
Distributed Systems
Performance Tutorial

Cristian Klein, Ewnetu Bayuh, Francisco Hernandez-Rodriguez
2014-09-30

This tutorial will allow you to more intuitively discover the concepts introduced during the
lecture part. The exercises will help you understand the factors that affect throughput
and response time, so as to take better decisions in designing a distributed system or
improving an existing one. We kindly ask you to fill in the tables with measurements and
give short, one-sentence answers to the questions asked. This serves both for yourself as
a self-evaluation and for us to evaluate the effectiveness of the course and allow for early
discovery of potential unclarity in our presentation.

Note that the tutorial has been designed and tested for Linux. The tutorial is divided in
three parts: setting up, throughput and response time.

1 Setting up

1. Download the tutorial kit located at:
http://www8.cs.umu.se/~cklein/teaching/performance-tutorial.tar.gz

2. Decompress it in a convenient location, for example, your home directory.
tar -xzvf performance-tutorial.tar.gz

3. Study and adapt the files in the decompressed apache directory, especially:

• apache2.conf (you need to change the ServerRoot, DocumentRoot and Directory

line)

• htroot/heavy.php

4. Start the Apache web server:
apache2 -d apache/

If you get a “command not found” error, try using the following command instead:
/usr/lib/apache2/mpm-prefork/apache2 -d apache/

5. Test that the web server is working correctly. In your browser open the following
URL:
http://localhost:8080/heavy.php?n=1000

You should get the message “done”. The PHP script that you just invoked simulates
a computationally heavy service. The amount of computing power it requires is
roughly proportional to the n parameter. We will be able to use this to see what
happens with the performance of the system as the service time varies.

6. Test and understand the workload generator:

1

./httpmon --help

Type the following command on a single line. Since you are going to reuse this
command quite often (e.g., from your shell’s history), make sure that you typed all
parameters correctly.
./httpmon --url "http://localhost:8080/heavy.php?n=1000"

--thinktime 1 --concurrency 1 --interval 10

It accepts, among others, the following parameters:

• target URL;

• think-time of users, i.e., the amount of time that elapses between consecutive
requests of a user;

• number of users (called concurrency);

• reporting interval.

Every 10 seconds, as configured using the interval option, it reports the following:

• time (in Unix timestamp1) at which the report was issued;

• latency: minimum, first quartile2, median, third quartile, maximum and aver-
age;

• 95th-percentile3 latency;

• 99th-percentile latency;

• throughput.

If you are unfamiliar with any of these statistics-related terms, please read the
linked Wikipedia articles. Note that the first report might look worse than the rest.
This is due to the fact that the system might be “cold” and it needs a few requests
to “warm” up. In the rest of the tutorial, you should ignore this first report, as it
does not represent the steady-state behavior of the system and focus on the second
or third report instead. Press CTRL+C to stop the workload generator.

7. Kill the server. We shall restart it later with new settings:
killall apache2

2 Throughput

Let us first focus on throughput. For now, ignore the latency reports. To efficiently
complete this tutorial, we recommend having 3 terminal windows open side-by-side. We
shall call them TermA, TermB and TermC.

Your machine has 4 CPU cores. To emulate a machine with fewer CPU cores, we shall use
the taskset command to restrict what cores apache may use: taskset -c 0-1 means

1https://en.wikipedia.org/wiki/Unix_timestamp
2https://en.wikipedia.org/wiki/Quartile
3https://en.wikipedia.org/wiki/Percentile

2

that the following command may only use the first and second core. You can read more
about taskset in its manpage4.

1. TermA: launch the top command and press the key 1. This will show the status of
all CPUs.

2. TermB: launch the apache web server on a single processor as follows:
taskset -c 0 apache2 -d apache/

Normally, it should daemonize.

3. TermC: run the workload generator with an increasing number of users and record
the obtained values in the table below.
Q1. What can you observe regarding the throughput? How does it vary depending
on the number of users?
Q2. What about the CPU usage? For what CPU usage is the maximum throughput
obtained?

4. TermB: kill the apache web server and re-launch it on 2 CPUs as follows:
taskset -c 0-1 apache2 -d apache/

5. TermC: repeat step 3

6. TermB: kill the apache web server and re-launch it on 4 CPUs as follows: taskset
-c 0-3 apache2 -d apache/

7. TermC: repeat step 3
Q3. What can you say regarding the throughput? How does the maximum
throughput vary with the number of CPUs?

8. TermB: launch apache on a single CPU as done at step 2.

9. TermC: test the throughput of the “light” service, i.e., repeat step 3 with the
following URL:
http://localhost:8080/heavy.php?n=100

Notice the 10-fold reduction in required computing power, controlled by the n
parameter.
Q4. What do you observe?

users 1 10 20 50 100 150 200

Throughput (1 CPU)
Throughput (2 CPUs)
Throughput (4 CPUs)
Throughput (1 CPU, light service)

4http://linux.die.net/man/1/taskset

3

3 Response Time (or Latency)

Let us now direct our attention to latency. For latency, we are not only interested in
the average, but also the distribution. Hopefully, by now you are familiar with the
experimental methodology, so we expect you to type the correct commands yourself. If
not, do not hesitate to ask for our help. Fill in the following table for 1 CPU and the
“heavy” (n = 1000) service:

latency
users average 95% 99% CPU usage

1 (base latency)
2
5
10
20
30
50

Q5. How does average latency vary with the number of users?

Q6. What about 95% or 99% latency, how many times is it larger than average latency?

Q7. What about the CPU utilization? When would you consider the system “saturated”,
i.e., unable to serve users in a timely manner (compare to the base latency)?

Feel free to come up with your own experiments and even to draw some graphs like the
ones you saw during the lecture. As a token of appreciation for this last effort, you will
receive the diligent award.

4

Answer Sheet Name:

5

6

