation Contains information about an annotation and

can format the annotation name to an aestheti-
cally more pleasing representation.

DataFileViewController Controls the File view presented in Figure 4.54.
It contains a reference to an experiment and lists
all its files in a table.

Experiment A class that contains information related to an
experiment, as well as its files.

ExperimentDescriber Generates a description of an experiment using
annotations chosen by the user.

ExperimentFile Contains information about a file from an exper-
iment.

ExperimentParser Parses experiment information from a NSDic-
tionary to an Experiment object.

FileContainer Contains files and sorts them by file type.
JSONBuilder Creates different JSON requests.
PubMedBuilder Creates a pubmed search query.
SearchResultController A controller class for the Search Results view pre-

sented in Figure 4.53. It configures the table
which holds the information about the experi-
ments a search resulted in. An ExperimentDe-
scriber is used to generate a description of the
experiments.

SearchViewController A controller class for the Search view, see Fig-
ure 4.52. It checks which annotation-fields are
used and tells the JSONBuilder to generate a cor-
responding search query when the user presses the
search button. The class also contains a advanced
search to allow the user to manually enter search
queries.

SelectedFilesController A controller class for the The selected files view
shown in ??. The selected files controller contains
information about files saved by the user.

ServerConnection Sends and receives JSON objects to and from the
server.

Table 8.1: Description of some classes of the system.

CHAPTER 8. SYSTEM DESIGN 105

A more detailed description of these classes, and the ones not mentioned here,
can be found in comments in the source code.

8.4.2 Segue controll

To avoid several segues to be executed at the same time, a segue controll pack-
age has been implemented. Instead of extending UIViewController, UITable-
ViewController, UITabBarController and UINavigationBar the corresponding
XYZ class should be used instead. An overview of this design can be seen in
Figure 8.8. This figure also includes the classes XYZDataFileController and
XYZSearchResultController as two examples of such implementations.

Figure 8.8: UML diagram describing the segue controll.

8.5 Server

The system design of the different parts of the server.

8.5.1 Communication

The server is based around HTTP, where clients send requests on a non-persistent
connection and the server responds to these requests. All communication is ini-

106 8.5. SERVER

tiated by the client and the server has no way of contacting clients except when
responding to a request.

Clients send requests to the communication part of the server first. When a
request is recognized by the server, the request is parsed and a command is
created depending on the request. The command then communicates with the
other parts of the server in order to extract or input relevant data.

To identify clients a unique token is used, which is generated when a user logs in
by comparing the sent password with the password on the server. The password
is stored in a sha-256 hashed and salted string on the server. The password is
sent from the client in plain text.

The token is sent back to the client, and the client must include this token with
all following requests. Since there is no persistent connection between the client
and the server this token is the only way for the server to identify the sender
for any given request. The token is also used to prevent unauthorized requests
from being executed on the server.

Most commands are executed immediately when the server gets a request, and
the result is sent back to the client when the command is finished. This happens
when for example searching the database. To take away some effort from the rest
of the system, a queue with all the heavy ProcessCommands runs on another
thread. These commands are executed one at a time in the order first in first
out.

The commands implemented for the server are:

• login

• search

• annotation

• experiment

• file

• process

• genomeRelease

The login command can take either a ′POST ′ method or ′DELETE′ method,
depending on if the user wants to log in or log out.

search is used for searching for experiments in the database. Results will display
all experiments which match the search query, and the user can chose o expand
these experiments in order to view the containing files.

The annotation command can be used to modify and view annotations asso-
ciated with experiments. The server can respond to a ′GET ′ request with an
array of all possible annotations currently in use in the database. There is also

CHAPTER 8. SYSTEM DESIGN 107

possible to add new annotations, update the values for an annotation or delete
a complete annotation field.

Clients can get information about a specific experiment by using a ′GET ′ to-
gether with this command. The server will respond with information about
the experiment as well as information about all the files associated with the
experiment. Clients can also add, modify and delete experiments.

An experiment contains files which can be uploaded with this command. A
′POST ′ will let the client upload a file to a specific experiment. Clients can
also download, modify and delete files. When a client downloads a file, the
communication part of the server is never contacted. This is because a download
URL is already present in the file on the client side. Therefore no contact is
needed with the communication part of the server, but instead the file system
server takes care of the request.

In order to convert files, the client can send the command process together with
a ′PUT ′. This will convert specific raw files into profile files. If the client instead
sends a ′GET ′ it will receive a list of all processes started, and their remaining
time until completion.

genomeRelease can be used to edit genome releases, these files are then used
when converting files. The client can specify to convert a file from one genome
release to another, if it exists in the database.

A more detailed specification of the API can be found in Appendix E.

8.5.2 Data Conversion

The Genomizer service needs to be able to convert, process and visualize data.
This chapter explains how this is done in the system.

As can be seen in Figure 8.9 the RawToProfileConverter extends the Execu-
tor class. When a call comes to the ProcessHandler it then starts the correct
conversion which right now only can be a raw to profile conversion.

8.5.2.1 Executor

The executor class, as seen in figure 5.2.1, is a abstract superclass that is an
entity that is able to execute various commands. The executor class is able to
run programs as well as scripts and shell commands. In order to run scripts and
programs the executor has a parse-function that parses a string into separate
arguments.

108 8.5. SERVER

Figure 8.9: Class-diagram for Process

executeCommand executeCommand is a private method that
is being used by the executeScript, ex-
ecuteProgram and executeShellCommand
methods. Firstly a processBuilder is used
to ensure a safe way to execute commands,
after that the working directory is set and
the error output stream is merged with
the standard output. After a command
has been started the output stream is then
recorded with the help of a scanner object
and a stringBuilder object. When the com-
mand has been executed the recorded string
is sent back to the caller.

executeScript/executeProgram Both methods are very similar. The dif-
ference is that executeScript has a static
file-path added to the second argument.
This is because the first argument when
calling a script is the script language in-
stead of the actual script file. E.g. shell
resources/script.sh.

parse In order to receive a command string and to
be able to run it a parse method had to be
implemented. This is because the process-
builder takes a String array as argument.
With the help of a tool called stringTok-
enizer the string is parsed into a String ar-
ray separated on spaces.

cleanUp Receives a stack with folder names as
strings and removes the folders files and
then the folder itself. Used to clean up after
a process have been executed and generated
files during the procedure.

CHAPTER 8. SYSTEM DESIGN 109

8.5.2.2 RawToProfileConverter

The purpose of the RawToProfileConverter class is that it will be used by Pro-
cessHandler and do all the different steps needed to make a raw file. These
steps are done by using the program BowTie and by running two different
scripts which are executed with methods that is extended from Executor class.
When ratio calculation is supposed to be done, there are 2 more steps that will
be done.

8.5.2.3 Description of Procedure

A description of the steps the procedure method does to create profile data from
raw data, all steps are run in order and the user can choose at which step to
stop the procedure and get a file from the last executed step.

1. BowTie: Creates unsorted .sam files. Puts the files in a created temp
folder with the name result_X, where X is the number of the current
thread. All other folders created is placed inside the folder from where
the files used where placed.

2. sortSam: Sorts the .sam files and creates new .sam files. Puts the files in
a folder called sorted.

3. Run Gff : Processes the sorted sam file and creates a gff3 file. Puts the
files in a folder called reads_gff.

4. Allnucsgr : Processes the gff3 file and creates a sgr file. Puts the files in
a folder called allnucs_sgr.

5. Smooth: smooths the file and creates a large .sgr file, converted the cus-
tomers Perl script by following the algorithm they sent us. This makes it
more efficient. Puts the files in a folder called smoothing.

6. Step: Takes the smoothed .sgr file and takes samples from it with a spec-
ified interval and creates a smaller .sgr file. If stepping is done the files
will be placed in the same folder as the previous step.

7. Ratio Calculation: Creates four .sgr files with the Perl script provided by
the customer. Puts the files in a folder called ratios.

8. Smooth: After the ratio calculation, smoothing needs to be done again
with different parameters. Puts the files in a folder called smoothing

110 8.5. SERVER

procedure Executes all the steps to make a profile .sgr file
from a raw file, it checks the directory it gets
as file-path so that it contains the raw files and
that there are not more then two files, but at
least one file to process. Does the procedure to
create a profile data and move it to the folder
thats specified as a parameter.

runBowtie Constructs a long string with the full execu-
tion line for BowTie. It then uses this string
as a parameter when calling the method parse.
The resulting array is then used when calling
executeProgram and the result of the execu-
tion is returned.

sortSamFile Constructs a string with the full execution line
to sort a sam file. It then calls parse to create
a string array from the full string and sends it
as parameter to executeShellCommand which
runs a shell command to sort the file and cre-
ates a new .sam file that is sorted with the
specified parameters.

• makeConversionDirectories

– Creates the necessary directories
used by RawToProfile’s procedure
to put the temporary files needed
to do all the steps to create a pro-
file .sgr file.

• initiateConversionStrings

– Defines all strings needed for the
directories created when procedure
is doing its work. Also defines a
string for each step in the proce-
dure, which gets passed to the cor-
responding execute methods.

getRawFiles Constructs a File object with the parameter
inFolder that should be a directory where the
.fastq files that the procedure should run on
are. returns an array of File objects with all
the files procedure will be using.

makeConversionDirectories Creates the necessary directories used by Raw-
ToProfile’s procedure to put the temporary
files needed to do all the steps to create a pro-
file .sgr file.

initiateConversionStrings Defines all strings needed for the directories
created when procedure is doing its work. Also
defines a string for each step in the procedure,
which gets passed to the corresponding exe-
cute methods.

validateParameters Validates all parameters for the steps proce-
dure should run on. Checks whether a step
should be run. If so, validates that steps pa-
rameters, returns true if everything is correct.

checkBowTieFile Checks that bowtie succedded to run and that
the result is ok. Checks that bowtie created
the file it should and that the size of the file is
not zero. If everything was correct it returns
true.

validateInFolder Perform a check on the parameter inFolder
that should be a string with a path to where
the files to be processed should be. If the
string ends with a "/" it gets removed from
the string.

runSmoothing When implementing the scripts to create pro-
file from raw we realized that the smoothing
script used alot of memory to run, so we de-
cided to convert it and try to optimise it. The
result was a improvement and in this method
we uses the smoothing a version of the smooth-
ing that got approved from the customers.
The method sets up all parameters the way
the smoothing class wants them in and fixes
all the paths then we run the smoothing, The
method checks whether ratio calculation have
been run before smoothing or not and sets the
paths and parameters accordingly.

isSgr Gets a string that should be a filename with
the file extension and checks if the file exten-
sion is ".sgr", if so it returns true.

correctInFiles Takes an array of File objects and checks that
it contains a correct amount of raw files to
process.

doRatioCalculation Initiates a string using the incoming parame-
ters and executes the the script to do Ratio
calculation, uses the method executeScript to
execute.

checkBowTieProcessors Bowtie has a parameter where the number of
processors used can be specified, we want to
restrict the user from being able to run bowtie
on all the cores on the server cause that would
slow it down. Instead we make it so that
bowtie runs on all but 2 of the available cores
on the system.

verifyInData Makes a initial check so that all the incom-
ing parameters to the procedure method not
is null. Also checks that the array string with
parameters is correct size, not zero and not
bigger then eight.

CHAPTER 8. SYSTEM DESIGN 111

8.5.2.3.1 BowTie

BowTie takes two raw .fastq files and converts them to .sam which is the first
step to make the desired .sgr files. After a .sam file is converted the Linux
command sort is run on both files which creates two sorted .sam files, it is
sorted by chromosome and position as needed to use the scripts.

8.5.2.3.2 Used scripts

The different functions of the Perl scripts is explained below. They are explained
in the same order that they are executed. All scripts take a directory of files to
be processed as input parameter.

112 8.5. SERVER

sam_to_readgff_v1 Makes a .gff file from a sorted .sam that have
reads at each nucleotide positions. No input
parameters except the directory of the sorted
sam files are needed. The resulting files are put
in the new folder reads_gff.

readsgff_to_allnucsgr_v1 Counts the reads from the previous script re-
sult. For each chromosome reads are read
and each nucleotide position is incrementally
counted with one when a read cover it. No pa-
rameters are needed for this script except the
file path of the gff files. The resulting files are
put in the new folder allnucs_sgr.

ratio_calculation_v2 Does ratio calculation on the processed files, for
each position in the IP sample with at least one
mapped read, a ratio of IP - input (on a log2
scale) is calculated. If the read count in the
input is below the read count mean (in the in-
put sample) is calculated it is set to the mean
(or double mean (2 x mean) as user specified).
If the input mean is below four the minimum
input value is set to four (to avoid division by
near zero values. Calculated as (read length
x approximate total number of reads in input
samples(9 millin))/ genome size (for Drosophila
melanogaster 120381546)). A random number
between -0.5 and 0,5 is added to the read counts
before log2 conversion to make them discrete
for statistical analysis. All ratio values are then
adjusted by reducing each value by median of
the ratios. This linear adjustment is carried
out in order to compensate for differences in
IP and input sequencing depth. Also, to visu-
alize ratios distribution, ratios are plotted by
binning ratios with user specified numbers of
bins and minimum and maximum ratio values
(200bins,minimum ratio value: -10, maximum
ratio value:10). Ratio values are printed in sgr
format.

8.5.2.4 Smoothing and stepping

The scripts that was provided was inefficient and in order to reduce ram usage
and getting faster Raw-To-Profile conversion we rewrote the smoothing and step
scripts into a built-in solution in the java server.

CHAPTER 8. SYSTEM DESIGN 113

8.5.2.4.1 SmoothingAndStep

Smoothing means that we either calculate the trimmed mean value or median
value for a position and its surrounding positions. The number of positions we
should smooth on is called the Window Size. For example: if we have a window
size of 10 we will calculate the smoothed value on position X by calculating
on the interval (X-4, X+5). We also need to have a "minimum positions to
smooth" number, which tells us that if we have fewer rows to calculate on than
the "minimum positions to smooth" we shouldn’t smooth at all. There’s also
one parameter called stepSize, if the stepSize is one the program will not do any
stepping but if it’s larger than 1 stepping will be done. Stepping is handled in
this program by simply checking every time we are going to write to the new
file if the current row’s position is divisible with the stepSize, if it is we write to
the file, otherwise the row is discarded.

The class SmoothingAndStep have one public method and many private ones.
The public one called smoothing starts by validating the inparameters and set-
ting up file readers/writers. It then reads as many rows from the file as the
window size into an array. It then checks which values that have been read that
should be smoothed, after this is done the initiation of the program is complete.
From then on the program removes the first row from the array and add one new
row to the array and then smooth the middle one in the array. This continues
until the end of chromosome or end of file both of which are handled in a similar
way. When the program approaches end of chromosome it smoothes as many
values as it can until there’s less values to smooth than "minimum positions to
smooth". It then empties the array and refills it in the same way as it did in
the beginning of the file.

The program can handle file corruption to some extent. If the file contains
empty or wrongly formatted rows the program will not crash, it will simply
ignore the corrupt rows.

The program can also calculate the total mean value of the whole file.

