Distributed Systems (5DV147)

Distributed Agreement



Processes often need to coordinate their actions
and/or reach an agreement/consensus

JWhich process gets to access a shared resource?

(JHas the master process crashed? Elect a new one!
Failure detection — how to decide that a node has failed
(e.g., crashed)?

JAgreement is maybe the most fundamental

problem in distributed computing



One solution would be to use a master-
slave relationship?

.. but

v'we want our systems to keep working
correctly even if failures occur

v'we need to avoid single points of failure



System model

dThere are N processors that are trying to reach
agreement and there are F faulty processors

» Each processor stores a value V,
» The processors calculate an agreement value A,

» The following two conditions most hold

1. For every p;and p; that are non-faulty A=A (agreement
value)

2. The agreement value is a function of the initial values {V}
of the non-faulty processors



Failure Detection



Failure model

1 Processes and communication channels may fail from correct
behavior

 Failure model defines ways in which failures may occur in order to
understand their effects

(d Omission failures
» Processes or channels fail to do what they’re supposed to do
= Crash
= Fail-stop (Fail-silent)
= Send-omission
= Receive-omission

 Timing failures (synchronous systems)



Arbitrary failures

Byzantine or malicious failures

JAny type of error
» Difficult to catch

» The execution of a process deviates arbitrarily
from what it should do

» A channel may corrupt, duplicate, or deliver non-
existent messages




How to determine that a process has crashed?

JCorrect process
» Exhibits no failures at any point

JFailure detector
» Detects if processes fail

» Unreliable failure detector
= Unsuspected or suspected

» Reliable failure detector
= Unsuspected or failed



Example of unreliable failure detector

max-message-delay = D
processes exchange im-alive messages every T seconds
1f (time-since-last-message== T + D)
if (not receive im-alive message from p;)
state-p; = SUSPECTED
when (receive im-alive message from p;)
state-p; = UN-SUSPECTED



Tradeoffs ...

(J Small values of Tand D

» Lots of suspected non-crashed processes
» Lots of bandwidth due to im-alive messages

 Large timeout values
» Crash processes may be considered unsuspected
J Adapt timeout values (to increase accuracy)
» According to observed network delays

J Synchronous systems -2 reliable failure detector
» D is an absolute bound on message transmission



A fault was detected, what can we do now?

dMask the failure by either hiding it or converting
it into a more acceptable type of failure

Arbitrary failure checksum __ Omission failure
JdMasking by redundancy
» Information redundancy

» Time redundancy
» Physical redundancy




Consensus and related problems

13



Agreement...

O Mutual exclusion
» Agreement on which process enter the CS
O Election
» Agreement on which process is the leader
1 Totally ordered multicast
» Agreement on which messages are delivered and in which order

1 Processes need to agree on a value after proposed by one or more
processes ... even in the presence of faults (crash and arbitrary)
» Consensus
» Byzantine Generals Problem (BGP)
» Interactive consistency



Motivation

d,:=proceed d,:=proceed

vy:=proceed v,:=proceed

agreement algorithm

majority(v,v,,V;)

vy:=abort d;:=proceed

v :=proceed

d;:=proceed

agreement algorithm

majority(v,,v,,V;)

vy:=abort

®-

d,:=proceed

v,:=proceed



Consensus

Processes need to agree on a single value from values
proposed by all processes |

J Every process begins in an undecided state

A process propose one of D possible values
JProcesses exchange values

(JEach process decides on one of the proposed values
» Once choosing a value, processes enters a decided state
» Processes can’t change their chosen value once in a decided state



Byzantine Generals Problem (BGP)

A commander issues an order (attack or retreat),
lieutenants need to decide what to do

(1 One or more generals are treacherous (faulty)
» Commander issues an order to
lieutenants Commander Py
» Lieutenants exchange messages
with commander’s orders
» Each process decides on the T
orders to follow




Interactive consistency

(J Processes need to agree on a value for each process
(a decision vector)

» For example so that each process knows about
each other states



General requirements

Termination Agreement Integrity

Consensus

Byzantine Eventually each correct The decision value of all | If the commander is correct, then

Generals process sets its decision | correct processes is the | all processes decide on the value
variable. same (all processes in that the commander proposed.
the decided state).

