
Distributed Systems (5DV147)

Fall 2014

Transactions

1

Motivation

 Transactions are indivisible units that either …
 … complete successfully (changes recorded on permanent storage)

 … or have no effect at all

 These under crash-failures and when multiple transactions operate on
same objects (require concurrency control)

2

a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

Objects a, b, c

Transfer 100 from a to b
Transfer 200 from c to b

Something can go
wrong in the middle
….

Introduction

Transactions

3

ACID Properties

Atomicity: “all or nothing”
Consistency: transactions take system from one
consistent state to another consistent state
Isolation: transactions do not interfere with each
other
Durability: committed results of transactions are
permanent
 recoverable objects

4

Introduction

Operations

5

openTransaction() -> trans;

starts a new transaction and delivers a unique TID trans. This

identifier will be used in the other operations in the transaction.

closeTransaction(trans) -> (commit, abort);

ends a transaction: a commit return value indicates that the

transaction has committed; an abort return value indicates that it

has aborted.

abortTransaction(trans);

aborts the transaction.

Introduction

Types of transactions

6

Flat transactions

We have seen those already:

open-transaction() … commit()/abort()

The entire transaction must commit or abort

7

Types of transactions

 Tree-structured

 Sub-transactions at one level
may execute concurrently

 Shared objects’ accesses
are serialized

 Sub-transactions may
provisionally commit or
abort independently

 parent may decide whether
to abort or not

 Provisional commit is not
a proper commit!

Nested transactions

8

T : top-level transaction

T
1

= openSubTransaction T
2

= openSubTransaction

openSubTransaction openSubTransactionopenSubTransaction

openSubTransaction

T
1

: T
2

:

T
11

: T
12

:

T
211

:

T
21 :

prov.commit

prov. commit

abort

prov. commitprov. commit

prov. commit

commit

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.13

Types of transactions

Rules for committing nested transactions

1. All children transactions need to complete before deciding
on commit/abort the parent transaction

2. Sub-transactions independently provisionally commit or
abort – abort is final

3. When parent aborts, all sub-transactions abort

4. When a sub-transaction aborts, parent decide what to do

5. If the top-level transaction commits, all sub-transactions that
have provisionally committed may commit as well if none of
their ancestors has aborted

9

Types of transactions

Flat and nested distributed transactions

Distributed transaction:
Transactions accessing objects managed by more than

one server (processes)

All servers need to commit or abort a transaction

Allows for even better performance
At the price of increased complexity

One coordinator and multiple participants

10

Types of transactions

11

Client

X

Y

Z

T

T

Flat transactions
 Requests are made to more than

one server

 Access to servers is sequential

 A transaction can only wait for one
object that is locked at a time

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 17.1

Types of transactions

12

X

Y

M

NT
1

T
2

T
11

Client

P

T

T
12

T
21

T
22

Nested transactions
 Sub-transactions can be

opened to any depth

 Sub-transactions at the
same level can run
concurrently

 If sub-transactions run on
different servers, they can
run in parallel

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 17.1

Types of transactions

Example: Distributed flat transaction

13

Types of transactions

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 17.3

Concurrent transactions

14

Problems with concurrent transactions
Transactions are carried out concurrently for higher

performance
 Otherwise, painfully slow

Two common problems that appear if performance is not
handled correctly
 Lost update

 Inconsistent retrieval

 Solution
 Serial equivalence: manage conflicting operations and create

schedules that ensure the consistency requirement
15

Concurrent transactions

Lost update

T1: A=read(x), write(x, A*10)

T2: B=read(x), write(x, B*10)

If not properly isolated, we could get the following interleaving:
(T1) A=read(x)

(T2) B=read(x)

(T1) write(x, A*10)

(T2) write(x, B*10)

16

Executing T1 and T2 should
have increased x by ten times
twice, but we lost one of the
updates

original value of x (T1) A=read(x)
(T1) write(x, A*10)
(T2) B=read(x)
(T2) write(x, B*10)

Two transactions read the old value of the variable an then use that value
to calculate a new value

Concurrent transactions

17

Inconsistent retrieval
T1: withdraw(x, 10), deposit(y, 10)

T2: sum all accounts

Improper interleaving:

The sum is incorrect, because it
doesn’t account for the 10 that are
‘in transit’ – neither in x nor in y –
the retrieval is inconsistent

(T1) withdraw(x, 10)
(T2) sum+=read(x)
(T2) sum+=read(y)
...
(T1) deposit(y, 10)

Read concurrent with update
transaction

(T1) withdraw(x, 10)
(T1) deposit(y, 10)
(T2) sum+=read(x)
(T2) sum+=read(y)
...