8.5.2.4.2 Tuple

The tuple class is a data carrier that represents one row of data in an sgr
file. It consists of the fields chromosome, position, signal and newSignal. Where
signal is the signal-value read from the infile and newSignal is the updated value
after smoothing have been done. The methods in this class are all standard
getters/setters except for the method toString which formats a row for the
outfile and rounds of decimal numbers. The constructor is also of interest since
it parse a row on tabs. Thus the fields in an infile needs to be seperated by tabs
and not spaces. The constructor will throw an exception if the line it tries to
parse is either null or if it does not consist of three columns separated by tabs
where the first is a string and the second and third is a double.

114 8.5. SERVER

8.5.2.5 ParameterValidator

Used by RawToProfileConverter to validate the parameters used by the steps
in RawToProfileConverters procedure.

8.5.2.5.1 validateSmoothing

Validates all the parameters that will be used in RawToProfiles procedure to
smooth files. All parameters needs to be integer numbers and be a positive
number, smoothing takes five parameters.

8.5.2.5.2 validateStep

Validates parameters used in the implementation of the smoothing script for
the stepping part, takes a string and parses it to become an array of string with
each parameter in a index. Checks that there are two parameters in and that
the second parameter is a number above zero.

8.5.2.5.3 validateRatioCalculation

Vaildates all parameters used in RawToProfiles procedure when it runs ratio
calculation and smoothing on the files. Ratio calculation takes three parameters.

1. Needs to be "double" or "single".

2. Needs to be a positive integer.

3. Needs to be a positive integer.

8.5.2.6 RawToProfileChecker

A class used to calculate which steps in the raw-to-profile conversion to be run.

• calculateWhichProcessesToRun

– Takes the parameter string array as input and calculates which pro-
cess steps to be run

• shouldRunBowTie

– returns a boolean which represents if bowTie should be run or not.

• shouldRunSamToGff

– returns a boolean which represents if samToGff should be run or not.

CHAPTER 8. SYSTEM DESIGN 115

• shouldGffToAllnusgr

– returns a boolean which represents if gffToAllnusgr should be run or
not.

• shouldRunSmoothing

– returns a boolean which represents if smoothing should be run or not.

• shouldRunStep

– returns a boolean which represents if Stepping should be run or not.

• shouldRunRatioCalc

– returns a boolean which represents if ratio calculation should be run
or not.

8.5.2.7 SmoothingParameterChecker

A class used to validate and convert the smoothing and stepping parameters
into a string representation. Is used by the program to give the files the correct
name which is needed by the ratio calculation script.

• getWindowSize

– Returns the string representation of window size which is used when
naming the file.

• getMinProbe

– Returns the string representation of minimum probe which is used
when naming the file.

• getSmoothType

– Returns the string representation of smooth type which is used when
naming the file.

• checkSmoothParams

– returns a boolean which represents if the parameters are in the correct
format.

8.5.2.8 StartUpCleaner

A class used at the initialisation phase of the server program. If the program
crashed during a raw to profile processing this class removes the temporary files
and directories that had been created.

• removeOldTempDirectories

116 8.5. SERVER

– Removes temporary process directories and it’s contents. Takes a
string representation of the directory of which the temporary direc-
tories can be found as parameter.

8.5.2.9 ProcessHandler

The ProcessHandler is a controller that handles process-calls. Depending on
the name of the process it handles it differently. It acts as an interface between
the process-module and the rest of the program.

8.5.2.10 Logic & interface

The main logic in the ProcessHandler is a switch-case that switches on the
name of the process being called. For example if the name of the process is
“RawToProfile” is sets up a RawToProfile-converter and calls it.

processName A string that tells the handler which kind of
process should be executed.

procedureParams A list of string with the parameters to the dif-
ferent external programs/scripts that will be
called during the execution. The first element
will be a string with parameters/flags for the
first external program that will be called, and
so on.

inFile A string with a path to the directory contain-
ing the files that should be operated on.

outFile A string with a path to the directory where
the result .sgr files should be put.

8.5.3 File-transfer

In the current version of the program the desktop clients and the web clients
connect to different software on the server. The desktop clients connect directly
to the server communication software whilst the web clients connect via the
apache server and all non web requests that is to be calculated using the server
software is automatically redirected by apache. The redirect is setup in a way
that all GET requests that have a /api/ tag in the URL will be redirected.
The exception for the desktop clients are file up- and downloads which are done
through the apache server.

The download and upload will work for all platforms although this will not be
implemented for Android and iOS clients due to hardware limitations.

If the client wishes to upload a file to the server they first send a request to the
server-system which authenticates the client and stores the annotations for the

CHAPTER 8. SYSTEM DESIGN 117

file. The download and upload path is validated by the script to ensure that no
invalid paths are sent to the scripts.

Two PHP-scripts are used for uploading and downloading files via Apache. If the
user wants to upload a file, the PHP-script will try to store the file in a location
on the server provided by the client. A script for downloading files from the
GEO database and saving them on the server is currently being implemented,
although not yet fully tested nor implemented by the clients. See Appendix F
for examples when using the PHP-scripts.

In Figure 8.10 below it is shown how the systems handles the different types
of messages the client-systems can send. The big square represents the Apache
server with different parts of the Apache server within. The iOS and Android
clients can only send some requests to the server-system. Meanwhile, the desk-
top client can send requests to the server-system and upload and download
to/from the web server. The web client sends all its messages to the Apache
server and if it is a request to do some sort of computation it will be redirected
to the server-system and if it is a download, upload or web-page message it will
be sent to the web server.

Figure 8.10: The different types of messages sent between the sys-
tems.

The current version of the system utilizes a file structure to organize HTML-
and file requests on the server, the structure is illustrated in Figure 8.11. The
Web-root folder contains the PHP-scripts for uploading and downloading files.
The app folder contains the Genomizer web page. All folders of the experiments
are located in the data folder, which contains folders for the different data-types.

118 8.5. SERVER

Figure 8.11: Illustrating the current file tree on the server machine.

8.5.4 Data Storage

In order to enable the annotation and subsequent searching for experiments and
files the data stored on the server is complimented by a database of information.

Each file uploaded to or generated by Genomizer belongs to an experiment
which is identified by the experiment ID (expID). Each experiment created by
the end user results in an entry in the database’s Experiment table.

Each experiment contains files that were either generated during the experiment
(raw data) or processed from these files (profile or region data).

The full database schema is shown in Figure 8.12. The tables and columns
currently not utilized by Genomizer are in grey. These have not been removed
from the database under expectation of future development.

CHAPTER 8. SYSTEM DESIGN 119

Figure 8.12: The database schema

120 8.5. SERVER

8.5.5 Database Design

The following section will explain the less obvious columns and their intended
use.

FileID is the identification number for a specific file. The data type SERIAL is
used and will therefore be auto–generated by the database upon insertion.

Path is the path to the corresponding file in the file system, for example:
/var/www/data/Experiment1/raw/rawFile1.fastq

MetaData is the string of parameters used in processing and should be NULL for
all raw files.

Annotated_With is the table that enables the annotation of experiments, for
example:

Experiment1 Species Dog

Annotation is the table containing all the possible annotations a user can use
to provide extra information about an experiment. This includes the type of
annotation which is Drop Down for annotations where the user can choose from
a drop down list, or Free Text where the user can enter the value freely. There
is also support for a default value and annotation forcing where users are forced
to provide the information, for example:

Species DropDown Human T

Annotation_choices is the table specifying the choices for Drop Down anno-
tations, for example:

Species Dog
Species Fly

The Genome_Release table stores information about the Genome Releases avail-
able for use. This includes the unique version code for a Genome Release[20].

The Genome_Release_Files table stores the information about the files that
make up the Genome Release.

8.5.6 The Data Storage Subsystem

All the classes used in the manipulation of the database and the creation of
the file systems directory structure is contained in the java project’s database
package.

CHAPTER 8. SYSTEM DESIGN 121

The otherGenomizer subsystems execute all updates to the data storage through
the DatabaseAccessor class. As a result there are many methods in this class,
however most methods send the request on to the classes in the database.subclasses
package. Here the methods that modify the different areas of the data storage
system are broken up into different classes of a more manageable size. An
UML diagram of the DatabaseAccessor class and its subclasses is available in
Figure D.1 in Appendix D.

The DatabaseAccessor utilizes a number of classes in order to return informa-
tion to the method caller. These classes are contained in the database.containers
package and are as follows:

• Experiment

• FileTuple

• Annotation

• Genome

An UML diagram of these classes is also available in Figure D.2 in Appendix D.

8.5.7 Interaction

Below are examples of typical interactions with the DatabaseAccessor class.

8.5.7.1 Adding an experiment

In order to add an annotated experiment the following steps must be followed:

1. First the addExperiment method must be called. This will add one exper-
iment to the database without any annotations set for that experiment.
If you try to add one experiment that already exist then the addition will
be refused and an exception will be thrown.

2. If there are no annotations that can be used to provide extra information
about the experiment they must first be added by calling the addFreeTextAnnotation
or addDropDownAnnotation methods.

If a Drop Down annotation already exists, but there is no suitable
choice for the experiment a choice can be added by calling the AddDropDownAnnotationValue
method.

3. An available annotation can be used to provide extra information about
an experiment by calling the annotateExperiment method.

Now that an experiment has been added files can be added added to it.

122 8.5. SERVER

8.5.7.2 Annotation Handling

getChoices gets all the available annotation choices connected to a specific
label. For example the possible choices returned for the label "sex" might be
"Male, Female and Unknown".

getAnnotations returns all annotation labels currently stored in the database.
Examples could be "Sex,Species,Tissue,etc.".

getAllAnnotationObjects Combines the two previous methods. Here an an-
notation object is returned that holds all the relevant information including the
label, datatype, and the possible choices for a Drop Down annotation.

changeAnnotationLabel updates the given label in the database. This will
change the label for all experiments that use it. For example changing "specie"
to "Species".

changeAnnotationValue updates a value for a specific annotation label. For
example changing "Human" to "Homosapien".

updateExperiment Updates an annotation for one specific experiment. Ex-
ample: "experiment1, Species, Homosapien" can be changed to "experiment1,
Species, Fly".

deleteAnnotation deletes an unused annotation from the database. This will
also delete all the choices for that annotation.

removeAnnotationValue removes a single annotation value for a particular la-
bel.

8.5.7.3 File Handling

To add a file you will need to have an experiment added before you call the
addNewFile method. Raw files usually come in pairs and so they can be added
together by specifying the input file name.

deleteFile deletes the given file from both the database and the file system.
This can be done by either specifying the path or the file’s ID number.

Genome release files must be added one at a time by calling the addGenomeRelease
method. This returns an upload URL.

removeGenomeRelease removes all the files associated with a genome release.
This can only be done if there are no files that have been generated using the
specified genome release.

CHAPTER 8. SYSTEM DESIGN 123

8.5.8 Apache

The Apache HTTP Server, or commonly referred to as Apache, is the web server
application which is used to upload and download files to and from the server.
Apache is open source, which makes it free to use. Apache is a good choice
because it is developed and maintained by an open community, that way all
new versions and updates will become available for free. Since it is open source,
the source code is open for everyone to read. Apache can be used on both
Unix/Windows systems. In this case it is running on a Unix machine but can
still communicate with all platforms.

8.5.8.1 Server user manual

The Apache server is controlled from the terminal. This can be done either
directly from the server or remotely from another computer using Secure Shell
(SSH). To use SSH from another computer, write

ssh username@address.to.server

in the terminal. Enter the password for the server and then write the commands
directly in the terminal.

These are some of the most common commands for apache:
Action Command
Start Apache sudo service apache2 start
Stop Apache sudo service apache2 graceful-stop
Restart Apache sudo service apache2 graceful

Chapter 9

Implementation

This section contains the implementation of the different parts of the system and
what tests has been used to ensure its functionality. Here developers can get an
understanding of how and why the different parts of the server was completed.

9.1 Desktop application

The desktop client is implemented in java 7. The graphical part of the client
is made with java swing and the external library swingx. The tree table which
is used in the grapical interface is implemented using a modified version of the
JxTreeTable found in swingx. The modifications made to the JxTreeTable is
that a sorting mechanism has been added and it is possible for the user to choose
which columns to show.

The communication with the server is handled with a http protocol involving
JSON formatted bodies. The external library GSON and the Apache Http
Client are used for the communication.

For dragging and dropping files into the upload tab, the desktop client uses a
modified version of the class FileDrop, which was originally written by Robert
Harder and Nathan Blomquist and was released as public domain.

9.1.1 Testing

The testing of the system has been quite varied since a large part of the desktop
client consists of a graphical interface. The graphical part of the client was tested
throughout the developing process and the customers also had a part in testing
the interface. Another difficult part of the testing was the communication with
the server. A part of it was tested with JUnit tests but the larger part of the
testing was made manually by interacting with the GUI and communicating

124

CHAPTER 9. IMPLEMENTATION 125

manually with the server.

The client will be involved from an early point since the Scrum developing
methodology relies in delivering functionality as early as possible. Because of
this, it is given that the system will have bugs, and the client will be of assistance
in finding these bugs and reporting them. Before each release of implemented
functionality however, they are tested with the Test Cases enclosed to each User
Story.

A small number of JUnit tests has been done concerning communication with
server API.

9.2 Web application

9.2.1 Frameworks

To ease implementation a couple of frameworks have been used. The frameworks
are described briefly below.

9.2.1.1 Backbone

Backbone[11] is a light-weight framework that loosely follows theMVC (model,
view, controller) pattern. Out of the MVC components, backbone only has
models and views, and the view behaves much like a view and a controller.
Models are the parts of code that retrieves and populates data (for example,
the model Experiment will obtain and populate the experiments resulting from
a search). Views are the HTML representation of models, and they change
as models change (When the Experiment model is populated, it is immediately
presented on the view that contains that Experiment). Backbone makes use
of Events, where other objects can trigger events and listen to them, which
is an effective way to promote decoupling between components. It also uses
Collections, that are ordered sets of models. A collection will automatically
be provided with underscore array and collection methods for convenient set
manipulations (You can, for example loop through a collection with .each()
instead of writing a for-loop). We chose to use backbone because we wanted
more structure in our web application. With more structure, it is easier to
collaborate as we can divide up the work - keeping our Javascript in various
model, collection and view files.

9.2.1.2 Bootstrap

Bootstrap[12] is a front-end framework that contains HTML and CSS-based de-
sign templates for typography, buttons, forms, navigations, and the like. Instead
of creating our own buttons, deciding on colors, how big they are, and micro-
managing how they fit with everything else on the page, we can use bootstraps

126 9.2. WEB APPLICATION

templates that handles all of that for us, leaving us able to focus on architecture.
We chose to use it to save time on development and make the look of our web
app easily customizable.

9.2.1.3 RequireJS

RequireJS[15] is a file and module loader for Javascript. RequireJS lets files
require other files much like #include in Java. This is very handy for the
programmer. It is used because it helps to structure the application.

9.2.1.4 JQuery

The purpose of JQuery[16] is to make it easier to use Javascript on a website.
It takes a lot of common tasks that require many lines of Javascript code to
accomplish, and wraps them into methods that you can call with a single line of
code. It simplifies other things as well, like AJAX calls and DOM manipulation,
both of which are in frequent use in our web application.

9.2.2 Technologies used

A couple of technologies have been used in the development and are described
below.

