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Problems with concurrent transactions
 Transactions are carried out concurrently for higher performance

 Otherwise, painfully slow

 Serial Equivalence

 Interleaved operations produce same effect as if transactions have been 
performed one at a time

 Does not mean to actually perform one transaction at a time, as this would 
lead to horrible performance

 Two operations are in conflict if the final result depends on the order of 
execution

 Value set by a write

 Result of a read
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Motivation

Read – Read  No conflict

Read – Write (or Write – Read)  Conflict!

Write – Write Conflict!



Concurrency control
 Serialize access to objects

Each server is responsible for concurrency control on own 
objects

All servers are jointly responsible for concurrency control of 
conflicting transactions

 Ensure serially equivalent interleavings
Maximize concurrency

 Locks (wait for access)
 Optimistic concurrency control (check for conflicts at the end)
 Timestamp ordering (check to delay or reject)
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Motivation



Locks
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Locks
Need an object? Get a lock for it!

Read or write locks, or both (exclusive)

Two-phase locking
Accumulate locks gradually, then release locks gradually

Strict two-phase locking
Accumulate locks gradually, keep them all until completion

Enables “strict” systems
Granularity and tradeoffs
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Transaction T :

balance = b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

Transaction U :

balance = b.getBalance()

b.setBalance(bal*1.1)

c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction
bal =  b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal =  b.getBalance() waits for T ’s
lock on BcloseTransaction unlock A , B

lock B

b.setBalance(bal*1.1)

c.withdraw(bal/10) lock C

closeTransaction unlock B , C

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 16.14
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Sharing locks

 Read locks can be shared

 Promote read lock to write lock if no other transactions 
require a lock

 Requesting a write lock when there are already read locks, or 
a read lock when there is already a write lock?
 Wait until lock is available
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Lock compatibility
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Rules for strict two-phase locking

8Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 16.16
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Locks and nested transactions
 Isolation

 From other sets of nested transactions
 From other transactions in own set

 Rules:
 Parents do not run concurrently with children
 Children can temporarily acquire locks from ancestors
 Parent inherits locks when child transactions commit

 Locks are discarded if child aborts

 Sub-transactions at each level are treated as flat transactions
There are also rules for acquiring and releasing locks
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Big problem: Deadlocks

Typical deadlock:
Transaction A waits for B,
transaction B waits for A

Deadlocks may arise in long chains

Conceptually, construct a wait-for graph
Directed edge between nodes if one waits for the other

Cycles indicate deadlocks
Abort transaction(s) as needed
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Handling deadlock
 Deadlock prevention

 Acquire all locks from the beginning
Bad performance, not always possible

 Deadlock detection
 As soon as a lock is requested, check if a deadlock will occur

Bad performance: avoid checking always

 Must include algorithm for determining which transaction to abort
 Lock timeouts

 Locks invulnerable for a certain time, then they are vulnerable
 Leads to unnecessary aborts

 Long-running transactions
 Overloaded system

 How to decide useful timeout value?
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Distributed deadlock
Local and distributed deadlocks

Phantom deadlocks

Simplest solution
Manager collects local wait-for information and constructs 

global wait-for graph
 Single point of failure, bad performance, does not scale, what about 

availability, etc.

Distributed solution – edge chasing or path pushing
 Don’t construct a global wait-for graph, instead only send

probes

Locks



Optimistic Concurrency control

13



Locks, drawbacks
Overhead (even on read-only transactions)
Necessary only in the worst case

Deadlock
Prevention reduces concurrency severely
Timeouts or detection

Reduced concurrency in general
Locks need to be maintained until transactions end

Enter optimistic concurrency control
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Optimistic Concurrency Control
 Assumes that conflicts are rare

 Probability of multiple accesses to same object is low
 Only need to worry about real conflicts

 Transaction phases:
Working

 Transaction works with tentative data (read and write sets)

Validation (Upon completion)
 Check if transaction may commit or abort
 Conflict resolution

Update
Write tentative data from committed transactions to permanent storage
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updatevalidationworkingT

Optimistic concurrency control



Validation Tv Ti Rule

write read Ti must not read objects written by Tv

read write Tv must not read objects written by Ti

write write Ti must not read objects written by Tv and Ti must 
not read objects written by Tv

 Use conflict rules from earlier!