Interactive
Consistency

It is possible to derive a solution to one problem using a solution from
another problem! .



Simple if processes can’t fail

J Collect all processes in a group

(J Each process multicast its proposed value to the
members of the group

(J Each process waits for N messages (including own)
» Evaluates majority(v,, v,, ..., vy)

» If no majority exists, majority returns a special value



A simple algorithm for synchronous systems
(crash failures)

V: set of initial values {v} Q fis the max number

For k=1 to f+1 do of failed processors
send {v € V|P; has not already sent v} to all » Need to know f
receive S; from all processes P, j # i  Algorithm based on
V=Vus§, rounds

y = min(V) » f+1rounds

Any algorithm requires at least f+1 rounds of message exchanges
in order to reach consensus despite up to f crash failures!



BGP in synchronous systems (3 processes)

2 round of messages, commander to lieutenants and exchange among lieutenants

P4 (Commander)

I:V &
% 2:1:v >

P, uorv? J <@ Ps
3:1:u

Faulty processes are shown colored

It is impossible to derive a solution if N < 3f
It is possible to derive a solution if N> 3f + 1

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn.5 © Pearson Education 2012 — Figure 15.18



BGP with 4 processes, 1 faulty, 2 rounds

P, (Commander)

P2 P3
3:1:w
P,: majority(v,u,v)=v
Py majority(v,v,w)=v Faulty processes are shown colored P,: P.:P,: majority(u,v, w)=
2 P3Py WV N

Possible with N > 3f + 1 processes, where fis amount of
treacherous ones

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn.5 © Pearson Education 2012 — Figure 15.19



Efficiency, according to ...

JThe number of rounds that it takes

» Measures how long it takes for the algorithm to
terminate

» At least f+1 rounds
JThe number of messages required

> O0(N'*1) messages

> 0(N?4) messages using signed messages
dVery expensive, only when necessary



Final notes

1 Solutions rely on system being synchronous
» Message exchanges take place in rounds

1 Asynchronous system — bad!
» No timing constraints

 Fischer's impossibility result

» Even with just one crashing process, we can’t guarantee to
reach consensus in an asynchronous system

= Can’t distinguish between crash process and a slow one

= No consensus => no BGP, no interactive consistency and no totally
ordered and reliable multicast...

O Still, we manage to do quite well in practice, how can that be?



How to cope with the impossibility result...

1 Mask the faults
» Use persistent storage and allow process restarts

] Use failure detectors

» No reliable detectors, but good enough, agree thatProcess
islcrasihed if it takes too long to receive a message (fail-
silent

» Eventually weak failure detector, reaches consensus while
allowing suspected processes to behave correctly instead
of excluding them

J Randomization

» Introduces an element of chance that affects the
adversary’s strategy



JIf you want to learn more:

JFurther reading:

Leslie Lamport Paxos Made Simple
ACM SIGACT News (Distributed Computing Column) 32, 4
(Whole Number 121, December 2001) 51-58.

The article is well worth your time...



Summary: agreement

Summary

J Unreliable failure detectors
» Inaccurate and incomplete
J Reliable failure detectors
» Require the system to be synchronous

J The problem of agreement is for processes to agree on a
value after one or more of the processes has proposed
values (even in the presence of faults)

» Consensus, Byzantine Generals problem, Interactive
consistency,...

29



Summary: agreement

1 Fisher's impossibility result (asynchronous systems)

» itis impossible to reach consensus even with a single faulty
process

d Synchronous systems

» Impossible for three generals

» Possible when N > 3f + 1 processes, with f faulty processes
J Techniques for avoiding Fisher’s result

» Masking faults

» Failure detectors

» Randomization

30



Next Lecture

Replication