9.2.2.1 AJAX

AJAX[13] stands for Asynchronous Javascript and XML. It is a technique
for creating fast and dynamic web pages. Despite the name, the use of XML
is not required; JSON is often used instead, as we have done in our web app.
AJAX allows web pages to be updated asynchronously by exchanging small
amounts of data with the server, so that you only update parts of a webpage
without having to reload the entire page (like websites that don’t use AJAX
have to). For example, when “search” is clicked in our navigation bar, only the
bottom half of the website is being updated, and displaying the search view.
The navigation bar does not have to be reloaded, but remains as it is on top.

9.2.2.2 JSON

JSON[14] is short for Javascript Object Notation and is a format that is
primary used to transmit data between a server and web application instead of
using XML or other formats. JSON is formatted as text which is easy to read
consisting of attribute-value pairs. JSON was used in this application because
JSON uses the same syntax as Javascript and therefore we do not need to make

CHAPTER 9. IMPLEMENTATION 127

our own parser as we would have to do for e.g. XML. JSON also works very well
together with Backbone as it has integrated methods using the JSON format.

9.2.3 Testing frameworks

For testing we have used three libraries to make testing easier: Chai, Mocha and
Sinon. Together they let us make a page for testing where all tests and results
will be shown visually. These libraries or testing frameworks will be discussed
below.

9.2.3.1 Chai & Mocha

Mocha[18] is a test framework while Chai[17] is an expectation framework.
While Mocha setups and describes test suites, Chai provides convenient helpers
to perform all kinds of assertions against Javascript code. We use these frame-
works to do unit testing on our models and collections.

9.2.3.2 Sinon

Sinon[19] is a framework used to “fake environment”. When doing unit testing,
we don’t want to depend on things that are external to the unit of code that we
are testing. We can use Sinon for stubbing and mocking external dependencies
and to keep control on side effects against them. For example, we can use Sinon
to create spies to see if an event has been triggered, and to create fake servers
that respond with fake pre planned responses to our queries.

9.2.4 Our Tests

Unit tests have been performed on all model and collection files that contain non-
trivial functions. All unit tests can be found in the root folder under /tests/,
more specifically /genomizer-web/tests/. To run the tests, simply open the
index.html in a web browser, and they will run. The views have not been unit
tested since it is overly complicated; instead they have been continuously man-
ually tested throughout the development process. In addition to these simple
development tests more official system tests have also been done by the desktop
group.

9.3 Android application

This section focuses on the communication between classes and how the Android
application works.

128 9.3. ANDROID APPLICATION

9.3.1 Login request

When the user starts the application and is prompted for a login, the the fol-
lowing sequence of actions is performed by the system (See Figure 9.1).

• User starts the application and is prompted with a login. Then the user-
name and password is passed on to the LoginFragment.

• LoginFragment sends a login request to the ComHandler, with the user-
name and password.

• The ComHandler initializes Communicator and sends a setupConnection
command to verify that connection can be made. Then initializes the
MsgFactory and request a login-package using the createLogin method.

• MsgFactory responds to ComHandler with a login-package in JSON for-
mat. Then the ComHandler calls the sendRequest method in Communi-
cator with the login-package and waits for reply.

• The Communicator connects to the remote Genomizer server with a HTTP-
request containing the login-package as a JSON object. If the search is
valid the server will respond with code 200 and a user-token as a JSON-
object.

• The JSON-object is then returned to the ComHandler which will store the
token and return a boolean to the LoginFragment informing if the login
was successful or not.

• If the response was true the LoginFragment will startup the SearchFrag-
ment and present that view to the user. The Login Fragment will be
terminated at that point.

CHAPTER 9. IMPLEMENTATION 129

Figure 9.1: Sequence diagram for a login-request

9.3.2 Search request

When the user sends a search request using the search view in the application,
the following sequence of actions is performed by the system (see Figure 9.2).

• User will make a search request on the screen and press on the search but-
ton. That will trigger the SearchFragment to startup the ExperimentList-
Fragment with the search string sent in as a Intent-Extra variable.

• The ExperimentListFragment will then initialize the ComHandler and call
the search method with the search-list provided by the SearchFragment.

• ComHandler initializes the Communicator and determines if a connection
can be made.

• If connection can be made the ComHandler initialize the MsgFactory and
calls the createRegularPackage method, which will return a pre-formatted
JSON-object to be used with the search request to the server.

130 9.3. ANDROID APPLICATION

• ComHandler calls Communicator using the sendRequest method passing
on the JSON-object containing the search-list, and waits for the reply
from Communicator.

• Communicator connects to the Genomizer server with a HTTP request
containing a JSON object with the search-list. The server will respond
with code 200 and a JSON-object with the search result from the server.

• Communicator will reconfigure the JSON object to a GHTTP1 to preserve
both the head and body from the server response. Then the GHTTP is
returned to the ComHandler.

• The ComHandler will initalize the MsgDeconstruct and send the collected
JSON-object containing the search result from the server to the decon-
Search method.

• MsgDeconstruct will parse the JSON-object to an ArrayList of experi-
ments, and return that to the ComHandler.

• ComHandler will then return the search-results to the ExperimentList-
Fragment that will present the results for the user on the screen.

1Genomizer HTTP package

CHAPTER 9. IMPLEMENTATION 131

Figure 9.2: Sequence diagram for a search-request

132 9.3. ANDROID APPLICATION

9.3.3 Request for Genome releases from the server

In order to be able to perform a conversion the genome release version has to
be supplied as a part of the parameters. This call will fetch all the available
genome releases from the server to be presented to the user in the conversion
menu. The flow of the retrieval of the genome releases follows theese steps (see
Figure 9.3).

• When the ConverterFragment is being creeated, the retrieval of the genome-
releases is started. ConverterFragment calls the ComHandler with the
getGenomReleases method and waits for response.

• The ComHandler will then initalize MsgFactory and call createRegularPack-
age that will return a JSON object to be used for the communication with
the server. The ComHandler then initalizes the Communicator and sends
the JSON by calling the sendHTTPRequest method in the Communicator.

• The Communicator will setup a HTTP connection with the server and pass
the JSON package to the server, which will respond with a JSON package
in return. The response code and the JSON-body is then converted into
a GHTTP package that is returned to the ComHandler.

• The ComHandler then will initalize the MsgDeconstruct and pass the
package to that object with a call to the deconGenomeRelease method.
The package is converted to an arrayList containing GenomeReleases and
the passed back to the ComHandler, which the will return the arrayList
to the ConverterFragment.

• The ConverterFragment then will setup a spinner with the numerous
choices to be presented to the user when choosing which conversion pa-
rameters to use with a specific RAW file.

CHAPTER 9. IMPLEMENTATION 133

Figure 9.3: sequence diagram for a request of Genome-releases on
the server

134 9.3. ANDROID APPLICATION

9.3.4 Request for conversion of RAW files to profile-data

When the user has choosen which conversion parameters to use and sends that
request to the server, this is the flow of calls that follows from the program (see
Figure 9.4).

• When the user click on the convert button, the ConverterFragment gathers
all the parameters that the user selected for the conversion.

• The gathered parameters is sent to the ComHandler by calling the raw-
ToProfile method. The Comhandler initalizes MsgFactory and calls the
createConversionRequest method and passing along the parameters. The
MsgFactory then will return a preformatted JSON message, with the spe-
cific parmeters set to it

• The ComHandler initalizes the Communicator and makes a sendHTTPre-
quest call with the created JSON message. The Communicator then will
open a HTTP connection to the server and send the JSON message and
wait for a response.

• When the response is received the Communicator will return the response
as a GHTTP package to the ComHandler, which will retreive the respon-
secode from the package. ComHandler then will return a boolean back to
the ConverterFragment, true if the conversion started successfully other-
wise false.

• The ConverterFragement will display the results of the started conversions
to the user based upon the returned boolean from the ComHandler. If the
conversion didn’t start successfully the genefiles name will be displayed for
the user, otherwise a toast with a summary about how many successfully
started conversions will be displayed to the user.

CHAPTER 9. IMPLEMENTATION 135

Figure 9.4: Sequence diagram for a RAW to Profile -data conver-
sion request

136 9.3. ANDROID APPLICATION

9.3.5 Request for status on conversions on the server

This request is made after a conversion is sent to the server to be able to track
the the progress of started conversions, it can also be accessed from the menu in
the application. To be able to receive current information from the server the
ProcessFragment calls the following sequence on creation or when the refresh-
button is pressed (see Figure 9.5).

• On creation or if the refresh-button is pressed the ProcessFragment will
call the ComHandler through the getProcesses method, the call is made
in a asyncTask and will run in a separate thread.

• The ComHandler then initalizes a MsgFactory and request a JSON pack-
age through the createRegularPackage method. Then initalizes a Com-
muncator and calls the sendHTTPRequest method with the JSON pack-
age and a get command for the server.

• The Communicator then will setup a HTTP connection to the server and
send the JSON package with a get command for the server. The re-
spons from the server is a JSON package with a response-code and a body
with information, and is passed back to the ComHandler converted to a
GHTTP object.

• The ComHandler then will initialize a MsgDeconstruct and call the de-
conProcessPackage and pass along the GHTTP object to that instance.
MsgDeconstruct converts the package and returns the information in the
form of an arrayList with ProcessStatus objects.

• Then the ComHandler will pass the arrayList to the ProcessFragment
that will setup a listview with the information provided from the server,
presenting information to the user about which processes there is, ETA
and other information.

CHAPTER 9. IMPLEMENTATION 137

Figure 9.5: sequence diagram for a request for process status on
the server

138 9.4. IOS APPLICATION

9.3.6 Testing

Testing has been done successively and the foremost type of testing has been
JUnit tests. Although regular running and logs have been done too.

All fragments mentioned in subsection 8.3.1 have been tested visually and
through running as no viable way of unit testing them was found.

Most of the classes labeled model in subsection 8.3.1 have been tested with a test
driven developlment approach, except for the small classes such as Experiment,
Annotation, GeneFile and GenomizerHttpPackage as they are very straight for-
ward (And they are indirectly shown as working through the tests of the other
classes).

Most tests are run against the mockup server. Albeit some are run against the
real server as the authenticity of both the methods ability to handle data as
well as their ability to get a response from the real server is relevant.

9.4 iOS application

The iOS application has been implemented using Objective C. The decision
to use Objective C was made largely because it is the standard language used
for writing iOS applications. In the following sections, details regarding the
implementation of the iOS application are described using sequence diagrams.
The section ends with a description of testing strategies.

9.4.1 Login

When the user tries to log in to the system, they enter username and password
and clicks on the login button. The username and password is sent to the server
which validates that they are valid. If they are valid, the user is presented with
the main view of the application, otherwise an error message is displayed. This
sequence is shown in Figure 9.6.

9.4.2 Search

Once the user is logged in to the system and they have reached the main view,
they can immediately start searching by selecting a number of search criteria
on the screen and pressing the search button. The search criteria are converted
into a valid PubMed -style query which in turn is converted into a valid HTTP
request and sent to the server. The server responds with all results matching the
search criteria and the results are presented to the user in a SearchResultView.
This sequence is shown in Figure 9.7.

CHAPTER 9. IMPLEMENTATION 139

9.4.3 Experiment Selection

In the SearchResultTableView, the user can click on an experiment to see which
files are contained in an experiment. The file contents of an experiment is
displayed in a FileView. The sequence is shown in Figure 9.8

9.4.4 File Selection

From the FileView, the user can select any number of files to add to a list of
currently selected files by pressing the switch button next to each file name and
pressing the Add to Selected files button. After that, the user can press the
Selected Files button to go to the Selected Files View. This sequence is shown
in Figure 9.9

9.4.5 Convert Request

As seen in Figure 9.10, convert requests are sent with very few steps.

140 9.4. IOS APPLICATION

Figure 9.6: Login sequence diagram.

CHAPTER 9. IMPLEMENTATION 141

Figure 9.7: Search sequence diagram.

142 9.4. IOS APPLICATION

Figure 9.8: Experiment selection sequence diagram.

CHAPTER 9. IMPLEMENTATION 143

Figure 9.9: File selection sequence diagram.

144 9.4. IOS APPLICATION

Figure 9.10: Send convert request.

CHAPTER 9. IMPLEMENTATION 145

9.4.5.1 Segue Control

A segue control package has been implemented to avoid multiple segues being
executed at the same time. When a segue is started, a static BOOL is set
to YES in XYZSegueController. When the segue is finished, the BOOL in
XYZSegueController is set to NO. This means that the BOOL is YES when
a segue is being executed, and NO otherwise. Every time a segue is going to
be executed, it first checks the value of the BOOL. If a segue is already being
executed, i.e. the BOOL is YES, the new segue is aborted.

9.4.6 Testing

We have worked using the principles of TDD, which means that Unit-tests have
been written for nearly all underlying classes. This includes JSONBuilder, Ex-
perimentDescriber, Experiment, ExperimentFile, and ExperimentParser. These
tests check all required functionality, including but not limited to proper object
creation. Exactly what all the tests do is explained in the test names and
comments. ServerConnection has not been tested, this is work for next years
workers. User interface functionality and integration testing has been done using
exploratory methods. Some UI functionality has been tested using automated
tests, where we recorded a certain combination of clicks, and let the computer
do them instead.

9.5 Server

In this section the server and its different subsystem are displayed. Information
about how the software design was realised in code will be provided.

9.5.1 Communication

This section explains implementation details of certain bits of the communica-
tion/control part of the system.

9.5.1.1 Doorman

The doorman is a class which handles all incoming connections and requests.
The doorman reads the header and checks what kind of HTTP method it is
(GET, PUT, PUSH, PULL or DELETE). A switch statement switch on these
different methods.

After switching on the different methods another switch statement is used to
switch on the different types of commands, for example /experiment, /file,
/search or /process. From that point a specific command object is created

146 9.5. SERVER

corresponding to the correct command, for example GET /experiment will
create a getExperimentCommand.

9.5.1.2 Authorization

The communication between a client and the server is authorized by a user-
unique token which is created when the user sends a login request. A token
is created when a user has logged in successfully and the token is sent back to
the user so that the user can thereafter use this in future requests. The token

Figure 9.11: 1. The user sends a login request without any autho-
rization token. 2. The server checks the given password. 3. The
server creates a unique token for the user. 4. Server sends the
token back to the user in a response. 5. Now that the user has a
unique token, the token is placed in the header whenever the user
sends another request.

created when a user sends a login is stored in the server memory until the user
sends a logout request.

9.5.1.3 Removing inactive tokens

The server has a function which removes inactive tokens after a set limit of
time. This is done because a client sometimes skips sending a logout request
when shutting down the client program. The InactiveUuidsRemover class is
used to achieve this goal. In a thread it sleeps for one hour before checking
all clients. If any client hasn’t sent a request for 24 hours, the client token is
removed from the server memory.
This feature may be turned of with the flag "-nri".

CHAPTER 9. IMPLEMENTATION 147

9.5.1.4 Command object

The command object represent a specific command. It is created from the
RESTful header and/or the JSON body sent from the client. The JSON API
provides methods for automatic parsing of the JSON body into an object. The
fields in the command object created must match the attributes in the JSON
body. This match is case sensitive

9.5.1.4.1 Execute

Every command object must implement a execute method. This method is the
part of the command which uses the system interface to perform the task that
corresponds to the command.

The execute method returns a response object which is sent up to the door-
man which then sends the response to the client.

9.5.1.4.2 Validation

Every command must implement a validate method. This method is run after
the command is created but before the command is executed.