A retrieval transaction runs concurrent with an update transaction

Concurrent transactions

How to work around these problems?

Serial Equivalence

 Interleaved operations produce same effect as if
transactions have been performed one at a time

Does not mean to actually perform one transaction at a
time, as this would lead to horrible performance

18

(T1) A=read(x)
(T1) write(x, A*10)
(T2) B=read(x)
(T2) write(x, B*10)

(T1) withdraw(x, 10)
(T1) deposit(y, 10)
(T2) sum+=read(x)
(T2) sum+=read(y)
...

Concurrent transactions

A better example

19

Transaction T :

balance = b.getBalance();

b.setBalance(balance*1.1);

a.withdraw(balance/10)

Transaction U:

balance = b.getBalance();

b.setBalance(balance*1.1);
c.withdraw(balance/10)

balance = b.getBalance(); $200

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

b.setBalance(balance*1.1); $220

a.withdraw(balance/10) $80

c.withdraw(balance/10) $280

Transaction T:

balance = b.getBalance()

b.setBalance(balance*1.1)

a.withdraw(balance/10)

Transaction U:

balance = b.getBalance()

b.setBalance(balance*1.1)

c.withdraw(balance/10)

balance = b.getBalance() $200

b.setBalance(balance*1.1) $220
balance = b.getBalance() $220

b.setBalance(balance*1.1) $242

a.withdraw(balance/10) $80

c.withdraw(balance/10) $278

Better interleaving

a.balance = 100
b.balance = 200
c.balance = 300

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figures 16.5 and
16.7

Concurrent transactions

Conflicting operations

Two operations are in conflict if the final result
depends on the order of execution
Value set by a write

Result of a read

20

Read – Read No conflict

Read – Write (or Write – Read) Conflict!

Write – Write Conflict!

Concurrent transactions

Back to the example

21

Transaction T :

balance = b.getBalance();

b.setBalance(balance*1.1);

a.withdraw(balance/10)

Transaction U:

balance = b.getBalance();

b.setBalance(balance*1.1);
c.withdraw(balance/10)

T: (1) B.Read, (2) B.Write

U: (3) B.Read, (4) B.Write

Conflicts: (1,4), (2,3)

Transaction : Transaction U:

balance = b.getBalance(); $200

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

b.setBalance(balance*1.1); $220

a.withdraw(balance/10) $80

c.withdraw(balance/10) $280

Interleave: 1, 3, 4, 2

The problem is that the pairs of conflicting operations should be
performed in the same order! e.g., [(1,4),(2,3)] or [(4,1), (3,2)]

Concurrent transactions

Serializability

 For two transactions to be serially equivalent,
it is necessary and sufficient that all pairs of
conflicting operations of the two transactions
be executed in the same order at all of the
objects they both access

 Produce consistent schedules

22

Concurrent transactions

Concurrency control protocols

Ensure serially equivalent interleavings

Maximize concurrency

Locks (wait for access)

Optimistic concurrency control (check for conflicts
at the end)

Timestamp ordering (check to delay or reject)

23

Concurrent transactions

Some more things to consider…

24

Problems when aborting transactions

 Results from transactions that commit must be recorded
 Results from transactions that abort should be forgotten
 Transactions can be aborted for whatever reason

 Nature of transaction
 Conflicts with another transaction
 Crash of a process or computer

 Two common problems associated with aborted
transactions
 Dirty reads
 Premature writes

25

Concurrent transactions

Dirty reads

T1 reads a value that T2 wrote, then commits and
later, T2 aborts
The value is “dirty”, since the update to it should not

have happened

T1 has committed, so it cannot be undone

26

Transaction T :
a.getBalance()
a.setBalance(balance + 10)

Transaction U :
a.getBalance()
a.setBalance(balance + 20)

balance = a.getBalance() $100

a.setBalance(balance + 10) $110
balance = a.getBalance() $110
a.setBalance(balance + 20) $130
commit transaction

abort transaction

Concurrent transactions

Handling dirty reads
New rule: let T1 wait until T2 commits/aborts!
But if T2 aborts, we must abort T1

...and so on: others may depend on T1
…cascading aborts

Better rule:
Transactions are only allowed to read objects that

committed transactions have written
Delay commits until after all transactions whose

uncommitted state has been seen (delay reads for writes)

27

Concurrent transactions

Premature writes

Sometimes “Before images” are used when
recovering from an aborted transaction

28

Let x = 50 initially

T1: write(x, 10); T2: write(x, 20)

Let T1 execute before T2

What happens if either one aborts?

