
Topics

• Peer-to-peer networks

– Routing Overlays

• Pastry

• BitTorrent

Motivating example: Skype

Skype login

server

Message exchange

with the login server

during login

ordinary host (SC)

super node (SN)

neighbor relationships in the

Skype network

Baset, S. A. ,Schulzrinne, H. G. An

Analysis of the Skype Peer-to-Peer
Internet Telephony Protocol, pp 1-11,
INFOCOM 2006

Peer-to-peer - definitions

• “All nodes are equals”

– But some nodes are more equal (superpeers)

• “P2P is a class of applications that takes advantage of
resources – storage, cpu cycles, content, human
presence – available at the edges of the Internet”

• P2P-test:

– Does the system treat variable connectivity and
temporary network addresses as the norm?

– Does the system give the nodes at the edge of the
network significant autonomy?

Client-Server vs. Peer-to-peer

• Client-server:

– Simple

– Easy set up and
administration

– Security model

– Scalability

– Availability

– Single point of failure

• Peer-to-peer:

– Highly scalable

– Failure tolerant

– Self-organizing

– Takes advantage of
unused
resources in powerful
clients

– Availability?

– Security and Trust

– Difficult to manage

– Asymmetric
bandwidth

P2P use case – file sharing

• You probably know a bit about these already…

• Examples include

– Napster - 1st generation, central index, distributed data

– Gnutella - 2nd generation, initially fully distributed index

• Good incentive to join – get access to large amounts of data

• Simplifying factors:

– Immutability

• File content seldom or never change

– Non-strict availability requirements

• Acceptable that files sometimes are unavailable

P2P – Properties

• Ensures that users contribute resources (disk, CPU
cycles etc)

• The responsibilities (albeit not the performance) for
each node is equal

• No Single point of failure

• Are there any pure P2P architectures?

– Many have (semi-)centralized indices

– Most use DNS

P2P - security issues

• Poisoning attacks
– E.g. providing files whose contents are different from the

description
– Madonna’s record company once did this…

• Polluting attacks
– E.g. inserting "bad" chunks/packets into an otherwise valid

file on the network
– Both Poisoning and Polluting is a Byzantine generals problem

• Defection attacks
– Users or software that make use of the network without

contributing resources to it
• Insertion of viruses to carried data

– E.g. downloaded or carried files may be infected with viruses
or other malware

– Hard to know origin of data
• Malware in the peer-to-peer network software itself

– E.g. distributed software may contain spyware

P2P - Security issues (cont.)

• Denial of service attacks
– What differs from DoS against client-server

systems?
• Filtering

– Network operators may attempt to prevent peer-
to-peer network data from being carried

– Firewalls
• Identity attacks

– E.g. tracking down the users of the network and
harassing or legally attacking them
• Pirate bay

• Spamming
– E.g. sending unsolicited information across the

network- not necessarily as a denial of service
attack

P2P architectures

n1

n2 n3

n4

n5

n6

n7

n8

n9 n10 n11

n12

n13

n13

Decentralized architectures Semi-centralized architectures

Discovery
server

n1

n2

n3

n4

n5

n6

Peer-to-peer requirements

• Global scalability

• Load balancing

• Optimization for local interactions between
neighbouring peers

• Accommodating to highly dynamic host availability

• Security of data

– Integrity

– Privacy

• Anonymity, deniability, resistance to censorship

Routing overlays

• Is a network which is built on top of IP

• Forms a logical layer on top of existing routing
network (IP)

• Nodes know how to route message to a subset of the
network

• Overlapping subsets allow messages to be forwarded
correctly

Unstructured routing overlays

• Random establishment of links

• Easy to join new nodes to network

– Copy links of existing nodes, set up own links after time

• No special action required when node leaves

• Main disadvantage – searching

– Queries must be flooded across network

– Popular content probably replicated

– Rare content hard to find

– Huge amount of overhead traffic

E.g. gnutella, bitTorrent, freenet

Structured routing overlays
- Distributed hash tables

• Non-random links

• Each node (and object) has a GUID

– GUID calculated from hash values

• An object is stored at the node(s) with the GUID
closest to that of the object

• Routing: Forward requests to the neighbour that is
numerically closest to the target

• Efficient use of bandwidth

• Higher probability to find content/Read is fast

• More complex to for nodes to join/leave

• Insert and delete are very expensive

e.g, Tapestry, chord, pastry, Kademlia, Pastry

Routing in a DHT (Pastry)
- Basic idea

Each node knows 8

logical neighbours (4

on each side)

Example: Route a

message from node

65A1FC to D46A1C

This requires O(N/8)

hops!