The validate method returns a boolean. If the command is correctly parsed
with correct data the method returns true, otherwise false. This validate is
used to prevent unnecessary communication.

9.5.1.5 Heavy work thread

For heavy work a queue, namely work handler is used. The command which is
put in this queue is ProcessCommand. All the command objects which is in the
queue, are executed one at a time in the order first in first out. This execution
is done by another thread with the only responsibility to do this kind of heavy
work. The thread constantly checks whether the queue is empty or not and if
there is a command object in the queue the thread polls the command object
and executes it.

Which command that is put in the queue or not is determined in the method
processNewCommand in the class CommandHandler.

9.5.1.6 Response object

There are different response objects for different kind of responses since the form
of the response to the client depends on the command the client initially sent.

148 9.5. SERVER

The response object contains all the data necessary to create a RESTful header
and a JSON body for the response.

9.5.1.7 Testing

Testing has been done in multiple steps. The first step is unit testing, where
individual methods are tested. This is often difficult due to the fact that the
responsibility of handling client requests is shared by multiple classes. To catch
these test cases a client dummy has been frequently used, which is the next step.
It simulates a client by sending HTTP requests and examines the response from
the server. It is used manually to test a particular use case, and to see that
the server behaves as intended for that request. After a feature has passed the
client dummy it is pushed to a test server, where it is open for other clients to
test and debug. If no bugs are found the feature is declared complete and can
be released.

9.5.2 Conversion

This section will explain the implementation of the SmoothingAndStep subrou-
tine used in the conversion of files from raw to profile. The basic algorithm is
a dynamic arrayList which carries the rows that are relevant at a given time,
smoothing on the first row is performed. The newly smoothed value is shifted
out and replaced with a fresh row. This becomes a dynamic window that tra-
verses the entire file one row at a time.

9.5.2.1 Methods

• smoothing : The one public method of the class. It controls the whole
process and calls the other methods. It takes in the following parameters:

– int[] params: An array with 5 integers representing parameters.
params[0]: Window Size, the number of signal values that the smooth-
ing should be calculated on.
params[1]: Whether the smoothing should be trimmed mean (0) or
median (1)
params[2]: Minimum numbers to smooth. A number that says how
many signal values the program at least need in order to smooth one
row. This number must be smaller than windowSize.
params[3]: Can either be 1 or 0. If 1 the program will calculate the
total mean value for all rows and print those.
params[4]: Print zeroes. If the program should print rows where the
signal value is 0 the flag should be (1), if (0) the program will not
print the zeroes.

– String inPath: A filepath to the source file.

CHAPTER 9. IMPLEMENTATION 149

– String outPath: A filepath to either an existing file to be overwritten
or of a location and name that will become the path to a newly
created file.

– int stepSize: An integer larger than 0 that tells if there should be
stepping. No stepping will be done if the number is 1.

The method will also return the total mean of every row in the file if that
flag is set properly.

• smoothOneRow: Checks whether smoothing should be trimmed mean or
median and calls the corresponding method, after this is done it calls the
method that writes to the new file.

• smoothTrimmedMean: Extracts the first position from the data array and
initiates it’s value to min and max values. We do this because trimmed
mean means that we should remove the largest and smallest number from
the mean value in order to get a more reliable/stable result. We then check
that we have more numbers in the data array than the minimum numbers
to smooth number. In order to avoid doing unnecessary calculations.

• smoothMedian: This method tries to fill an array with window size number
of signal values and then pass this array to a method that finds which
number is the median.

• writeToFile: This method does three different things. It check whether
we should print zeroes in the outfile. It also check whether the current
position is divisible with stepSize to determine if the row should be written
to the outfile or skipped. After these two checks it either writes the row
to the new file or not.
It also check whether we want to print the total mean of the whole file
and/or if we should then it counts up the proper variables.

• shiftLeft: Removes the first row from the data array and adds one row to
the end of it. It then checks whether the new row is of a different chromo-
some than the others, if so it calls the special method chromosomeChange.

• chromosomeChange: This method knows that the last element in the data
array is a new chromosome. It then reads and smooths as many rows
as it can before hitting the cutoff number (minimum number of rows to
smooth). It then writes and removes these values from the data array
as well. It’s important to note that so far it doesn’t add new values to
the array. Afterwards the method tries to refill the array with the new
chromosome until it has window size number of rows.

9.5.3 File-transfer

To handle all downloads and uploads to and from the clients, two PHP-scripts
have been written.

Both scripts use a token provided by the client to authenticate the user. This
token is sent to the server, which will send a code back to the script. The code

150 9.5. SERVER

will be ’200’ if the client has provided a valid token, and ’401’ if the token is
invalid. The upload script gets the token in an ’Authorization’ header from all
clients, while the download script gets the token in an ’Authorization’ header
from the desktop and mobile clients and in an ’Authorization’ parameter from
the web client.

When the client downloads or uploads a file, it will send a path to the script
in a ’path’ parameter. This path will be validated against the database. It will
check if the file is ’Done’ when downloading and that the file is not ’Done’ when
uploading.

When an upload has been finished and validated, the script will change the
status for this file to ’Done’ and then send a ’201’ response code to the client.
When a download request has been validated the script will send the file as an
octet-stream as a response to the client.

9.5.4 Data Storage

The following text describes the different classes the server uses to communicate
with the database and update the file system.

9.5.4.1 Annotation

When a user wants the properties of an annotation they will retrieve this object.
It holds information about the data type, label, forced annotation, default value
and annotation choices for drop down menus. With this object the graphical
interfaces can set up a search view dynamically.

9.5.4.2 Experiment

A container of an experiments annotations and their values. The annotation
labels and values are contained in a hashmap with label as key. All files corre-
sponding to the actual experiment lies in a list of FileTuple objects.

9.5.4.3 FileTuple

A simple class that holds all information of a file in variables found in the
database. Holds links for download and upload of the specific file.

9.5.4.4 FilePathGenerator

The creation of folders is handled by the FilePathGenerator class. When a
new experiment is added to the database a folder is also created for the new

CHAPTER 9. IMPLEMENTATION 151

experiment. Sub folders are also created in preperation for the uploading of
files.

When a user requests to upload a file, the FilePathGenerator class will, if re-
quired, generate a new folder to house the file.

When a new genome release is added to the database, the FilePathGenerator
will create a folder to house the associated files. Genome releases are divided
into folders corresponding to species.

A new folder is also created for each process request and houses the resulting
file set.

9.5.4.5 PubMedToSQLConverter

This class converts a PubMed string to an an SQL query. A typical PubMed
search string takes the form: raw[FileType] AND Per[Author]. In this case
the search is for all raw files that Per created. The user enters the annota-
tion labels and values together with the logical operators AND, OR and NOT.
Parentheses are used for disambiguation.

All the variables in the pubMed string are bound to variables in the WHERE
section of the SQL query to avoid SQL injection.

When the searchmethod is called in the DatabaseAccessor, the PubMed string
is checked for file attributes by calling the hasFileAttributes method in the
PubMedToSQLConverter. This is done so that even empty experiments are re-
turned when searches do not contain a file specific attribute.

9.5.4.6 DatabaseAccessor

A class that serves as an API for the server and is used for all database access.
It handles all connections and queries to the database. The methods simplify
queries to the database by removing the need to write SQL in any other pack-
ages. The DatabaseAccessor utilizes its subclasses as shown in ?? where the
methods are divided up into more specific areas. Prepared Statements are cre-
ated from queries and parameters to avoid SQL injection. Methods that have
some resemblance are grouped together for easier navigation.

9.5.4.7 Testing

OBS! Do not run any of the tests found in the database package on a database
that is in use. All tuples are removed from the database upon completion of
testing. All unit testing should start with an empty database and finish with
an empty database to avoid dependency between tests.

152 9.6. LIMITATIONS

The database package was created using Test Driven Development (TDD). The
full test suite, AllTests, can be found in the database.TestSuite package.

Most of the unit tests utilize the TestInitializer class. This simplifies the
process of connecting to the test database, filling it with test tuples and clearing
the test database and closing the connection when the test class is finished.
The individual unit tests can be found in the database.TestSuite.UnitTests
package. The scripts for adding the test tuples and clearing the test database
tables can also be found in the database.TestSuite package.

Stress tests are also implemented with the goal to determine functionality by
simulating multiple users working in parallel.

9.6 Limitations

The Genomizer system has some limitations and known problems that needs
to be mitigated. In Appendix K a detailed description of known problems for
each of the Genomizer subsystems are listed.

Bibliography

[1] Langmead, Ben and Trapnell, Cole and Pop, Mihai and Salzberg, Steven
L and others. Ultrafast and memory-efficient alignment of short DNA se-
quences to the human genome. Genome Biol 10(3). 2009.

[2] Zhan, Xiaowei. ”LiftOver”. Center For Statistical Genetics. February
14, 2014. Web. May 30, 2014. <http://genome.sph.umich.edu/wiki/
LiftOver>

[3] Norris, David. ”Integrated Genome Browser”. BioViz. Web. May 31, 2014.
<http://bioviz.org/igb/>

[4] technoweenie. ”Release Your Software”. GitHub. July 2, 2013. Web. May 29,
2014. <https://github.com/blog/1547-release-your-software>

[5] Preston-Werner, Tom. ”Semantic Versioning 2.0.0”. Web. May 29, 2014.
<http://semver.org/>

[6] National Center for Biotechnology Information. ”PubMed Advanced Search
Builder”. U.S. National Library of Medicine. October 28, 2009. Web. May
29, 2014. <http://www.ncbi.nlm.nih.gov/pubmed/advanced>

[7] ”Authentication and Authorization”. The Apache Software Foundation.
Web. May 21, 2014. <http://httpd.apache.org/docs/2.2/howto/
auth.html>

[8] Dudler, Roger. ”git - the simple guide”. Web. May 29, 2014. <http://
rogerdudler.github.io/git-guide/>

[9] Davis, Adam. ”Git for beginners: The definitive practi-
cal guide”. Stackoverflow. May 21, 2012. Web. May 29,
2014. <http://stackoverflow.com/questions/315911/
git-for-beginners-the-definitive-practical-guide>

[10] ”Generating SSH Keys”. Github. May 16, 2014. Web. May 29, 2014.
<https://help.github.com/articles/generating-ssh-keys>

[11] Backbone.js documentation: http://backbonejs.org/ Retrieved 8/5 -14

[12] Bootstrap documentation: http://getbootstrap.com/ Retrieved 8/5 -14

[13] AJAX on wiki: http://en.wikipedia.org/wiki/Ajax_(programming)
Retrieved 8/5 -14

153

http://genome.sph.umich.edu/wiki/LiftOver
http://genome.sph.umich.edu/wiki/LiftOver
http://bioviz.org/igb/
https://github.com/blog/1547-release-your-software
http://semver.org/
http://www.ncbi.nlm.nih.gov/pubmed/advanced
http://httpd.apache.org/docs/2.2/howto/auth.html
http://httpd.apache.org/docs/2.2/howto/auth.html
http://rogerdudler.github.io/git-guide/
http://rogerdudler.github.io/git-guide/
http://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide
http://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide
https://help.github.com/articles/generating-ssh-keys
http://backbonejs.org/
http://getbootstrap.com/
http://en.wikipedia.org/wiki/Ajax_(programming)

154 BIBLIOGRAPHY

[14] JSON on wiki: http://en.wikipedia.org/wiki/JSON Retrieved 8/5 -14

[15] RequireJS documentation: http://requirejs.org/ Retrieved 8/5 -14

[16] JQuery documentation: http://jquery.com/ Retrieved 8/5 -14

[17] Chai documentation: http://chaijs.com/ Retrieved 9/5 -14

[18] Mocha documentation: http://visionmedia.github.io/mocha/ Re-
trieved 9/5 -14

[19] Sinon documentation: http://sinonjs.org/ Retrieved 9/5 -14

[20] ”List of UCSC genome releases”. UCSC. Web. May 30, 2014. <https://
genome.ucsc.edu/FAQ/FAQreleases.html>

 http://en.wikipedia.org/wiki/JSON
http://requirejs.org/
http://jquery.com/
http://chaijs.com/
http://visionmedia.github.io/mocha/
http://sinonjs.org/
https://genome.ucsc.edu/FAQ/FAQreleases.html
https://genome.ucsc.edu/FAQ/FAQreleases.html

Appendix A

User Stories

A User Story is a description of functionality in non technical terms. It describes
the wishes of a certain user group and a motivation for why the function is
needed.

A.1 Implemented user stories

Annotation

To structure the data files
the researchers
want to be able to annotate the data files.

Single download

To scrutinize a single data file
the researchers
want to be able to download a specific file.

Single upload

To store a single data file
the researchers
want to be able to upload a specific file.

155

156 A.1. IMPLEMENTED USER STORIES

Search for data

To analyse data
the researchers
want to be able to search for specific types of data.

Batch upload

To analyse, share and have greater access to data
the researchers
want to be able to upload multiple files and batch annotate them to a shared
location.

Raw to profile

To be able to analyze
the researchers
want to process raw data to profile data (using bowie and then Philge’s
code).

Delete data

To save space
the researchers
want to be able to delete data from the database.

File traceabillity

To be able to access the underlying raw data or profile data
the researchers
want the raw data files to be traceable from profile files and the profile files
to be traceable from the region data (if available) when the files have been
generated on the server.

Change annotation

To correct and update annotations
the researchers
want to be able to change data annotations.

APPENDIX A. USER STORIES 157

Backup

To prevent loss of data
the researchers
want the data to be backed up.

Password protected

To protect the database from unauthorized use
the researchers
want the application to be password protected.

Add genome release / reference genome

To be able to annotate the data properly and extract genome reference
the researchers
want to be able to add genome releases and reference genome.

Add chain file

To be able to convert between genome releases
the researchers
want to upload chain files (LiftOver).

Batch download

To scrutinize several data files
the researchers
want to be able to download multiple files at once.

A.2 Product backlog

Convert common file formats

To get data in a certain convenient file format
the researchers
want to convert between common file formats (WIG, SGR, GFF3, BED).

158 A.2. PRODUCT BACKLOG

Convert genome release

To easier handle files
the researchers
want to convert files between genome releases (LiftOver).

Extract genome reference sequence

To analyze the reference genome
the researchers
want extract the reference genome sequence for a given region data.

Advanced batch upload

To simplify mass upload 500 files
the researchers
want to batch annotate files to be uploaded in a spreadsheet.

Profile to region

To be able to find regions of interest
the researchers
want to process profile data to region data (Per’s code).

Workspace

To be able to save work in a convenient way
the researchers
want to have some sort of workspace view where all kind of results/data can
be saved.

Unread results

To avoid missing results
the researchers
want to see which results are unread.

APPENDIX A. USER STORIES 159

Sort search results

To avoid missing results
the researchers
want to see which results are unread.

Preview of file

To correctly annotatate a file
the researchers
want to preview a portion of a file

Work scheduling

To strategically spread the servers workload over time
the researchers
want to be able to schedule the processing/analysis of data

Work queue

To reduce server load
the researchers
want to queue time consuming work.

User rights

To allow invitation of guests (postgraduate students or other researchers
etc.)
the researchers
what to have different users types with different rights.

160 A.2. PRODUCT BACKLOG

Time estimation

To warn for time consuming jobs
the researchers
want to have a time estimation for jobs.

