
Distributed Systems (5DV020)

Fall 2014

Concurrency Control

1

Problems with concurrent transactions
 Transactions are carried out concurrently for higher performance

 Otherwise, painfully slow

 Serial Equivalence

 Interleaved operations produce same effect as if transactions have been
performed one at a time

 Does not mean to actually perform one transaction at a time, as this would
lead to horrible performance

 Two operations are in conflict if the final result depends on the order of
execution

 Value set by a write

 Result of a read

2

Motivation

Read – Read No conflict

Read – Write (or Write – Read) Conflict!

Write – Write Conflict!

Concurrency control
 Serialize access to objects

Each server is responsible for concurrency control on own
objects

All servers are jointly responsible for concurrency control of
conflicting transactions

 Ensure serially equivalent interleavings
Maximize concurrency

 Locks (wait for access)
 Optimistic concurrency control (check for conflicts at the end)
 Timestamp ordering (check to delay or reject)

3

Motivation

Locks

4

Locks
Need an object? Get a lock for it!

Read or write locks, or both (exclusive)

Two-phase locking
Accumulate locks gradually, then release locks gradually

Strict two-phase locking
Accumulate locks gradually, keep them all until completion

Enables “strict” systems
Granularity and tradeoffs

5

Locks

6

Transaction T :

balance = b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

Transaction U :

balance = b.getBalance()

b.setBalance(bal*1.1)

c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction
bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T ’s
lock on BcloseTransaction unlock A , B

lock B

b.setBalance(bal*1.1)

c.withdraw(bal/10) lock C

closeTransaction unlock B , C

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.14

Locks

Sharing locks

 Read locks can be shared

 Promote read lock to write lock if no other transactions
require a lock

 Requesting a write lock when there are already read locks, or
a read lock when there is already a write lock?
 Wait until lock is available

7

Lock compatibility

Locks

Rules for strict two-phase locking

8Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.16

Locks

Locks and nested transactions
 Isolation

 From other sets of nested transactions
 From other transactions in own set

 Rules:
 Parents do not run concurrently with children
 Children can temporarily acquire locks from ancestors
 Parent inherits locks when child transactions commit

 Locks are discarded if child aborts

 Sub-transactions at each level are treated as flat transactions
There are also rules for acquiring and releasing locks

9

Locks

Big problem: Deadlocks

Typical deadlock:
Transaction A waits for B,
transaction B waits for A

Deadlocks may arise in long chains

Conceptually, construct a wait-for graph
Directed edge between nodes if one waits for the other

Cycles indicate deadlocks
Abort transaction(s) as needed

10

Locks

Handling deadlock
 Deadlock prevention

 Acquire all locks from the beginning
Bad performance, not always possible

 Deadlock detection
 As soon as a lock is requested, check if a deadlock will occur

Bad performance: avoid checking always

 Must include algorithm for determining which transaction to abort
 Lock timeouts

 Locks invulnerable for a certain time, then they are vulnerable
 Leads to unnecessary aborts

 Long-running transactions
 Overloaded system

 How to decide useful timeout value?

11

Locks

12

Distributed deadlock
Local and distributed deadlocks

Phantom deadlocks

Simplest solution
Manager collects local wait-for information and constructs

global wait-for graph
 Single point of failure, bad performance, does not scale, what about

availability, etc.

Distributed solution – edge chasing or path pushing
 Don’t construct a global wait-for graph, instead only send

probes

Locks

Optimistic Concurrency control

13

Locks, drawbacks
Overhead (even on read-only transactions)
Necessary only in the worst case

Deadlock
Prevention reduces concurrency severely
Timeouts or detection

Reduced concurrency in general
Locks need to be maintained until transactions end

Enter optimistic concurrency control

14

Optimistic concurrency control

Optimistic Concurrency Control
 Assumes that conflicts are rare

 Probability of multiple accesses to same object is low
 Only need to worry about real conflicts

 Transaction phases:
Working

 Transaction works with tentative data (read and write sets)

Validation (Upon completion)
 Check if transaction may commit or abort
 Conflict resolution

Update
Write tentative data from committed transactions to permanent storage

15

updatevalidationworkingT

Optimistic concurrency control

Validation Tv Ti Rule

write read Ti must not read objects written by Tv

read write Tv must not read objects written by Ti

write write Ti must not read objects written by Tv and Ti must
not read objects written by Tv

 Use conflict rules from earlier!