0 FFFFF....F (2
128
- 1)

65A1FC

D13DA3

D471F1

D467C4

D46A1C

Real routing in Pastry
- Routing table

• m-number of rows
• b-number of entries per row
• E.g. b = 16, m = 32 and search for

nodeID/GUID = D46A1C
• Number of entries per level = b

0 0 1 2 3 4 5 6 7 8 9 A B C D E F

1 6F

D13DA3 D7

Real routing in Pastry

Each node knows 8 logical

neighbours (4 on each side)

Make use of routing table in

addition to leaf sets

Example: Route a message

from node 65A1FC to

D46A1C

Longest common prefix

(routing table)

This only requires O(log N)

hops

Basic DHT programming API

• put(GUID, data)

– Store data (N replicas) at nodes with identities
closest to GUID

• remove(GUID)

– Delete all (up to N) occurrences of data identified
by GUID

• value = get(GUID)

– Retrieve data associated with GUID from some
nodes holding it

Adding new hosts (Pastry DHT)

1. Compute GUID of new node:

1. X = hash(public key of new node)

2. Contact “nearby” node A

1. Is this pure P2P?

3. Send join request to A, specifying X as destination.

4. Pastry routes join message to Z (node with GUID
closest to A)

5. Join message will pass nodes A, B, C, … Z

6. Nodes A, B, C, … Z sends relevant information
(neighbor lists, routing tables) to X

7. X constructs its own neighbor list and routing table.

1. Neighbour list in X almost identical to that in node
Z

8. X contacts all nodes in its neighbour list so that they
can add X to theirs

Adding new hosts(pastry)

Host departure (Pastry DHT)

• Hosts may depart or fail at anytime

• Node Failure := when the nearest neighbours can
not contact node

• Repair neighbour list of node close to failed node
X:

1. Get copy of neighbour list from node close to X

2. Exchange X with appropriate node

3. Inform other neighbouring nodes so they can
repeat the procedure

BitTorrent – Introduction

• Efficient

• Scalable

• Suited for static data

• Terminology:

– Torrent file

– Tracker

– Seeder

– Leecher

– Swarm

– Chunk/piece

• Incentive to share:

– Download speed related to upload speed

– Peers are interested in exchanging data

BitTorrent – Introduction

• Files are split up in pieces, and an SHA-1 hash is calculated
for each piece.

BitTorrent – Introduction

• The torrent file is distributed to all peers

– Usually via HTTP

• The torrent file contains:

– The SHA-1 hashes of all pieces

– A mapping of the pieces to files

– A tracker reference

BitTorrent – Introduction

BitTorrent – Introduction

BitTorrent – Efficiency

• Fast downloads by enabling downloads from many
different peers

• Minimize piece overlap -> peers can exchange pieces
with many other peers

BitTorrent – Efficiency

• Small overlap

– Many possible
exchanges

– Bandwidth well utilized

• Big overlap

– Only a few possible
exchanges

– Bandwidth under
utilized

BitTorrent – Efficiency

• To minimize overlap:

– Download random pieces

– Prioritize the rarest pieces

BitTorrent – Reliability

• Tolerant against dropping peers

• Ability to verify data integrity (SHA-1 hashes)

• Maximize the number of distributed copies

BitTorrent – Reliability

• Distributed copies

– Number of copies of the rarest piece

BitTorrent – Reliability

• Rarest first

– Pick a random piece from the set of rarest pieces.

– Ignore pieces we already have

BitTorrent – Trackerless torrents

• Common problem with trackers:

– Single point of failure

– Bandwidth bottleneck

– Legal issues

• Solutions:

– Multiple trackers

– UDP trackers

– DHT tracker

BitTorrent – Trackerless torrents

• DHT

– Kademlia as DHT

– The key is the info-hash, a hash of the meta data.

– The data is not the file, but a list of peers in the
swarm

– Each node is assigned an ID, and nodes order
themselves in a defined topography

BitTorrent – Trackerless torrents

• Each node knows much more about close nodes than
distant nodes, similarly to Pastry.

• Querying a node will on average halve the distance,
making a search O(log N).

BitTorrent – Trackerless torrents

• Each peer announces itself with the distributed
tracker

– Looking up the 8 nodes closest to the info-hash of
the torrent

– Sending announce messages to them

– Those 8 nodes will then add the announcing peer
to the peer list stored at that info-hash

– 8 nodes is considered enough to minimize the
probability that all of them will drop from the
network within the announce interval.

Summary

• P2P and BitTorrent has several advantages
compared to Client-server…

• … but also some disadvantages!

• Many systems are not entirely P2P, but DHT is
one way of achieving this

• There is more to P2P than file sharing

• Current research focused on making P2P more
efficient in terms of network traffic

Reference

1) Eng Keong Lua; Crowcroft, J.; Pias, M.; Sharma, R.; Lim, S., "A survey and comparison of peer-
to-peer overlay network schemes," Communications Surveys & Tutorials, IEEE , vol.7, no.2, pp.72--
93, Second Quarter 2005
2) Distributed System, 5th ed. by Coulouris, Dollimore, Kindberg, and Blair (Addison-
Wesley/Pearson Education)