Plot overlap analysis

To see region overlap of genomes
the researchers
want to plot an overlap analysis (see separate user story)

Plot average regions

To view data
the researchers
want to plot average of regions with the profile data.

IGB Session

To be able to make IGB analyzes
the researchers
want to retrieve a IGB session file.

Combine regions

To find interesting regions
the researches
want to select multiple files and combine their regions (union, intersect).

APPENDIX A. USER STORIES 161

Create region subset

To retrieve certain parts of regions
the researchers
want to create region subsets using reference points.

Calculate average of region

To find the average protein binding value for a region
the researchers
want to calculate average of regions with the profile data. (Possibly split
into a number of bins).

Overlap analysis

To conduct overlap analysis
the researchers
want to divide regions bins, either by value or by order.

Save analysis results

To be able to return to previous work
the researchers
want to save analysis results(in workspace).

Appendix B

Android application:
UML-diagrams

In this appendix the UML-Class-diagrams of the Android application will be
presented.

162

APPENDIX B. ANDROID APPLICATION: UML-DIAGRAMS 163

Figure B.1: Android UML of model

164

Figure B.2: Android UML without model

Appendix C

Desktop application:
UML-diagrams

165

Appendix D

Data Storage: UML-diagrams

166

APPENDIX D. DATA STORAGE: UML-DIAGRAMS 167

Figure D.1: DatabaseAccessor and its subclasses

168

Figure D.2: The container classes used to return information

Appendix E

Server API

Connection

Login/Logout to and from the server. When a user has been verified a token
(user-id) is supplied in the response. The token is generated from the current
date and the users password. It is then hashed and given an expiration date.
The token should be supplied in the Authorization header for each request in
order to identify the user.

\login
Login to the server [POST]
+ Request (application/json)

{
"username": "uname",
"password": "pw"
}

+ Response 200 (application/json)

{
"token": "user-id"
}

Logout from the server [DELETE]
+ Request

+ Header

authorization: user-id

+ Response 200

169

170

Experiment

An experiment containing annotations and files. ‘experiment-id‘ in the header of the
request is the unique id (name) of the experiment.

+ Parameters
+ name ... Name and id of the experiment
+ created by ... Which user created the experiment
+ annotations

+ pubmedId
+ type
+ specie
+ genoRelease
+ cellLine
+ devStage
+ sex
+ tissue
+ ...

\experiment

Add an Experiment [POST]
+ Request (application/json)

+ Headers

Authorization: token

+ Body

{
"name": "experimentId",
"createdBy": "user",
"annotations":

[
{
"name": "pubmedId",
"value": "abc123"
},
{
"name": "type",
"value": "raw"
},
{
"name": "specie",
"value": "human"
},

APPENDIX E. SERVER API 171

{
"name": "genome release",
"value": "v.123"
},
{
"name": "cell line",
"value": "yes"
},
{
"name": "development stage",
"value": "larva"
},
{
"name": "sex",
"value": "male"
},
{
"name": "tissue",
"value": "eye"
}
]

}

+ Response 201

\experiment\<experiment-id>

Retrieve an Experiment [GET]
+ Request

+ Headers

Authorization: token

+ Response 200 (application/json)

+ Headers

Authorization: token

+ Body

{
"name": "experimentId",
"createdBy": "user",
"files": [

{

172

"fileId": "id",
"experimentID": "id",
"fileName": "name",
"type": "raw",
"metaData": "metameta",
"author": "name",
"uploader": "user1",
"isPrivate": "bool",
"grVersion": "releaseNr",

},
{
"fileId": "id",
"experimentID": "id",
"fileName": "name",
"type": "raw",
"metaData": "metameta",
"author": "name",
"uploader": "user1",
"isPrivate": "bool",
"grVersion": "releaseNr"

}
],

"annotations":
[
{
"name": "pubmedId",
"value": "abc123"
},
{
"name": "type",
"value": "raw"
},
{
"name": "specie",
"value": "human"
},
{
"name": "genome release",
"value": "v.123"
},
{
"name": "cell line",
"value": "yes"
},
{
"name": "development stage",
"value": "larva"
},
{
"name": "sex",

APPENDIX E. SERVER API 173

"value": "male"
},
{
"name": "tissue",
"value": "eye"
}

]

}

Update an Experiment [PUT]
+ Request (application/json)

+ Headers

Authorization: token
+ Body

{
"name": "experimentId",
"createdBy": "user",
"annotations":

[
{
"name": "pubmedId",
"value": "abc123"
},
{
"name": "type",
"value": "raw"
},
{
"name": "specie",
"value": "human"
},
{
"name": "genome release",
"value": "v.123"
},
{
"name": "cell line",
"value": "yes"
},
{
"name": "development stage",
"value": "larva"
},
{
"name": "sex",
"value": "male"

174

},
{
"name": "tissue",
"value": "eye"
}
]

}

+ Response 201

Remove an Experiment [DELETE]
+ Request

+ Header

Authorization: token

+ Response 200

Files

Add/remove files in experiment. ‘file-id‘ specifies the unique id of
the file in the header.

+ Parameters
+ ‘fileName‘ ... Name of the file
+ ‘experimentID‘ ... Name of the experiment associated with the file
+ ‘size‘ ... File size
+ ‘type‘ ... Type of data (raw/profile/region)
+ (‘URL‘ ... An URL to the file, added when the file has been uploaded)

\file

Add file to experiment [POST]
+ Request (application/json)

+ Header

Authorization: token

+ Body

{
"experimentID": "id",
"fileName": "name",

APPENDIX E. SERVER API 175

"type": "raw",
"metaData": "metameta",
"author": "name",
"uploader": "user1",
"isPrivate": "bool",
"grVersion": "releaseNr"
}

+ Response 200

{
"URLupload": "url"
}

\file\<file-id>

Get file from experiment [GET]
+ Request

+ Headers

Authorization: token

+ Response 200 (application/json)

{
"experimentID": "id",
"fileName": "name",
"type": "raw",
"metaData": "metameta",
"author": "name",
"uploader": "user1",
"isPrivate": "bool",
"grVersion": "releaseNr"
}

Update file in experiment [PUT]
+ Request (application/json)

+ Header

Authorization: token

+ Body

{
"experimentID": "id",

176

"fileName": "name",
"type": "raw",
"metaData": "metameta",
"author": "name",
"uploader": "user1",
"isPrivate": "bool",
"grVersion": "releaseNr"
}

+ Response 201

Delete file from experiment [DELETE]
+ Request

+ Header

Authorization: token

+ Response 200

Search

Searching using annotations. The annotations is included last in the request header.
The results from the search is contained in the JSON document in the response.
Results are an array of **files** linked to their respective **experiments**.

\search\?annotations=<pubmedStyleQuery>

Search for experiments [GET]
+ Request

+ Headers

Authorization: token

+ Response 200 (application/json)

[
{
"name": "experimentId",
"created by": "user",
"files": [

{
"id": 25,
"path": "/var/www/data/Exp1/raw/file1.fastq",

APPENDIX E. SERVER API 177

"url": "http://scratchy.cs.umu.se:8000/download.php?path\u003d/var/www/data/Exp1/raw/file1.fastq",
"type": "Raw",
"filename": "file1.fastq",
"date": "May 8, 2014",
"author": "Ume? Uni",
"uploader": "user1",
"expId": "Exp1"
},
{
"id": 26,
"path": "/var/www/data/Exp1/raw/file1.fastq",
"url": "http://scratchy.cs.umu.se:8000/download.php?path\u003d/var/www/data/Exp1/raw/file1.fastq",
"type": "Raw",
"filename": "file1.fastq",
"date": "May 8, 2014",
"author": "Ume? Uni",
"uploader": "user1",
"expId": "Exp1"
},
{
"id": 27,
"path": "/var/www/data/Exp1/raw/file1.fastq",
"url": "http://scratchy.cs.umu.se:8000/download.php?path\u003d/var/www/data/Exp1/raw/file1.fastq",
"type": "Raw",
"filename": "file1.fastq",
"date": "May 8, 2014",
"author": "Ume? Uni",
"uploader": "user1",
"expId": "Exp1"
}

],
"annotations":

[
{
"name": "pubmedId",
"value": "abc123"
},
{
"name": "type",
"value": "outdoor"
},
{
"name": "specie",
"value": "human"
},
{
"name": "genome release",
"value": "v.123"
},
{

178

"name": "cell line",
"value": "yes"
},
{
"name": "development stage",
"value": "larva"
},
{
"name": "sex",
"value": "male"
},
{
"name": "tissue",
"value": "eye"
}
]

}
]

Processing

API for executing commands such as file conversions.

\process

Get status of all processes [GET]
+ Request

+ Header

Authorization: token

+ Response 200 (application/json)

[
{
"experimentName": "Exp1",
"status": "Finished",
"outputFiles": [
"file1",
"file2"

],
"author": "yuri",
"timeAdded": 1400245668744,
"timeStarted": 1400245668756,
"timeFinished": 1400245669756

APPENDIX E. SERVER API 179

},
{
"experimentName": "Exp2",
"status": "Finished",
"outputFiles": [
"file1",
"file2"

],
"author": "janne",
"timeAdded": 1400245668746,
"timeStarted": 1400245669756,
"timeFinished": 1400245670756

},
{
"experimentName": "Exp43",
"status": "Crashed",
"outputFiles": [
"file1",
"file2"

],
"author": "philge",
"timeAdded": 1400245668748,
"timeStarted": 1400245670756,
"timeFinished": 1400245671757

},
{
"experimentName": "Exp234",
"status": "Started",
"outputFiles": [
"file1",
"file2"

],
"author": "per",
"timeAdded": 1400245668753,
"timeStarted": 1400245671757,
"timeFinished": 0

},
{
"experimentName": "Exp6",
"status": "Waiting",
"outputFiles": [],
"author": "yuri",
"timeAdded": 1400245668755,
"timeStarted": 0,
"timeFinished": 0

}
]

180

\process\rawtoprofile

Parameters

[1] Bowtie parameters

[2] Empty string

[3] y/"" - If you want the file in GFF format

[4] y/"" - If you want the file in SGR format

[5] Smoothing parameters 1

[6] y/"" X - If you want stepping parameters and with stepsize X

[7] Ratio calculation parameters

[8] Smoothing parameters 2

Convert a file from raw to profile [PUT]

+ Request

+ Header

Authorization: token

+ Body

{
"expid": "Exp1",
"parameters": [

"-a -m 1 --best -p 10 -v 2 -q -S",
"",
"y",
"n",
"10 1 5 0 0",
"y 10",
"single 4 0",
"150 1 7 0 0"

],
"metadata": "astringofmetadata",
"genomeVersion": "hg38",
"author": "yuri"
}

+ Response 200

APPENDIX E. SERVER API 181

Annotation handling

’

Used to add, modify and delete annotations.

\annotation

Get information about annotations [GET]

+ Request

+ Header

Authorization: token

+ Response 200 (application/json)

[
{
"name": "pubmedId",
"values": ["freetext"],
"forced": true
},
{
"name": "type",
"values": ["freetext"],
"forced": true
},
{
"name": "specie",
"values": ["fly", "human", "rat"],
"forced": true
},
{
"name": "genome release",
"values": ["freetext"],
"forced": true
},
{
"name": "cell line",
"values": ["yes", "no"],
"forced": true
},
{
"name": "development stage",
"values": ["larva", "larvae"],

182

"forced": true
},
{
"name": "sex",
"values": ["male", "female", "unknown"],
"forced": true
},
{
"name": "tissue",
"values": ["eye", "leg"],
"forced": false
}
]

\annotation\field

Add annotation field [POST]
+ Request (appliaction/json)

+ Header

Authorization: token

+ Body

{
"name": "species",
"type": [

"fly",
"rat",
"human"
],

"default": "human",
"forced": false
}

+ Response 201

Rename annotation field [PUT]
+ Request (application/json)

+ Header

Authorization: token

+ Body

{

APPENDIX E. SERVER API 183

"name": "species",
"newName": "mouse"
}

+ Response 200

/annotation/field/<field-name>
Remove annotation field [DELETE]
+ Request

+ Header

Authorization: token

+ Response 200

\annotation\value

Add annotation value [POST]
+ Request (application/json)

+ Header

Authorization: token

+ Body

{
"name": "species",
"value": "mouse"
}

+ Response 201

Rename annotation value [PUT]
+ Request (application/json)

+ Header

Authorization: token

+ Body

{
"name": "species",
"oldValue": "mouse",
"newValue": "rat"
}

184

+ Response 201

\annotation\value\<field-name> \<value-name>

Remove annotation value [DELETE]
+ Request

+ Header

Authorization: token

+ Response 200

Genome release handling

Used to get, add and delete genome releases.

\genomeRelease

Get all genome releases, no matter species[GET]

+ Request

+ Header

Authorization: token

+ Response 200 (application/json)

[
{
"genomeVersion": "hy17",
"specie": "fly",
"path": "pathToFile",
"fileName": "nameOfFile"
},
{
"genomeVersion": "u12b",
"specie": "human",
"path": "pathToFile2",
"fileName": "nameOfFile"
},
{

APPENDIX E. SERVER API 185

"genomeVersion": "wk1m",
"specie": "human",
"path": "pathToFile3",
"fileName": "nameOfFile"
},
{
"genomeVersion": "fg2b",
"specie": "rat",
"path": "pathToFile4",
"fileName": "nameOfFile"
},
{
"genomeVersion": "abc1",
"specie": "rat",
"path": "pathToFile5",
"fileName": "nameOfFile"
}
]

Add genome release [POST]
+ Request (appliaction/json)

+ Header

Authorization: token

+ Body

{
"fileName": "nameOfFile",
"specie": "human",
"genomeVersion": "hx16"
}

+ Response 201

{
"URLupload": "url"
}

\genomeRelease\<species>

Get all genome releases for specific species[GET]

+ Request

+ Header

186

Authorization: token

+ Response 200 (application/json)

[
{
"genomeVersion": "hy17",
"specie": "fly",
"path": "pathToFile",
"fileName": "nameOfFile"
},
{
"genomeVersion": "u12b",
"specie": "fly",
"path": "pathToFile2",
"fileName": "nameOfFile"
},
{
"genomeVersion": "wk1m",
"specie": "fly",
"path": "pathToFile3",
"fileName": "nameOfFile"
}
]

\genomeRelease\<species>\<genomeVersion>

Delete genome release [DELETE]
+ Request

+ Header

Authorization: token

+ Response 200

Appendix F

Server commands

program: apache2
port: 8000
login: null
password: null
info: webserver http://scratchy.cs.umu.se:8000/

program: ssh passphrase
port: 0
login: null
password: *****
info: ssh key for server in mc333, (used for git)

program: JBDC
port: 0
login: null
password: null
info: include own jars: /usr/local/lib/psql_jbdc4.jar

program: postgresql database
port: 6000
login: postgres
password: *****
info: psql -h hostname -p 6000 dbname username

program: phppgadmin
port: 8000
login: postgres
password: *****
info: http://scratchy.cs.umu.se:8000/phppgadmin use for remote psql manage-
ment

program: SSH tunnel port

187

188

port: 0
login: null
password: null
info: %> ssh -g -R (wanted port on scratchy):(host of server):(server port) -N
-f (cs-user)@scratchy.umu.se

program: SSH to server
port: 2222
login: null
password: *****
info: ssh pvt@scratchy.cs.umu.se -p 2222

program: host/download.php
port: 8000
login: database user
password: database pass
info: parameters: "path" - path to the file on the server. Example:
/var/www/data/Exp1/raw/humanarm.fastq
Example URL:
http://scratchy.cs.umu.se:8000/download.php?
path=/var/www/data/Exp1/raw/humanarm.fastq

program: host/upload.php
port: 8000
login: database user
password: *****
info: parameters: "path" - path to the file on the server Example:
/var/www/data/Exp1/raw/humanarm.fastq

Appendix G

Ubuntu 14.04 Installation
and configuration manual

G.1 Introduction

This document will guide a user through the process to configure the server
machine needed for the Genomizer server software. This guide is created while
configuring a newly installed machine running Ubuntu 14.04. Other Linux or
UNIX operating systems could have other commands to install different soft-
ware. Some experience with a terminal and the UNIX environment is presumed.