Order of commit/abort matters!

T2 aborts, T1 commits (x=10)

T2 commits, T1 aborts (x=50)

T2 aborts, T1 aborts (x=10)

Concurrent transactions

Handling premature writes

Delay writes to objects until other, earlier,
transactions that write to the same object have
committed/aborted

Systems that avoid both dirty reads and
premature writes are “strict”
Delay read and writes
Highly desirable, enforce isolation
Tentative versions (local to each transaction)

29

Concurrent transactions

Two-phase commit

30

Atomic commit

Problem of ensuring atomicity relies on
ensuring that all participants vote and
reach the same decision

 Distributed transaction

 Transactions dealing
with objects managed
by different servers

 All servers commit or
all abort

 … at the same time

 in spite of (crash)
failures and
asynchronous systems

31

Two-phase commit

Two-phase commit protocol

Phase 1: Coordinator collects votes

“Abort”, any participant can abort its part of the transaction

“Prepared to commit”, save updates to permanent storage to
survive crashes (May not change vote to “abort”)

Phase 2: Participants carry out the joint decision

32

Protocol can fail due to servers crashing or network partition

 Log actions into permanent storage

Two-phase commit

Algorithm
Phase 1 (voting)
1. Coordinator sends “canCommit?” to each participant
2. Participants answer “yes” or “no”

• “Yes”: update saved to permanent storage
• “No”: abort immediately

Phase 2 (completion)
3. Coordinator collects votes (including own)

– No failures and all “yes”? Send “doCommit” to each participant,
otherwise, send “doAbort”

4. Confirm commit via “haveCommitted”

33

Note: Participants are in “uncertain” state until they receive
“doCommit” or “doAbort”, and may act accordingly (send
“getDecision” message to coordinator)

Two-phase commit

Timeout actions

34

canCommit?

Yes

doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)

prepared to commit

committed

statusstepstatus

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 17.6

If coordinator fails:

 Participants are “uncertain”

 Participants can request
status (send
“getDecision” message to
coordinator)

 If some have received an
answer (or they can figure
it out themselves), they
can coordinate
themselves

 If participant has not
received “canCommit?”
and waits too long, it may
abort

If participant fails:
 No reply to “canCommit?” in time?

Coordinator can abort

Crash after “canCommit?”
Use permanent storage to get up to speed

Two-phase commit

Two-phase commit protocol for nested transactions

Sub-transactions “provisional commit”
Nothing written to permanent storage

Ancestor could still abort!

If they crash, the replacement cannot commit

Status information is passed upward in tree
List of provisionally committed sub-transactions

eventually reach top level

Hierarchical or flat voting phase

35

Two-phase commit

36

Hierarchic voting

Responsibility to vote passed one
level/generation at a time, through the tree

B

cancommit?

cancommit?
cancommit?cancommit?

cancommit?

yes/no

Two-phase commit

37

Flat voting
 The coordinator contacts participants

directly
 Sends: Transaction ID and the list of

transactions that are reported as
aborted

 Coordinators may manage more than
one sub-transaction, and due to
crashes, this information may be
required

 Coordinators must check if managed
sub-transactions have an aborted
ancestor (from the aborted transactions
list)

B

cancommit?
cancommit?

Types of transactions

Summary

Transactions – specify sequence of operations that
are atomic in presence of server crashes

ACID properties
Types of transactions

 Flat and nested transactions
 Distributed—flat and nested– transactions

Problems due to concurrency
 Lost update
 Inconsistent retrieval

38

Summary

Serial equivalence (Serializabitily)
 Conflicting operations – read-read, read-write, write-read

Aborted transactions
 Dirty reads, premature writes

Atomic commit

Two-phase commit

39

Summary

Next Lecture

40

Concurrency Control

