
Distributed Systems (5DV020)

Fall 2014

Concurrency Control

1

Problems with concurrent transactions
 Transactions are carried out concurrently for higher performance

 Otherwise, painfully slow

 Serial Equivalence

 Interleaved operations produce same effect as if transactions have been
performed one at a time

 Does not mean to actually perform one transaction at a time, as this would
lead to horrible performance

 Two operations are in conflict if the final result depends on the order of
execution

 Value set by a write

 Result of a read

2

Motivation

Read – Read  No conflict

Read – Write (or Write – Read)  Conflict!

Write – Write Conflict!

Concurrency control
 Serialize access to objects

Each server is responsible for concurrency control on own
objects

All servers are jointly responsible for concurrency control of
conflicting transactions

 Ensure serially equivalent interleavings
Maximize concurrency

 Locks (wait for access)
 Optimistic concurrency control (check for conflicts at the end)
 Timestamp ordering (check to delay or reject)

3

Motivation

Locks

4

Locks
Need an object? Get a lock for it!

Read or write locks, or both (exclusive)

Two-phase locking
Accumulate locks gradually, then release locks gradually

Strict two-phase locking
Accumulate locks gradually, keep them all until completion

Enables “strict” systems
Granularity and tradeoffs

5

Locks

6

Transaction T :

balance = b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

Transaction U :

balance = b.getBalance()

b.setBalance(bal*1.1)

c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction
bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T ’s
lock on BcloseTransaction unlock A , B

lock B

b.setBalance(bal*1.1)

c.withdraw(bal/10) lock C

closeTransaction unlock B , C

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.14

Locks

Sharing locks

 Read locks can be shared

 Promote read lock to write lock if no other transactions
require a lock

 Requesting a write lock when there are already read locks, or
a read lock when there is already a write lock?
 Wait until lock is available

7

Lock compatibility

Locks

Rules for strict two-phase locking

8Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.16

Locks

Locks and nested transactions
 Isolation

 From other sets of nested transactions
 From other transactions in own set

 Rules:
 Parents do not run concurrently with children
 Children can temporarily acquire locks from ancestors
 Parent inherits locks when child transactions commit

 Locks are discarded if child aborts

 Sub-transactions at each level are treated as flat transactions
There are also rules for acquiring and releasing locks

9

Locks

Big problem: Deadlocks

Typical deadlock:
Transaction A waits for B,
transaction B waits for A

Deadlocks may arise in long chains

Conceptually, construct a wait-for graph
Directed edge between nodes if one waits for the other

Cycles indicate deadlocks
Abort transaction(s) as needed

10

Locks

Handling deadlock
 Deadlock prevention

 Acquire all locks from the beginning
Bad performance, not always possible

 Deadlock detection
 As soon as a lock is requested, check if a deadlock will occur

Bad performance: avoid checking always

 Must include algorithm for determining which transaction to abort
 Lock timeouts

 Locks invulnerable for a certain time, then they are vulnerable
 Leads to unnecessary aborts

 Long-running transactions
 Overloaded system

 How to decide useful timeout value?

11

Locks

12

Distributed deadlock
Local and distributed deadlocks

Phantom deadlocks

Simplest solution
Manager collects local wait-for information and constructs

global wait-for graph
 Single point of failure, bad performance, does not scale, what about

availability, etc.

Distributed solution – edge chasing or path pushing
 Don’t construct a global wait-for graph, instead only send

probes

Locks

Optimistic Concurrency control

13

Locks, drawbacks
Overhead (even on read-only transactions)
Necessary only in the worst case

Deadlock
Prevention reduces concurrency severely
Timeouts or detection

Reduced concurrency in general
Locks need to be maintained until transactions end

Enter optimistic concurrency control

14

Optimistic concurrency control

Optimistic Concurrency Control
 Assumes that conflicts are rare

 Probability of multiple accesses to same object is low
 Only need to worry about real conflicts

 Transaction phases:
Working

 Transaction works with tentative data (read and write sets)

Validation (Upon completion)
 Check if transaction may commit or abort
 Conflict resolution

Update
Write tentative data from committed transactions to permanent storage

15

updatevalidationworkingT

Optimistic concurrency control

Validation Tv Ti Rule

write read Ti must not read objects written by Tv

read write Tv must not read objects written by Ti

write write Ti must not read objects written by Tv and Ti must
not read objects written by Tv

 Use conflict rules from earlier!