Be sure to have a fully functioning Internet connection to the server machine
with the possibility to direct ports to it before continuing.

G.2 Installation and Configuration

The server machine must run a Linux or UNIX operating system. In order to
follow this guide in the easiest manner possible, use any Ubuntu distribution.

G.2.1 Java

Firstly Java must be installed on the system to be able to run some of the server
software. The software requires Java 1.7 or later.

To install Java JDK open a terminal and enter the following command:

sudo apt-get install openjdk-7-jdk

189

190 G.2. INSTALLATION AND CONFIGURATION

G.2.2 OpenSSH

To be able to access the server machine remotely OpenSSH must be installed.

Enter the following command to install OpenSSH properly.

sudo apt-get install openssh-server openssh-client
openssh-sftp-server

G.2.3 Apache2

In order to handle web requests and file transferring the server will use Apache2.

To install Apache2 with necessary software, use this command:

sudo apt-get install apache2 apache2-utils

After installation of Apache2 some configuration is needed. Follow the steps
below.

G.2.3.1 Configure listening port

The default port for listening is set to 80. To change port follow the steps below.

1. Open file with following command:

sudo nano /etc/apache2/ports.conf

2. Edit the value in the file after “Listen” to the preferred port to use for
listening. For example:

Listen 80

3. Save and close the file.

4. Restart the Apache server with:

sudo service apache2 graceful

G.2.3.2 Set document root

The document root on the Apache server is where the root folder for the server
is located. When a user is connecting to the server it will request the content
from the root folder of the server.

APPENDIX G. UBUNTU 14.04 INSTALLATION AND CONFIGURATION
MANUAL 191

The Genomizer server uses /var/www/ as the document root. As default for
the Apache server the document root is set to /var/www/html/. To change the
root folder for the Apache server, do the following steps:

1. Open the configuration file for the document root:

sudo nano /etc/apache2/sites-enabled/000-default.conf

2. Edit the second string in the line starting with the string “DocumentRoot”
to the root directory to be used.

DocumentRoot /var/www/

3. Save and close the configuration file.

4. Restart the Apache server:

sudo service apasche2 graceful

After these steps the document root is changed. Please note that in step two the
root directory can be set to something else. If these steps are followed precisely
the document root will be set to /var/www/.

G.2.3.3 Add system user

To add a system user, you first have to create a new file containing the user
names and their corresponding passwords by using a terminal and writing:

htpasswd -c /ect/apache2/passwords username

Change username to the username wanted for the new user.

This will create a password file in /etc/apache2/. The path to the password file
should not be accessible for the clients. Then you will be asked to enter the
password for the user:

New password: mypassword
Re-type new password: mypassword

Instead of mypassword, enter the password wanted for the new user. When
everything is done you will get the message:

Adding password for user username

The passwords in the file will be stored encrypted. To add more users, the
following command must be used:

192 G.2. INSTALLATION AND CONFIGURATION

htpasswd /ect/apache2/passwords username

If the -c flag is used, a new file will overwrite the old one so all users will be
overwritten. For more information, see [7]

G.2.3.4 Setup protected folders for users

The Apache server software have functionality to make protected directories to
restrict access to its content. To set this up it is necessary to create a user for
the Apache server (read G.2.3.3) to be able to access the files.

To restrict users from accessing the folders you can make them password pro-
tected. To do this, open the file apache2.conf that is located in /etc/apache2/.
In the file, new folders can be added. These folders will be password pro-
tected. To add a directory, new directory tags <Directory></Directory> must
be added among the others. A step-by-step instruction of how to password
protect a folder follows:

1. Open the file by the following command:

sudo nano /etc/apache2/apache2.conf

2. Paste in the following in the file:

<Directory /path_to_document_root/path_to_restricted_folder/>
AuthUserFile /etc/apache2/passwords
AuthName "This is a protected area"
AuthType Basic
Require valid-user

</Directory>

Make sure that the /path_to_document_root/ is set to the document root
set in G.2.3.2. Then path_to_restricted_folder/ needed to be changed to
the actual path to the folder that is to be protected. For more information
see [7].

3. Make sure your setup is correct.

4. Save and close the file.

5. Restart the Apache server to make changes:

sudo service apache2 graceful

G.2.3.5 Setup restricted folders for all users

It is also possible to make a folder restricted for all users and only accessible
through the server machine or the PHP scripts. This is done almost exactly as

APPENDIX G. UBUNTU 14.04 INSTALLATION AND CONFIGURATION
MANUAL 193

in G.2.3.4. The difference is that you add something else between the directory
tags <Directory></Directory>. Follow step 1 to 5 in G.2.3.4 but instead paste
this to the file at step 2:

<Directory /path_to_document_root/path_to_restricted_folder/>
Require all denied

</Directory>

G.2.3.6 Setup proxy redirect

To allow tunneling through the Apache server to the Genomizer server software,
a proxy pass has to be set up. To enable the module for Apache, enter the
following command in the terminal:

sudo a2enmod proxy_http

After the module is loaded a proxy pass has to be set up, the proxy pass works
on a url and sends all requests to that url to the proxied address. Start by
opening the file:

sudo nano /etc/apache2/apache2.conf

Scroll down to the end of the file and enter this row (don’t forget to modify the
url and the proxy to your server setup):

#Proxypass
ProxyPass /anyurlyouwant/ http://your.server.address:port/

In this server setup this line looks like this:

ProxyPass /api/ http://scratchy.cs.umu.se:7000/

This means that all requests sent to http://scratchy.cs.umu.se:8000/api/Login
will be proxied (tunneled) to http://scratchy.cs.umu.se:7000/Login for example.
Do not forget to restart the Apache server:

sudo service apache2 restart

G.2.4 Git

This project uses gitHub for easy sharing of the code between all collaborators.
For this to work, the server machine must have git installed to be able to clone
the repositories with code.

194 G.2. INSTALLATION AND CONFIGURATION

This document will not specify how to use git, instead please read the two guides
[8] and [9]

To install git on the server machine, enter the following line in the terminal:

sudo apt-get install git

For easy access to gitHub, SSH-keys can be added to easily execute push and
pull of repositories. See gitHub’s guide [10].

G.2.5 Ant

Ant is a build system to compile java code. It is used to build a runnable jar
file for the server. To install, run the following command in a terminal:

sudo apt-get install ant

G.2.6 PHP5

The Apache server uses PHP scripts to upload and download files. Therefore it
is necessary to install PHP5 on the server machine. To install PHP5, just enter
the following command in a terminal:

sudo apt-get install php5-curl

The following file needs to be configurated

/etc/php5/apache2/php.ini

with values:

max_execution_time to 0

max_input_time to -1

upload_max_filesize to 0

post_max_size to 0

APPENDIX G. UBUNTU 14.04 INSTALLATION AND CONFIGURATION
MANUAL 195

G.2.7 SRA Toolkit

One of the PHP scripts will need the application SRA Toolkit installed. To
install this application, enter the following in the terminal:

sudo apt-get install sra-toolkit

This application is used to convert .sra files to .fastq files. To manually use SRA
Toolkit enter the following in the terminal:

fastq-dump /var/www/test/SRR869740.sra

This will open the SRR869740.sra file to a SRR869740.fastq file in the same
directory of the original .sra file.

G.2.8 PostgreSQL

For the server machine, PostgreSQL is required for the server to work as in-
tended. To install PostgreSQL, enter the following command (note: the version
9.3 may vary):

sudo apt-get install postgresql-9.3 postgresql-client-9.3
postgresql-contrib-9.3

An admin account needs to be set up for the database, to do this follow these
instructions:

1. Login to the PostgreSQL server by typing

sudo -u postgres psql

where postgres is the default user for the database

2. Enter the following command while inside psql to set up a password for
the user postgres:

ALTER ROLE postgres WITH ENCRYPTED PASSWORD password;

and change password to whatever password is wanted.

To grant access to the database from non-local machines, the following file must
be changed (note: the version 9.3 may vary):

sudo nano /etc/postgresql/9.3/main/postgresql.conf

196 G.2. INSTALLATION AND CONFIGURATION

Find the segment CONNECTIONS AND AUTHENTICATION in the top part
of the file and change the lines ”listen_addresses” and ”port”:

#---
CONNECTIONS AND AUTHENTICATION
#---

- Connection Settings -

listen_addresses = ’*’ # what IP address(es) to listen on;
comma-separated list of addresses;
defaults to ’localhost’;
use ’*’ for all
(change requires restart)

port = 6000 # (change requires restart)

Port of the server can be changed to whatever is wished. Now the access needs
to be changed. To do this add the following lines to the file (note: the version
9.3 may vary):

sudo nano /etc/postgresql/9.3/main/pg_hba.conf

Make sure that there exists 2 lines that look like the following (change existing
lines or add new ones):

"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host all all 127.0.0.1/32 md5

Restart PostgreSQL by typing:

sudo service postgresql restart

G.2.8.1 Clone database

If there exists an old database that is wished to be migrated to the new database
the following command can be executed on the machine where the database is
presently:

sudo pg_dump -U dbUserName -d dbName -h localhost -p
dbPort > backupfile.sql

1. Change dbUserName to the username you have setup for PostgreSQL

APPENDIX G. UBUNTU 14.04 INSTALLATION AND CONFIGURATION
MANUAL 197

2. Change dbName to the name of the database that is wished to be migrated

3. Change dbPort to the PostgreSQL port which it is setup to listen to

4. Change backupfile.sql to whatever filename is wished

This creates a backup SQL file. Now transfer the file to the server where the
database is migrated to and type in the following command to inject it into the
database:

psql -U dbUserName -h localhost -d dbName -p dbPort < backupfile.sql

1. Change dbUserName to the username you have setup for PostgreSQL

2. Change dbName to the name of the database that is wished to be migrated
to

3. Change dbPort to the PostgreSQL port which it is setup to listen to

4. Change backupfile.sql to whatever it is named

Restart PostgreSQL by typing:

sudo service postgresql restart

G.2.9 PgAdmin

PgAdmin is a software which provides a graphical interface towards the Post-
gresQL server and can be installed with following command:

sudo apt-get install pgadmin3

G.2.10 PhpPgAdmin

PhpPgAdmin (Figure G.1) is a user friendly web interface that connects to the
server PostgreSQL database. This is recommended to be installed if you are
not very comfortable working with the database using the terminal interface or
wish to only configure the database on the local server machine using PgAdmin
(G.2.9).

G.2.10.1 Setup PhpPgAdmin

Then install the required software by typing in the following command in the
terminal:

198 G.2. INSTALLATION AND CONFIGURATION

Figure G.1: PhpPgAdmin web interface

sudo apt-get install phppgadmin

Then this needs to be included by the Apache2 software, which is done by
editing the file:

sudo nano /etc/apache2/apache2.conf

and adding this line to the end of the file after the other includes:

#Include Phppgadmin
Include /etc/apache2/conf.d/phppgadmin

Then we need to change the access settings to the phppgadmin via the Apache
software, this is done by changing the file:

sudo nano /etc/apache2/conf.d/phppgadmin

In the top part of the file a section is displayed as below:

order deny,allow
deny from all
allow from 127.0.0.0/255.0.0.0 ::1/128
#allow from all

Change this section so that it looks like this:

order deny,allow
#deny from all
allow from 127.0.0.0/255.0.0.0 ::1/128
allow from all

APPENDIX G. UBUNTU 14.04 INSTALLATION AND CONFIGURATION
MANUAL 199

Now an account must be set up with the PhpPgAdmin. Make sure you have
the htpasswd software installed (comes with Apache2-utils). Then to set an
account, enter the following command in the terminal:

sudo htpasswd -c /etc/phppgadmin/.htpasswd <username>

Change the username to what you want the user to be called. After that a
prompt will be shown to enter a password, enter the password twice and then
the account is setup.

Now the Apache server needs to be told where to look for the users. This is
done by editing the file:

sudo nano /etc/apache2/sites-enabled/000-default.conf

Then add this to the end of the file:

<Directory "/usr/share/phppgadmin">
AuthUserFile /etc/phppgadmin/.htpasswd
AuthName "Restricted Area"
AuthType Basic
require valid-user

</Directory>

Now PhpPgAdmin needs to be told which port to connect to the PostgreSQL
on (se configurations of the PostgreSQL server). To do that changes needs to
be made to the file:

sudo nano /etc/phppgadmin/config.inc.php

Then change the following post to what corresponds to your server setup:

// Database port on server (5432 is the PostgreSQL default)
$conf[’servers’][0][’port’] = 6000; //PostgreSQL port here
.
.
.

// passworded local connections.
$conf[’extra_login_security’] = false; //True as standard

Restart Apache and phppgadmin by typing:

sudo service apache2 restart
sudo service phppgadmin restart

Appendix H

Debian 7.5 Installation and
configuration maunal

H.1 Introduction

This document will guide a user through the process to configure the server
machine needed for the Genomizer server software. This guide is created while
configuring a newly installed machine running Debian 7.5 Wheezy. Other Linux
or UNIX operating systems could have other commands to install different soft-
ware. Some experience with a terminal and the UNIX environment is presumed.

Be sure to have a fully functioning Internet connection to the server machine
with the possibility to direct ports to it before continuing.

H.2 Installation and Configuration

The server machine must run a Linux or UNIX operating system. In order to
follow this guide in the easiest manner possible, use any Debian distribution.

H.2.1 Installation of Debian

Since Debian is more stable for running server applications than other Linux
distributions such as Ubuntu and Linux Mint, it is recommended to use any
Debian release. When partitioning the hard drives make sure to assign at least
2 times the amount of ram as swap section, in our case we used 250GB. This is
done to prevent the server from crashing in case the ram RAM is filled out.

The swap is a hardware RAM section that the system can dump to if the RAM

200

APPENDIX H. DEBIAN 7.5 INSTALLATION AND CONFIGURATION
MAUNAL 201

is filled.

H.2.2 Configure Debian repositories

To allow the system to download software via terminal a few repositories changes
must be made. To do this open the file:

sudo nano /etc/apt/sources.list

Then the line

deb cdrom:[Debian GNU/Linux 7.5.0 _Wheezy_ -
Official amd64 CD Binary-1 20140426-13:37]/ wheezy main

needs to be commented away from the file to avoid errors when the system tries
to fetch software from an non-existent cd rom. Then four repositories should
be added to allow installation of software. Add the following lines to the end of
the file:

deb http://ftp.acc.umu.se/debian/ wheezy-updates main
deb-src http://ftp.acc.umu.se/debian/ wheezy-updates main

deb http://ftp.acc.umu.se/debian/ wheezy main
deb-src http://ftp.acc.umu.se/debian/ wheezy main

Try this out by typing:

sudo apt-get update

and make sure there is no errors.

