
Distributed Systems (5DV147)

Fall 2014

Consistency

1

Intuition
A replicated system is correct when:
It maintains execution despite failures
Clients can’t tell the difference between the results

from a system that uses replicated data from those
obtained from a system with a single correct replica

In general we expect a read to return the last value
written

… but which is the last value written since we don’t
have a global clock?

2

Motivation

Example
Client 1 Client2

setBalanceB(x,1)

setBalanceA(y,2)

readBalanceA(y) 2

readBalanceA(x) 0

3

 Local replica of Client 1 is B
 Local replica of Client 2 is A

Motivation

Consistency problem
Replication improves reliability and performance

… but
when a replica is updated, it becomes different from the
others

… so
we need to propagate updates in a way that temporal
inconsistencies are not noticed

… however
this may degrade performance severely

4

Consistency

Consistency models

5

Consistency model
 It is a contract between processes and a data store

 Processes agree to follow certain rules, and the store promises to work
correctly (Tanenbaum and van Steen, 2002)

 What to expect when reading and updating shared data (while others
do the same)

 Models restrict the values that a read can return.
 Minor restrictions’ models are easy to use but have low performance
 Major restrictions’ models are hard to use but offer better performance

 Types of models
 Data-centric models (system-wide)
 Client-centric models (single client)

6

Consistency

Data-centric consistency models

7

Introduction

 These models provide a system wide consistent view of the
data store

Concurrent processes can simultaneously update the data
store

A data store is distributed across a number of machines

Writes are propagated to other replicas

 These models are concerned with consistently ordering
operations to the data store

8

Data centric consistency

Strict consistency

Every read of x returns a value corresponding to the
result of the most recent write to x

True replication transparency, every process receives a
response that is consistent with the real time

All writes are instantaneously visible to all process

Assumes absolute global time
Due to message latency, strict consistency is difficult to

implement

9

Data centric consistency

Example

10

A:

B:

W(x) a

R(x) a

A:

B:

W(x) a

R(x) aR(x) NIL

Strictly consistent Not strictly consistent

In general, A:writet(x,a) then B:readt’(x,a) ; t’>t
(regardless on the number of replicas of x)

Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.5

Data centric consistency

Linearizability
 Interleaving of reads and writes into a single total order

that respects the local ordering of the operations of every
process (i.e., program order must be maintained)
 A trace is consistent when every read returns the latest write

preceding the read

 A trace is linearizable when
 It is consistent
 If t1, t2 are the times at which pi and pj perform operations, and

t1 < t2 , then the consistent trace must satisfy the condition that
t1 < t2

11

Data centric consistency

Example

12

A:

B:

W(x) 1

W(y) 1

The linearizable trace is WA(x,1), WB(y,1), RA(y,1), RB(x,1)

R(y) 1

R(x) 1

Data centric consistency

Sequential consistency
 “The result of any execution is the same as if the (read and

write) operations by all processes on the data store were
executed in some sequential order and the operations of
each individual process appear in this sequence in the order
specified by its program” (Lamport 1979)
 Is not concerned with real time
 All processes see the same interleaving of operations
 Requires that interleaving preserving local temporal order of

reads and writes are consistent traces

13

Data centric consistency

Sequential consistency example

14

Sequentially consistent Not sequentially consistent

Sequence of operations:
W2 (x)b, R3(x)b, R4(x)b, W1(x)a, R3(x)a, R4(x)a

Must be seen in the same
order by all processes

Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.6

Data centric consistency

One more example

15

W(x)1P1:

P2:

P3:

W(y)2

R(y)2 R(x)0 R(x)1

Sequence of operations:
R3 (x)b, W2(y)2, R3(y)2, W1(x)1, R3(x)1

Data centric consistency

Notice that processors can
see writes from other
processors but they can
only see their reads

Causal consistency

All writes that are potentially causally related must
be seen by every process in the same order, and
reads must be consistent with this order

Writes that are not causally related to one another
(concurrent) can be seen in any order

No constraints on the order of values read by a
process if writes are not causally related

16

Data centric consistency

Example

17
Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.9

Data centric consistency

Causally consistent

W1(x)a R2(x)a W2(x)b

W1(x)a W1(x)c

Example

18
Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.10

Data centric consistency

Causally consistent Not causally consistent

Causally consistent because
w1(x)a and w2(x)b are
concurrent and not causally
related

Not causally consistent:
W1(x)a W2(x)b so R(x)b must
always precede R(x)b

Consistency Description

Strict Absolute time ordering on all shared accesses, essentially
impossible to implement it in distributed systems

