
Distributed Systems (5DV147)

Fall 2014

Distributed Agreement

1

Processes often need to coordinate their actions
and/or reach an agreement/consensus

Which process gets to access a shared resource?

Has the master process crashed? Elect a new one!
Failure detection – how to decide that a node has failed
(e.g., crashed)?

Agreement is maybe the most fundamental
problem in distributed computing

2

Motivation

One solution would be to use a master-
slave relationship?

… but

we want our systems to keep working
correctly even if failures occur

we need to avoid single points of failure

3

Motivation

System model
There are N processors that are trying to reach

agreement and there are F faulty processors
Each processor stores a value Vi

The processors calculate an agreement value Ai

The following two conditions most hold
1. For every pi and pj that are non-faulty Ai = Aj (agreement

value)
2. The agreement value is a function of the initial values {Vi}

of the non-faulty processors

4

Motivation

Failure Detection

5

Failure model
 Processes and communication channels may fail from correct

behavior
 Failure model defines ways in which failures may occur in order to

understand their effects
 Omission failures

 Processes or channels fail to do what they’re supposed to do
 Crash
 Fail-stop (Fail-silent)
 Send-omission
 Receive-omission

 Timing failures (synchronous systems)

7

Failure detection

Arbitrary failures

Byzantine or malicious failures

Any type of error
Difficult to catch

The execution of a process deviates arbitrarily
from what it should do

A channel may corrupt, duplicate, or deliver non-
existent messages

8

Failure detection

How to determine that a process has crashed?

Correct process
Exhibits no failures at any point

Failure detector
Detects if processes fail
Unreliable failure detector

 Unsuspected or suspected

Reliable failure detector
 Unsuspected or failed

9

Failure detection

Example of unreliable failure detector

max-message-delay = D

processes exchange im-alive messages every T seconds

if (time-since-last-message== T + D)

if (not receive im-alive message from pi)

state-pi = SUSPECTED

when (receive im-alive message from pi)

state-pi = UN-SUSPECTED

10

Failure detection

Tradeoffs …
 Small values of T and D

 Lots of suspected non-crashed processes
 Lots of bandwidth due to im-alive messages

 Large timeout values
 Crash processes may be considered unsuspected

 Adapt timeout values (to increase accuracy)
 According to observed network delays

 Synchronous systems  reliable failure detector
 D is an absolute bound on message transmission

11

Failure detection

A fault was detected, what can we do now?

Mask the failure by either hiding it or converting
it into a more acceptable type of failure
Arbitrary failure Omission failure

Masking by redundancy
Information redundancy

Time redundancy

Physical redundancy

12

Failure detection

checksum

Consensus and related problems

13

Agreement…
 Mutual exclusion

 Agreement on which process enter the CS

 Election
 Agreement on which process is the leader

 Totally ordered multicast
 Agreement on which messages are delivered and in which order

 Processes need to agree on a value after proposed by one or more
processes … even in the presence of faults (crash and arbitrary)
 Consensus
 Byzantine Generals Problem (BGP)
 Interactive consistency

14

Agreement

Motivation

15

1

P
2

P
3

P
1

agreement algorithm

majority(v1,v2,v3)

v1:=proceed v2:=proceed

v3:=abort

d1:=proceed d2:=proceed

d3:=proceed

1

P
2

P
3

P
1

agreement algorithm

majority(v1,v2,v3)

v1:=proceed v2:=proceed

v3:=abort

d1:=proceed d2:=proceed

Agreement

Consensus

Processes need to agree on a single value from values
proposed by all processes

Every process begins in an undecided state

A process propose one of D possible values

Processes exchange values

Each process decides on one of the proposed values
Once choosing a value, processes enters a decided state

Processes can’t change their chosen value once in a decided state

16

1

P
2

P
3

P
1

consensus algorithm

majority(v1,v2,v3)

v1:=proceed v2:=proceed

v3:=abort

d1:=proceed d2:=proceed

Agreement

Byzantine Generals Problem (BGP)
A commander issues an order (attack or retreat),
lieutenants need to decide what to do

One or more generals are treacherous (faulty)
 Commander issues an order to

lieutenants

 Lieutenants exchange messages

with commander’s orders

 Each process decides on the

orders to follow

17

abort

Commander P1

P2 P3

attack attack

attack

Agreement

Interactive consistency

Processes need to agree on a value for each process
(a decision vector)

For example so that each process knows about
each other states

18

Agreement

General requirements
Termination Agreement Integrity

Consensus Eventually each correct
process sets its decision
variable.