H.2.3 Create a super user

When Debian is installed there only exists one super user on the computer, and
that is ”root”. To give other users on the system root access and super user
rights a configuration file must be changed, to open the file you need to login
as root temporary (this is not recommended to do for other things).

To login as root, type:

su

202 H.2. INSTALLATION AND CONFIGURATION

Enter the password for the root, as setup in the installation. Then type the
following to open the config file:

visudo

Then add this line under the line where root is set.

username ALL=(ALL:ALL) ALL

Where username is the user that will be given super user rights.

H.2.4 Locales

If there is a problem with the locales settings that looks something like this:

perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings:
LANGUAGE = "en_GB:en",
LC_ALL = (unset),
LC_COLLATE = "sv_SE",
LC_MEASUREMENT = "sv_SE",
LC_PAPER = "sv_SE",
LANG = "C"

are supported and installed on your system.
perl: warning: Falling back to the standard locale ("C").

Try this fix:

export LC_ALL=en_GB.UTF-8
sudo /usr/sbin/locale-gen
sudo dpkg-reconfigure locales

Then reboot the server.

H.2.5 Java

Firstly Java must be installed on the system to be able to run some of the server
software. The software requires Java 1.7 or later.

To install Java JDK open a terminal and enter the following command:

sudo apt-get install openjdk-7-jdk

APPENDIX H. DEBIAN 7.5 INSTALLATION AND CONFIGURATION
MAUNAL 203

H.2.6 OpenSSH

To be able to access the server machine remotely OpenSSH must be installed.

Enter the following command to install OpenSSH properly.

sudo apt-get install openssh-server openssh-client
openssh-sftp-server

H.2.7 Apache2

In order to handle web requests and file transferring the server will use Apache2.

To install Apache2 with necessary software, use this command:

sudo apt-get install apache2 apache2-utils

After installation of Apache2 some configuration is needed. Follow the steps
below.

H.2.7.1 Configure listening port

The default port for listening is set to 80. To change port follow the steps below.

1. Open file with following command:

sudo nano /etc/apache2/ports.conf

2. Edit the value in the file after “Listen” to the preferred port to use for
listening. For example:

Listen 80

3. Save and close the file.

4. Restart the Apache server with:

sudo service apache2 graceful

H.2.7.2 Set document root

The document root on the Apache server is where the root folder for the server
is located. When a user is connecting to the server it will request the content
from the root folder of the server.

204 H.2. INSTALLATION AND CONFIGURATION

The Genomizer server uses /var/www/ as the document root. As default for
the Apache server the document root is set to /var/www/html/. To change the
root folder for the Apache server, do the following steps:

1. Open the configuration file for the document root:

sudo nano /etc/apache2/sites-enabled/000-default.conf

2. Edit the second string in the line starting with the string “DocumentRoot”
to the root directory to be used.

DocumentRoot /var/www/

3. Save and close the configuration file.

4. Restart the Apache server:

sudo service apasche2 graceful

After these steps the document root is changed. Please note that in step two the
root directory can be set to something else. If these steps are followed precisely
the document root will be set to /var/www/.

H.2.7.3 Add system user

To add a system user, you first have to create a new file containing the usernames
and their corresponding passwords by using a terminal and writing:

htpasswd -c /ect/apache2/passwords username

Change username to the username wanted for the new user.

This will create a password file in /etc/apache2/. The path to the password file
should not be accessible for the clients. Then you will be asked to enter the
password for the user:

New password: mypassword
Re-type new password: mypassword

Instead of mypassword, enter the password wanted for the new user. When
everything is done you will get the message:

Adding password for user username

The passwords in the file will be stored encrypted. To add more users, the
following command must be used:

APPENDIX H. DEBIAN 7.5 INSTALLATION AND CONFIGURATION
MAUNAL 205

htpasswd /ect/apache2/passwords username

If the -c flag is used, a new file will overwrite the old one so all users will be
overwritten. For more information, see [7]

H.2.7.4 Setup protected folders for users

The Apache server software have functionality to make protected directories to
restrict access to its content. To set this up it is necessary to create a user for
the Apache server (see H.2.7.3) to be able to access the files.

To restrict users from accessing the folders you can make them password pro-
tected. To do this, open the file apache2.conf that is located in /etc/apache2/.
In the file, new folders can be added. These folders will be password pro-
tected. To add a directory, new directory tags <Directory></Directory> must
be added among the others. A step-by-step instruction of how to password
protect a folder follows:

1. Open the file by the following command:

sudo nano /etc/apache2/apache2.conf

2. Paste in the following in the file:

<Directory /path_to_document_root/path_to_restricted_folder/>
AuthUserFile /etc/apache2/passwords
AuthName "This is a protected area"
AuthType Basic
Require valid-user

</Directory>

Make sure that the /path_to_document_root/ is set to the document root
set in H.2.7.2. Then path_to_restricted_folder/ needed to be changed to
the actual path to the folder that is to be protected. For more information
see [7].

3. Make sure your setup is correct.

4. Save and close the file.

5. Restart the Apache server to make changes:

sudo service apache2 graceful

H.2.7.5 Setup restricted folders for all users

It is also possible to make a folder restricted for all users and only accessible
through the server machine or the PHP scripts. This is done almost exactly as

206 H.2. INSTALLATION AND CONFIGURATION

in H.2.7.4. The difference is that you add something else between the directory
tags <Directory></Directory>. Follow step 1 to 5 in H.2.7.4 but instead paste
this to the file at step 2:

<Directory /path_to_document_root/path_to_restricted_folder/>
Require all denied

</Directory>

H.2.7.6 Setup proxy redirect

To allow tunneling through the Apache server to the Genomizer server software,
a proxy pass has to be set up. To enable the module for Apache, enter the
following command in the terminal:

sudo a2enmod proxy_http

After the module is loaded a proxy pass has to be set up, the proxy pass works
on a url and sends all requests to that url to the proxied address. Start by
opening the file:

sudo nano /etc/apache2/apache2.conf

Scroll down to the end of the file and enter this row (don’t forget to modify the
url and the proxy to your server setup):

#Proxypass
ProxyPass /anyurlyouwant/ http://your.server.address:port/

In this server setup this line looks like this:

ProxyPass /api/ http://scratchy.cs.umu.se:7000/

This means that all requests sent to http://scratchy.cs.umu.se:8000/api/Login
will be proxied (tunneled) to http://scratchy.cs.umu.se:7000/Login for example.
Do not forget to restart the Apache server:

sudo service apache2 restart

To allow apache to upload and download files to the system a user called ”www-
data” must be added to the group of the user created for the system. If you
don’t remember what user you have setup you can write:

groups

APPENDIX H. DEBIAN 7.5 INSTALLATION AND CONFIGURATION
MAUNAL 207

The group name should be present there. now type the following line in the
terminal:

sudo gpasswd -a www-data groupname

where groupname is the user you have setup for the system.

H.2.8 Git

This project uses gitHub for easy sharing of the code between all collaborators.
For this to work, the server machine must have git installed to be able to clone
the repositories with code.

This document will not specify how to use git, instead please read the two guides
[8] and [9]

To install git on the server machine, enter the following line in the terminal:

sudo apt-get install git

For easy access to gitHub, SSH-keys can be added to easily execute push and
pull of repositories. See gitHub’s guide [10].

H.2.9 Ant

Ant is a build system to compile java code. It is used to build a runnable jar
file for the server. To install, run the following command in a terminal:

sudo apt-get install ant

H.2.10 PHP5

The Apache server uses PHP scripts to upload and download files. Therefore it
is necessary to install PHP5 on the server machine. To install PHP5, just enter
the following command in a terminal:

sudo apt-get install php5-curl

The following file needs to be configurated

/etc/php5/apache2/php.ini

208 H.2. INSTALLATION AND CONFIGURATION

with values:

/etc/php5/apache2filter/php.ini

max_execution_time to 0

max_input_time to -1

upload_max_filesize to 0

post_max_size to 0

H.2.11 SRA Toolkit

One of the PHP scripts will need the application SRA Toolkit installed. To
install this application, enter the following in the terminal:

sudo apt-get install sra-toolkit

This application is used to convert .sra files to .fastq files. To manually use SRA
Toolkit enter the following in the terminal:

fastq-dump /var/www/test/SRR869740.sra

This will open the SRR869740.sra file to a SRR869740.fastq file in the same
directory of the original .sra file.

H.2.12 PostgreSQL

For the server machine, PostgreSQL is required for the server to work as in-
tended. To install PostgreSQL, enter the following command (note: the version
9.3 may vary):

sudo apt-get install postgresql-9.1 postgresql-client-9.1
postgresql-contrib-9.1

An admin account needs to be set up for the database, to do this follow these
instructions:

1. Login to the PostgreSQL server by typing

APPENDIX H. DEBIAN 7.5 INSTALLATION AND CONFIGURATION
MAUNAL 209

sudo -u postgres psql

where postgres is the default user for the database

2. Enter the following command while inside psql to set up a password for
the user postgres:

ALTER ROLE postgres WITH ENCRYPTED PASSWORD ’password’;

and change password to whatever password is wanted.

To grant access to the database from non-local machines, the following file must
be changed (note: the version 9.3 may vary):

sudo nano /etc/postgresql/9.3/main/postgresql.conf

Find the segment CONNECTIONS AND AUTHENTICATION in the top part
of the file and change the lines ”listen_addresses” and ”port”:

#--
CONNECTIONS AND AUTHENTICATION
#--

- Connection Settings -

listen_addresses = ’*’ # what IP address(es) to listen on;
comma-separated list of addresses;
defaults to ’localhost’;
use ’*’ for all
(change requires restart)

port = 6000 # (change requires restart)

Port of the server can be changed to whatever is wished. Now the access needs
to be changed. To do this add the following lines to the file (note: the version
9.3 may vary):

sudo nano /etc/postgresql/9.3/main/pg_hba.conf

Make sure that there exists 2 lines that look like the following (change existing
lines or add new ones):

"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host all all 127.0.0.1/32 md5

210 H.2. INSTALLATION AND CONFIGURATION

Restart PostgreSQL by typing:

sudo service postgresql restart

H.2.12.1 Clone database

If there exists an old database that is wished to be migrated to the new database
the following command can be executed on the machine where the database is
presently:

sudo pg_dump -U dbUserName -d dbName -h localhost -p
dbPort > backupfile.sql

1. Change dbUserName to the username you have setup for PostgreSQL

2. Change dbName to the name of the database that is wished to be migrated

3. Change dbPort to the PostgreSQL port which it is setup to listen to

4. Change backupfile.sql to whatever filename is wished

This creates a backup SQL file.

H.2.13 Inject database copy

To inject a database backup into a new database do the following command.

psql -U dbUserName -h localhost -d dbName -p dbPort < backupfile.sql

1. Change dbUserName to the username you have setup for PostgreSQL

2. Change dbName to the name of the database that is wished to be migrated
to

3. Change dbPort to the PostgreSQL port which it is setup to listen to

4. Change backupfile.sql to whatever it is named

Restart PostgreSQL by typing:

sudo service postgresql restart

APPENDIX H. DEBIAN 7.5 INSTALLATION AND CONFIGURATION
MAUNAL 211

H.2.14 PgAdmin

PgAdmin is a software which provides a graphical interface towards the Post-
gresQL server and can be installed with following command:

sudo apt-get install pgadmin3

H.2.15 PhpPgAdmin

PhpPgAdmin (Figure H.1) is a user friendly web interface that connects to the
server PostgreSQL database. This is recommended to be installed if you are
not very comfortable working with the database using the terminal interface or
wish to only configure the database on the local server machine using PgAdmin
(H.2.14).

Figure H.1: PhpPgAdmin web interface

H.2.15.1 Setup PhpPgAdmin

Then install the required software by typing in the following command in the
terminal:

sudo apt-get install phppgadmin

This needs to be included by the Apache2 software, which is done by editing
the file:

sudo nano /etc/apache2/apache2.conf

and adding this line to the end of the file after the other includes:

212 H.2. INSTALLATION AND CONFIGURATION

#Include Phppgadmin
Include /etc/apache2/conf.d/phppgadmin

When that is done, we need to change the access settings to the phppgadmin
via the Apache software, this is done by changing the file:

sudo nano /etc/apache2/conf.d/phppgadmin

In the top part of the file a section is displayed as below:

order deny,allow
deny from all
allow from 127.0.0.0/255.0.0.0 ::1/128
#allow from all

Change this section so that it looks like this:

order deny,allow
#deny from all
allow from 127.0.0.0/255.0.0.0 ::1/128
allow from all

Now an account must be set up with the PhpPgAdmin. Make sure you have
the htpasswd software installed (comes with Apache2-utils). Then to set an
account, enter the following command in the terminal:

sudo htpasswd -c /etc/phppgadmin/.htpasswd <username>

Change the username to what you want the user to be called. After that a
prompt will be shown to enter a password, enter the password twice and then
the account is setup.

Now the Apache server needs to be told where to look for the users. This is
done by editing the file:

sudo nano /etc/apache2/sites-enabled/000-default.conf

Add this to the end of the file:

<Directory "/usr/share/phppgadmin">
AuthUserFile /etc/phppgadmin/.htpasswd
AuthName "Restricted Area"
AuthType Basic
require valid-user

</Directory>

APPENDIX H. DEBIAN 7.5 INSTALLATION AND CONFIGURATION
MAUNAL 213

Now PhpPgAdmin needs to be told which port to connect to the PostgreSQL
on (se configurations of the PostgreSQL server). To do that changes needs to
be made to the file:

sudo nano /etc/phppgadmin/config.inc.php

Then change the following post to what corresponds to your server setup:

// Database port on server (5432 is the PostgreSQL default)
$conf[’servers’][0][’port’] = 6000; //PostgreSQL port here
.
.
.

// passworded local connections.
$conf[’extra_login_security’] = false; //True as standard

Restart Apache and phppgadmin by typing:

sudo service apache2 restart
sudo service phppgadmin restart

H.2.16 Genomizer configuration

The server requires some parameters to be set before it can be used. They
should be stored in a file called “settings.cfg” in the same directory as the server
JAR. It can look like this:

databaseuser = admin
databasepassword = password
databasehost = localhost:6000
databasename = genomizer
publicaddress = http://www.genomizer.se
apacheport = 8000
downloadurl = /download.php?path=
uploadurl = /upload.php?path=
genomizerport = 7000
passwordsalt = genomizer
passwordhash = 2fd26e9aea528153a865257a723f6d4859e9f6c4a6775c003ae91297f619c6e8

Each setting should be on a separate line, and be separated by a ’=’ sign. The
number of spaces does not matter, neither does case on the setting names. Case
does matter on the setting values however, password and PassWord are different
things.

214 H.2. INSTALLATION AND CONFIGURATION

H.2.16.1 Database settings

The settings databaseuser, databasepassword, databasehost and databasename
are all connected to the SQL database, and should be the same as the ones used
when setting up the database.