Linearizability All processes see all shared accesses in the same order.
Accesses are ordered based on a global timestamp. Good for
reasoning about correctness of concurrent programs but not
really used for building programs

Sequential All processes see all shared accesses in the same order.
Accesses are not ordered in time. Feasible and popular but has
poor performance

Causal All processes see causally-related shared accesses in the same
order. There is no globally agreed upon view of the order of
operations

19
Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.18.a

Data centric consistency

Client-centric consistency models

20

Motivation
 Data stores characterized by lack of simultaneous updates (or

updates that are easily resolved)
 Read-Write, Write-Read, Read-Read, Write-Write
 Most operations involve reading data

 If updates are infrequent, eventually all replicas will obtain
the update and become identical
 Good if clients always access the same replica

 Predominant case for current large-scale Internet services
 CAP theorem (Consistency, Availability, Partition tolerable)

… more of this in the next lecture

21

Client centric consistency

Eventual consistency
 Maintains consistency for individual clients, not considering concurrent

access by different clients

 Ensure that replicas are brought up to date with data that has been
manipulated by a client and that probably resides at another replica sites

 If there are no updates, eventually all replicas will be consistent

 Easier if clients access a single replica (more difficult if clients access
different replicas over a short period of time)

 Delay resolving conflicts, but updates are guaranteed to propagate to
all replicas

Several variations …

22

Client centric consistency

23
Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.19

Client centric consistency

 Clients are unaware
of which replica they
are accessing

 Clients may access
different replicas

 Updates need to be
propagated or
otherwise there is
inconsistent behavior

 Avoid write-write
conflicts if data
objects have a single
owner (that can
update the object)

Notation

Xi[t]: data item X, at replica Li, at time t

WS(Xi[t]): Writing set, i.e., series of write
operations until X is at version [t]

WS(Xi[t1]; Xj[t2]): Operations in WS(Xi[t]) were
also made at replica copy j at time t2

24

Client centric consistency

Monotonic-read consistency

If a process has seen a value of (data item) x at a
certain time, it will never see an older version of x at
a later time

25

Client centric consistency

A monotonic-read consistent data store A not monotonic reads data store

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

The state has been copied to L2 Only the state in L2 is considered

Monotonic-write consistency

A write to data item x is completed before any
successive write to x by the same process

26

Client centric consistency

A monotonic-write consistent data store A Not monotonic-write data store

The last write is reflected at L2 The latest write is not updated at L2

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Read-your-writes consistency

A process will never see a previous value of x after a
write to that data item x

27

Client centric consistency

A data store that provides read-your-writes A data store that does not

L2 performs updates to the last write L2 is not updated to the last write

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Write-follow-reads consistency

A write to x following a previous read by the same
process, is guaranteed to take place on the same or a
more recent value of x that was read

28

Client centric consistency

A writes-follow-reads consistent data store A data store that does not

Write operations are moved to L2 The writes from L2 are not consistent
with those in L1

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Consistency protocols

29

Consistency protocols

Describes an implementation of a specific
consistency model

Sequential consistency

 Passive replication remote-write protocols
and local-write protocols (primary-based)

 Active replication sequencer and quorum-
based protocols

30

Consistency Protocols

Primary-based protocol: remote-write

31

 Updates are blocking
operations
 non-blocking

operations improve
performance but,

problem Fault tolerance

Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.28

Consistency Protocols

Primary-based protocol: local-write

32

 Primary migrates between
processes that wish to
perform an operation

 Optimization carry out
multiple successive writes
locally
 But the requests need

to be non-blocking
Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.30

Consistency Protocols

Active replication: quorum-based
Clients need to request and acquire permission from

replicas before reading (read quorum) or writing
(write quorum)

Each data item contains a version number
Read/write requires agreement of a majority
Constraints for read (NR) and write (NW) quorums

1. NR + NW > N
2. NW > N/2

33

Consistency Protocols

Quorum-based example

34

Correct choice of NR & NW write-write conflict ROWA (read one, write all)

Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.33

Consistency Protocols

Summary

 Consistency models establish the rules on how a data store operates,
models differ …
 In how restrictive they are

 How complex their implementations are

 Ease of programming

 Performance

 Implementation of stronger consistency models is expensive

 Weaker models have less constraints and are cheaper to implement

 Data-centric models
 Strict, linearizability, sequential, causal

35

Summary

Client-centric models
Eventual consistency

 Monotonic reads, monotonic writes, read your writes, writes
follow reads

Consistency protocols describes an
implementation of a consistency model
Primary-based protocols (passive)

 Remote-write

 Local-write

Quorum-based protocols (active)

36

Summary

Next Lecture

37

Cassandra