 On overlapping transactions

 Validate one transaction at a
time against others

 Transactions are numbered
(not to be confused with IDs) as
they enter the validation
phase

 Only a single transaction at a
time in update phase

 Backward or Forward
validation

16

Earlier committed

transactions

Working Validation Update

T 1

T v

Transaction

being validated

T 2

T 3

Later active

transactions

active
1

active
2

B

F

Optimistic concurrency control

Backward validation
 Check read set against write set of transactions that:

 were active at the same time as the transaction currently being
validated; and

 have already committed

 Transactions with only write set need not be checked

 If overlap is found, then current transaction must be aborted!

17

Tv
Transaction

being validated

T3

write

read

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.28

Optimistic concurrency control

Backward validation - example

18

Backward validation of transaction Tv
boolean valid = true;
for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;
}

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction

being validated

T2

T3

Later active

transactions

active
1

active
2

write sets
must be

saved until
active

finishes

Optimistic concurrency control

Forward validation
 Check write set against read set of transactions that are currently

active
 Note that read sets of active transactions may change during validation

 read-only transactions need not be checked

 If overlap is found, we can choose which transaction(s) to abort
 Wait until conflicting transactions have finished

 Abort conflicting active transactions

 Abort transactions being validated

19

active

read

Tv

Transaction

being validated

write

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 18.2

Optimistic concurrency control

Forward validation - example

20

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction

being validated

T2

T3

Later active

transactions

active
1

active
2

Optimistic concurrency control

Comparison of validation schemes
 Size of read/write sets

 Read sets are usually bigger
 Forward compares against “growing” read sets

 Choice of transaction to abort
 Backward a single choice, Forward three choices
 Linked to starvation

 Overhead
 Backward requires storing old write sets
 Forward may need to re-run each time the read set for any

active transaction changes and must allow for checking new
valid transactions

21

Optimistic concurrency control

Timestamp ordering

22

Overview
Avoids locks, relies on timestamps
Transactions are assigned timestamps when they start

Timestamps are assigned to all read and write accesses
that a transaction makes

Read and write access is granted according to
timestamp order – validated when carried out
Requests are totally ordered
 Serial execution of transactions
Transactions are aborted if validation is unsuccessful

23

Timestamp ordering

Ordering rule
 Based on operation conflicts

Writes are valid only if the object was last read or written by
earlier transactions

 Reads are valid only if the object was last written by an earlier
transactions

 Transactions can access an object concurrently
Writes on tentative versions until committed
Writes may be performed after closeTransaction()
Reads must wait for earlier transactions to finish (no deadlock)

24

Timestamp ordering

Details

25

V1 V2 Vi

WTS1 WTS2
WTSi

WTS

RTS={rts1, …,rtsj}O
b

je
ct

 X

 Tentative versions are created when writes are accepted
 Write timestamp set to transaction timestamp

 Reads are directed to a version according to timestamp
 The earliest version

 Transaction timestamp is added to read timestamps

 For commits:
 Tentative version becomes the object (values)

 Tentative version timestamps become the objects’ timestamps

Operation
conflicts for
timestamp

ordering

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.29

Timestamp ordering

Timestamp ordering write rule
A write is accepted if (transaction Tc, object D):

When a write is accepted a new tentative version is
created with timestamp Tc

Writes that arrive too late are aborted

A transaction with a later timestamp has already operated
on the object

26

Timestamp ordering

Example: write operations

27
Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.30

write(b) T3

Timestamp ordering

Timestamp ordering read rule
A read is accepted if (transaction Tc, object D):

Reads that arrive too early need to wait for the
earlier transaction to complete (aborts dirty reads)

Reads that arrive too late are aborted

28

Timestamp ordering

Example: read operations

29
Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.31

Timestamp ordering

Combined example

30
Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.32

Timestamp ordering

Summary

Comparison of concurrency control schemes
Pessimistic CC

Two-phase locking – serialization ordering is decided
dynamically

Transactions need to wait for locks ...and yet, can still be
aborted

 Locking maybe beneficial for transactions with more writes
than reads (compared against timestamp ordering)

 Large overhead (avoided in new systems)

31

Summary

Timestamp ordering – serialization ordering is
decided statically

Beneficial for transactions with more reads than writes

For systems with many CC-r For systems with many
CC-related issues

Pessimistic will give a more stable quality of service

Optimistic will abort a large number of transactions and
requires substantial work

32

Summary

Advanced DS course (this fall)

36

http://www8.cs.umu.se/kurser/5DV153/HT14/

Next Lecture

37

Peer-2-peer
and

explanation of PGcom