 On overlapping transactions

 Validate one transaction at a
time against others

 Transactions are numbered
(not to be confused with IDs) as
they enter the validation
phase

 Only a single transaction at a
time in update phase

 Backward or Forward
validation

16

Earlier committed

transactions

Working Validation Update

T 1

T v

Transaction

being validated

T 2

T 3

Later active

transactions

active
1

active
2

B

F

Optimistic concurrency control

Backward validation
 Check read set against write set of transactions that:

 were active at the same time as the transaction currently being
validated; and

 have already committed

 Transactions with only write set need not be checked

 If overlap is found, then current transaction must be aborted!

17

Tv
Transaction

being validated

T3

write

read

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.28

Optimistic concurrency control

Backward validation - example

18

Backward validation of transaction Tv
boolean valid = true;
for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;
}

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction

being validated

T2

T3

Later active

transactions

active
1

active
2

write sets
must be

saved until
active

finishes

Optimistic concurrency control

Forward validation
 Check write set against read set of transactions that are currently

active
 Note that read sets of active transactions may change during validation

 read-only transactions need not be checked

 If overlap is found, we can choose which transaction(s) to abort
 Wait until conflicting transactions have finished

 Abort conflicting active transactions

 Abort transactions being validated

19

active

read

Tv

Transaction

being validated

write

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 18.2

Optimistic concurrency control

Forward validation - example

20

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction

being validated

T2

T3

Later active

transactions

active
1

active
2

Optimistic concurrency control

Comparison of validation schemes
 Size of read/write sets

 Read sets are usually bigger
 Forward compares against “growing” read sets

 Choice of transaction to abort
 Backward a single choice, Forward three choices
 Linked to starvation

 Overhead
 Backward requires storing old write sets
 Forward may need to re-run each time the read set for any

active transaction changes and must allow for checking new
valid transactions

21

Optimistic concurrency control

Timestamp ordering

22

Overview
Avoids locks, relies on timestamps
Transactions are assigned timestamps when they start

Timestamps are assigned to all read and write accesses
that a transaction makes

Read and write access is granted according to
timestamp order – validated when carried out
Requests are totally ordered
 Serial execution of transactions
Transactions are aborted if validation is unsuccessful

23

Timestamp ordering

Ordering rule
 Based on operation conflicts

Writes are valid only if the object was last read or written by
earlier transactions

 Reads are valid only if the object was last written by an earlier
transactions

 Transactions can access an object concurrently
Writes on tentative versions until committed
Writes may be performed after closeTransaction()
Reads must wait for earlier transactions to finish (no deadlock)

24

Timestamp ordering

Details

25

V1 V2 Vi

WTS1 WTS2
WTSi

WTS

RTS={rts1, …,rtsj}O
b

je
ct

 X

 Tentative versions are created when writes are accepted
 Write timestamp set to transaction timestamp

 Reads are directed to a version according to timestamp
 The earliest version

 Transaction timestamp is added to read timestamps

 For commits:
 Tentative version becomes the object (values)

 Tentative version timestamps become the objects’ timestamps

Operation
conflicts for
timestamp

ordering

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.29

Timestamp ordering

Timestamp ordering write rule
A write is accepted if (transaction Tc, object D):

When a write is accepted a new tentative version is
created with timestamp Tc

Writes that arrive too late are aborted

A transaction with a later timestamp has already operated
on the object

26

Timestamp ordering

Example: write operations

27
Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.30

write(b) T3

Timestamp ordering

Timestamp ordering read rule
A read is accepted if (transaction Tc, object D):

Reads that arrive too early need to wait for the
earlier transaction to complete (aborts dirty reads)

Reads that arrive too late are aborted

28

Timestamp ordering

Example: read operations

29
Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.31

Timestamp ordering

Combined example

30
Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.32

Timestamp ordering

Summary

Comparison of concurrency control schemes
Pessimistic CC

Two-phase locking – serialization ordering is decided
dynamically

Transactions need to wait for locks ...and yet, can still be
aborted

 Locking maybe beneficial for transactions with more writes
than reads (compared against timestamp ordering)

 Large overhead (avoided in new systems)

31

Summary

Timestamp ordering – serialization ordering is
decided statically

Beneficial for transactions with more reads than writes

For systems with many CC-r For systems with many
CC-related issues

Pessimistic will give a more stable quality of service

Optimistic will abort a large number of transactions and
requires substantial work

32

Summary

Advanced DS course (this fall)

36

http://www8.cs.umu.se/kurser/5DV153/HT14/

Next Lecture

37

Peer-2-peer
and

explanation of PGcom