 On overlapping transactions

 Validate one transaction at a 
time against others

 Transactions are numbered 
(not to be confused with IDs) as 
they enter the validation 
phase

 Only a single transaction at a 
time in update phase

 Backward or Forward 
validation
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Earlier committed

transactions

Working Validation Update

T 1

T v

Transaction

being validated

T 2

T 3

Later active

transactions

active
1

active
2

B

F

Optimistic concurrency control



Backward validation
 Check read set against write set of transactions that:

 were active at the same time as the transaction currently being 
validated; and

 have already committed

 Transactions with only write set need not be checked

 If overlap is found, then current transaction must be aborted!
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Tv
Transaction

being validated

T3

write

read

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 16.28
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Backward validation - example
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Backward validation of transaction Tv
boolean valid = true;
for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;
}

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction

being validated

T2

T3

Later active

transactions

active
1

active
2

write sets 
must be 

saved until 
active

finishes

Optimistic concurrency control



Forward validation
 Check write set against read set of transactions that are currently 

active
 Note that read sets of active transactions may change during validation

 read-only transactions need not be checked

 If overlap is found, we can choose which transaction(s) to abort
 Wait until conflicting transactions have finished

 Abort conflicting active transactions

 Abort transactions being validated
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active

read

Tv

Transaction

being validated

write

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 18.2
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Forward validation - example

20

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction

being validated

T2
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transactions
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1

active
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Comparison of validation schemes
 Size of read/write sets

 Read sets are usually bigger
 Forward compares against “growing” read sets

 Choice of transaction to abort
 Backward a single choice, Forward three choices
 Linked to starvation

 Overhead
 Backward requires storing old write sets
 Forward may need to re-run each time the read set for any 

active transaction changes and must allow for checking new
valid transactions

21

Optimistic concurrency control



Timestamp ordering
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Overview
Avoids locks, relies on timestamps
Transactions are assigned timestamps when they start

Timestamps are assigned to all read and write accesses 
that a transaction makes

Read and write access is granted according to 
timestamp order – validated when carried out
Requests are totally ordered
 Serial execution of transactions
Transactions are aborted if validation is unsuccessful
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Ordering rule
 Based on operation conflicts

Writes are valid only if the object was last read or written by 
earlier transactions

 Reads are valid only if the object was last written by an earlier 
transactions

 Transactions can access an object concurrently
Writes on tentative versions until committed
Writes may be performed after closeTransaction()
Reads must wait for earlier transactions to finish (no deadlock)
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Details
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V1 V2 Vi

WTS1 WTS2
WTSi

WTS

RTS={rts1, …,rtsj}O
b

je
ct

 X

 Tentative versions are created when writes are accepted
 Write timestamp set to transaction timestamp

 Reads are directed to a version according to timestamp
 The earliest version

 Transaction timestamp is added to read timestamps

 For commits:
 Tentative version becomes the object (values)

 Tentative version timestamps become the objects’ timestamps

Operation
conflicts for
timestamp

ordering

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 16.29
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Timestamp ordering write rule
A write is accepted if (transaction Tc, object D):

When a write is accepted a new tentative version is 
created with timestamp Tc

Writes that arrive too late are aborted

A transaction with a later timestamp has already operated 
on the object
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Example: write operations
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Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 16.30

write(b) T3

Timestamp ordering



Timestamp ordering read rule
A read is accepted if (transaction Tc, object D):

Reads that arrive too early need to wait for the 
earlier transaction to complete (aborts dirty reads)

Reads that arrive too late are aborted
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Example: read operations
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Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 16.31
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Combined example
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Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 16.32
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Summary

Comparison of concurrency control schemes
Pessimistic CC 

Two-phase locking – serialization ordering is decided 
dynamically

Transactions need to wait for locks ...and yet, can still be 
aborted

 Locking maybe beneficial for transactions with more writes 
than reads (compared against timestamp ordering)

 Large overhead (avoided in new systems)
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Timestamp ordering – serialization ordering is 
decided statically

Beneficial for transactions with more reads than writes

For systems with many CC-r For systems with many 
CC-related issues

Pessimistic will give a more stable quality of service

Optimistic will abort a large number of transactions and 
requires substantial work
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Advanced DS course (this fall)
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http://www8.cs.umu.se/kurser/5DV153/HT14/



Next Lecture
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Peer-2-peer 
and 

explanation of PGcom