H.2.16.2 Addresses and ports

The settings publicaddress, apacheport, downloadurl, uploadurl and genomiz-
erport decide how the clients connect to the genomizer system. Downloadurl,
uploadurl and genomizerport should generally stay the same as the example file,
but publicaddress and apacheport depends on how the server is set up.

H.2.16.3 Password handling

Passwordsalt is used to increase the security of passwords. It is combined with
the password and hashed so that the password does not need to be saved in
plaintext. Passwordhash is the result of this operation, and this parameter
should not be set manually. There is a script called changepwd.sh, which when
called with the password as parameter will update settings.cfg with the result.

H.2.16.4 Flags

In addition to the settings file, a set of flags may be set when starting the server
from terminal. These are:

• -p [port]
This flag sets the listening port.

• -debug
If this flag is set the server will print output to terminal for every request
and response. Also other outputs are written aswell.

• -f [file]
Uses file to read settings instead of the default file settings.cfg.

• -nri
If this flag is set the server will not remove inactive users which are logged
in on the server.

Appendix I

Migration of the Genomizer
system

I.1 Introduction

This manual will present the steps in the process to migrate the Genomizer
system to a new server machine. This document will guide an experienced
Linux user through the process of a migration from one server machine to a
new one. The migration can be seen as a manual backup if the steps in I.2 is
followed.

I.2 Steps of migration

1. Run pg_dump command on the server machine to migrate. This creates
a copy of the database. For help, see Appendix H.2.12.1

2. Copy the /var/www/ folder on the current server machine and save the
copy to a removable storage device.

3. Install the new server machine with operating system and necessary soft-
ware. For help with this see Appendix H.

4. When installation is done, paste the copied /var/www/ folder from step
2, to the same location on the new server machine.

5. Insert the database copy into the database on the new machine. For help,
see Appendix H.2.13

6. Copy settings.cfg and make sure it is properly set up for the new machine.
See Appendix H.2.16.

215

216 I.2. STEPS OF MIGRATION

7. Now the system is ready for the first startup. Make sure to have a new
version of the Genomizer server.jar on the machine.

Appendix J

Backup

J.1 Introduction

To allow the server to create a mirror of the file system on to a remote backup
server, some settings needs to be added. First of make sure that there exists
one backup computer with internet access and port forwarding to the ssh port
(22 by default) running any Linux distribution.

Make sure both computers have the rsync software by typing in:

man rsync

and make sure there is no error message.

Check if the genomizer server computer have ”crontab” installed by typing:

man crontab

and make sure there is no error message. If one of the softwares aren’t installed
just type:

sudo apt-get install crontab

OR

sudo apt-get install rsync

217

218 J.2. FILE BACKUP

J.2 File backup

To synchronize the computer’s file systems a simple bash script has to be edited
to wanted effect, the script is located at /var/www/scripts/backup.sh and looks
like this:

#!/bin/bash
PORT=
USER=
IP=
READPATH=/var/www/data
SAVEPATH=/var/www/data
rsync --ignore-existing --delete --update

-avze ’ssh -p ’$PORT $READPATH $USER@$IP:$SAVEPATH

make sure the rsync commad is on one line.

• Set the PORT variable to the ssh port on the backup server.

• Set the USER variable to login in the backup server.

• Set the IP variable to the ip to the backup server.

The flags ”-avze” should be present for the script to work as intended, there are
many flags available to change the behaviour of the program rsync. Flags to
add to create a direct ”mirror” of the system is:

• ”–ignore-existing” - Does not upload files that already exists on the backup
server.

• ”–delete” - Deletes files on the backup server that does not longer exist on
the genomizer server.

• ”–update” - Updates files if they have been changed.

To see more available flags check: http://linux.about.com/library/cmd/
blcmdl1_rsync.htm

To give rsync the right to create folders on the backupserver the /var/www
folder needs have its user changed to the user of the system. To do this go to
the folder /var/ and type in :

sudo chown -R username www/

change the username for the username of the system, now the folders belong to
the user and not root.

Finally make the script file runnable by typing:

http://linux.about.com/library/cmd/blcmdl1_rsync.htm
http://linux.about.com/library/cmd/blcmdl1_rsync.htm

APPENDIX J. BACKUP 219

sudo chmod -x backup.sh

J.3 Database backup

To synchronize the computer’s database a simple bash script has to be edited
to wanted effect, the script is located at /var/www/scripts/sqlback.sh and looks
like this:

#! /bin/bash
DATE=$(date -I)
DBUSER=
DBNAME=
DBPORT=
SAVEFILE=SqlBackup-$DATE.sql
pg_dump -w -U $DBUSER -h localhost -p $DBPORT $DBNAME > tmp
echo pvt | sudo -S cp tmp /var/www/sqlbackup/$SAVEFILE

• Set the DBUSER variable to the username of the database

• Set the DBNAME variable to the name of the database

• Set the DBPORT variable to the the port of the databse

to allow the script to access the database a file named

.pgpass

needs to be created in the home folder of the user for example:
/home/username/.pgpass.
This file should contain the following information:

localhost:PORT:DATABASE:USERNAME:PASSWORD

where:

• PORT is changed to the port of the database.

• DATABASE is the database to be cloned.

• USERNAME is the username of the postgresql database.

• PASSWORD is the passdword for the user of the postgresql database.

220 J.4. CHRONTAB

J.4 Chrontab

To enable the server to automatically do syncronizations to the backupserver
one line have to be added to a crontab config file. open the file by typing:

sudo crontab -e

In the end of the file add a line that looks like this:

1 0 * * * /var/www/scripts/backup.sh
1 0 * * * /var/www/scripts/sqlback.sh

Explanation of the settings that executes the script:

1. Setting is the minute (Present: first minute).

2. Setting is the hour (Present: midnight).

3. Setting is the week (Present: every week in each month)

4. Setting is the month (Present: every month)

5. Setting is the weekday (0=Sunday,1=Monday, Present: every day)

So this backup will run on the first minute of every midnight all year around.

Appendix K

Known problems

K.1 Web application

K.1.1 Moving backwards in the browser does not hide
modal windows

When navigating to a modal window the URL is updated, and added to the
browser history. When using the browser back-button the modal is not closed,
but the URL is still updated.

Modify ModalAC and the router

K.1.2 Error handling when uploading experiments

If there is an error when adding files to an experiment the experiment collapses
so the user won’t get a chance to correct it’s mistake

Start uploads of files when all files have been added without errors.

K.1.3 Old authorization token causes page redirect

If the authorization token expires the user will be sent to the login screen and
any input entered will dissapear.

Show login modal without redirecting to root url and save errorous ajax-request
and resend it when the login has been completed.

221

222 K.1. WEB APPLICATION

K.1.4 Code duplication in SearchResults and Experiments

The collections SearchResults and Experiments represents the same models.
But are different collections as they have different URL. It might be better to
have the both use the same collection.

Merge SearchResults and Experiments one collection.

K.1.5 No warning when closing tab during upload.

If a upload is in progress, there is no warning when closing the tab and the
upload is canceled directly.

There are some code for this in view/Upload.js, but it’s currently broken.

K.1.6 Uploading genome release - does not update list
automatically

After adding a genome release the list does not update automatically.

Build functionality to render when upload is done.

K.1.7 The annotation list can’t be sorted

The annotation list should be re-ordered by clicking on table headers.

Rebuild list to match design of GenomeReleaseView. We had some problems as
we are using a separate list for the search-bar.

K.1.8 Sidebar on adminpage dosen’t stay vertical

The sidebar items goes horizontally when page width is 2480px.

CSS the sidebar better.

K.1.9 Missing error check on annotation values

It is possible to add one space as annotation value (and name)

The server should check for such faults, otherwise some regex code should go
around line 70 in NewAnnotationView

APPENDIX K. KNOWN PROBLEMS 223

K.1.10 No warning when closing tab during uploading
genome releases

If a upload is in progress, there is no warning when closing the tab and the
upload is canceled directly.

K.2 iOS application

K.2.1 Unspecified behaviour on loss of internet connec-
tion

The application is based around having an active internet connection, and may
crash if the connection is lost.

K.2.2 Lack of security

Currently, the only security feature is that a valid password is required to log
in. All communication is done in plain text. This should be fixed as soon as
possible.

K.2.3 No administrative features

The app does not have any of the administrative functions of the web and
desktop clients.

K.3 Server

K.3.1 Communication and control

The communication between the server and the clients have some limitations
and security holes. These limitations are described below.

K.3.1.1 Don’t use the same username as someone else

When someone logs in with the same username as someone who is already logged
in with that username, this could create problems. The problem occurs if one of
the clients logs out while the other is communicating with the server. When one

224 K.3. SERVER

of the clients has logged out, the other will get an error response code UNAU-
THORIZED telling the client that he/she is not logged in.

To avoid this problem, never use the same username as someone else.

K.3.1.2 Communication in plain text

A major security hole in the system is that all communication between the
server and the clients are in plain text. These HTTP-packages can be read by
outside people.

To fix this problem, implement a cryptographic protocol, like Secure Sockets
Layer(SSL) or Transport Layer Security (TLS), which makes the communica-
tion between the server and the clients unreadable by outsiders.

K.3.1.3 Only one process at a time

The server can only run one process at a time. This is because only one thread
is set to search the queue and if there is a process waiting the single thread
takes this process and executes it before going back to search the queue again.

A solution to this would be to create some kind of thread pool with a user
defined amount of threads. Either the size of the threadpool could be decided
when starting the server, or in some way be decided by an administrator during
runtime to give ability to increase or decrease the number of possible simulta-
neously running processes.

K.3.1.4 No way to stop a running process

When a process is started there is no way to end the processing without shutting
down the server. So if the user would start a process with wrong parameters or
on the wrong files, there is no way to just stop that and start a new process.

A solution to this would be to keep track of all working threads and give a user
the possibility to terminate these through the user interface. When a thread is
terminated a cleanup should be executed to remove created folders and files.

K.3.1.5 No way to see if a process is stuck

In the case that a process for some reason would get stuck while running, there
is no feedback to the user to show that the process is stuck. The only feedback
the user is given is that the process is currently being executed.

This is a hard problem to solve since there is no good way to know if the

APPENDIX K. KNOWN PROBLEMS 225

processing is just taking a long time to complete or if it is stuck. A bad solution
would be to check how long the process have been running and end it if the time
exceeds some defined number.

K.3.2 Upload and download

The two scripts used for file transferring in the Genomizer system have some
limitations. These will be presented below. Please note that both the scripts
reads the settings.cfg file to get information to be able to access the database.
Make sure to put a copy of the settings.cfg file into the /var/www/.

K.3.2.1 Upload script

When a user tries to upload a file and the upload is interrupted the file entry
will remain in the database but the file will not exist in the file system. The file
will have the status ’In Progress’ but will never be uploaded if the user do not
try to upload the file again. Furthermore the script will not return good error
messages to the user if a file transfer is interrupted.

K.3.2.2 Download script

If a file download is interrupted the user will not receive a error message from
the script containing and explaining the reason for the interrupt.

K.3.3 Process limitations

• Ratio calculation has a limitation that it requires processing to be run on
both files and that one of the files needs to be named input.

• One known problem with the smoothing subprogram, is that if a chro-
mosome is smaller than the windowsize. The program will then smooth
that chromosome together with the following chromosome. In practice
this problem should never occur on a regular file when doing smoothing
once.

However, if stepping is done on a file with a step size of, for example 10
000. And we want to smooth the new file again with a window size of 100.
Then the shortest chromosome in the original file must be atleast 1 000
000 rows. From what we have seen of the melanogaster data the shortest
chromosome there is roughly 200 000 rows.

Therefor a user should be cautious when smoothing the second time on
file that have been stepped with a large number.

It seems unlikely that stepping will be done with a step size of 10 000.

	Introduction
	Target group and needs
	Target group
	Client needs
	Storage
	Processing
	Conversion
	Analysis
	Visualization

	Service description
	Usage
	Storage
	Annotations
	Processing
	Genome releases
	Mobile

	User manual
	Desktop application
	Login and startup
	Search
	Upload
	Process
	Workspace
	Administration

	Web application
	Using the interface
	Setting up the application

	Android application
	Start the Application and Login
	Settings
	Searching for files
	Pubmed Search
	Search Results
	Search Settings View
	Experiment File View
	Selected Files
	Converting Files
	Process View

	iOS application

	Deployment and maintenance
	Configure server
	Manuals
	Configuration
	Administer the database
	Set up postgresql account
	Upload SQL Script to server
	Create the Genomizer Tables

	Set up processing
	Install the server
	Downloading the source code
	Creating a runnable JAR file
	Starting the server

	Interaction design
	Desktop clients
	Windows/OS X/Linux application
	Web application

	Android
	Login View
	Search View
	Search Results View
	Experiment View
	Search Settings View
	Selected Files View
	Convert View

	iOS
	Navigation bar
	Login Screen
	Search View
	Search Result View

	Architecture design
	System overview

	System design
	Desktop application
	View
	Model
	Model
	Requests
	Response
	Controller
	Utilites
	System Administration
	Flow of the system

	Web application
	How our web application works
	System overview
	Search
	Process
	Upload
	System administration - Web

	Android application
	Class Descriptions
	Android activities

	iOS application
	Overall system design
	Segue controll

	Server
	Communication
	Data Conversion
	File-transfer
	Data Storage
	Database Design
	The Data Storage Subsystem
	Interaction
	Apache

	Implementation
	Desktop application
	Testing

	Web application
	Frameworks
	Technologies used
	Testing frameworks
	Our Tests

	Android application
	Login request
	Search request
	Request for Genome releases from the server
	Request for conversion of RAW files to profile-data
	Request for status on conversions on the server
	Testing

	iOS application
	Login
	Search
	Experiment Selection
	File Selection
	Convert Request
	Testing

	Server
	Communication
	Conversion
	File-transfer
	Data Storage

	Limitations

	Bibliography
	User Stories
	Implemented user stories
	Product backlog

	Android application: UML-diagrams
	Desktop application: UML-diagrams
	Data Storage: UML-diagrams
	Server API
	Server commands
	Ubuntu 14.04 Installation and configuration manual
	Introduction
	Installation and Configuration
	Java
	OpenSSH
	Apache2
	Git
	Ant
	PHP5
	SRA Toolkit
	PostgreSQL
	PgAdmin
	PhpPgAdmin

	Debian 7.5 Installation and configuration maunal
	Introduction
	Installation and Configuration
	Installation of Debian
	Configure Debian repositories
	Create a super user
	Locales
	Java
	OpenSSH
	Apache2
	Git
	Ant
	PHP5
	SRA Toolkit
	PostgreSQL
	Inject database copy
	PgAdmin
	PhpPgAdmin
	Genomizer configuration

	Migration of the Genomizer system
	Introduction
	Steps of migration

	Backup
	Introduction
	File backup
	Database backup
	Chrontab

	Known problems
	Web application
	Moving backwards in the browser does not hide modal windows
	Error handling when uploading experiments
	Old authorization token causes page redirect
	Code duplication in SearchResults and Experiments
	No warning when closing tab during upload.
	Uploading genome release - does not update list automatically
	The annotation list can't be sorted
	Sidebar on adminpage dosen't stay vertical
	Missing error check on annotation values
	No warning when closing tab during uploading genome releases

	iOS application
	Unspecified behaviour on loss of internet connection
	Lack of security
	No administrative features

	Server
	Communication and control
	Upload and download
	Process limitations