The decision value of all
correct processes is the
same (all processes in
the decided state).

If all correct processes propose the
same value, any correct process in
the decided state has chosen that
value.

Byzantine
Generals

Eventually each correct
process sets its decision
variable.

The decision value of all
correct processes is the
same (all processes in
the decided state).

If the commander is correct, then
all processes decide on the value
that the commander proposed.

Interactive
Consistency

Eventually each correct
process sets its decision
variable (vector).

The decision vector of
all correct processes is
the same.

If pi is correct, then all correct
processes decide on vi as the ith
component of their vector.

19

It is possible to derive a solution to one problem using a solution from
another problem!

Agreement

Simple if processes can’t fail

Collect all processes in a group

Each process multicast its proposed value to the
members of the group

Each process waits for N messages (including own)

Evaluates majority(v1, v2, …, vN)

 If no majority exists, majority returns a special value

20

Agreement

A simple algorithm for synchronous systems
(crash failures)
V: set of initial values {vi}

For k=1 to f+1 do

send {𝑣 ∈ 𝑉 𝑃𝑖 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑠𝑒𝑛𝑡 𝑣 to all

receive Sj from all processes Pj, 𝑗 ≠ 𝑖

𝑉 = 𝑉 ∪ 𝑆𝑗
y = min(V)

22

 f is the max number
of failed processors

 Need to know f

 Algorithm based on
rounds

 f+1 rounds

Any algorithm requires at least f+1 rounds of message exchanges
in order to reach consensus despite up to f crash failures!

Agreement

BGP in synchronous systems (3 processes)

23

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

Faulty processes are shown colored

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 15.18

It is impossible to derive a solution if N ≤ 3f

It is possible to derive a solution if N ≥ 3f + 1

2 round of messages, commander to lieutenants and exchange among lieutenants

w or x?u or v? w or x?

Agreement

BGP with 4 processes, 1 faulty, 2 rounds

24

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

Faulty processes are shown colored

p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 15.19

Possible with N ≥ 3f + 1 processes, where f is amount of
treacherous ones

P2: majority(v,u,v)=v
P4: majority(v,v,w)=v P2: P3:P4: majority(u,v, w)= ̝

Agreement

Efficiency, according to …
The number of rounds that it takes
Measures how long it takes for the algorithm to

terminate
At least f+1 rounds

The number of messages required
𝑂 𝑁𝑓+1 messages
𝑂 𝑁2 messages using signed messages

Very expensive, only when necessary

25

Agreement

Final notes
 Solutions rely on system being synchronous

Message exchanges take place in rounds

 Asynchronous system – bad!

 No timing constraints

 Fischer's impossibility result

 Even with just one crashing process, we can’t guarantee to
reach consensus in an asynchronous system
 Can’t distinguish between crash process and a slow one

 No consensus => no BGP, no interactive consistency and no totally
ordered and reliable multicast...

 Still, we manage to do quite well in practice, how can that be?

26

Agreement

How to cope with the impossibility result…
Mask the faults

Use persistent storage and allow process restarts
Use failure detectors

No reliable detectors, but good enough, agree that process
is crashed if it takes too long to receive a message (fail-
silent)

Eventually weak failure detector, reaches consensus while
allowing suspected processes to behave correctly instead
of excluding them

Randomization
 Introduces an element of chance that affects the

adversary’s strategy
27

Agreement

If you want to learn more:
http://www.ict.kth.se/courses/ID2203/video_lectures.html

Further reading:
Leslie Lamport Paxos Made Simple
ACM SIGACT News (Distributed Computing Column) 32, 4
(Whole Number 121, December 2001) 51-58.

The article is well worth your time…
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf

28

Agreement

Summary
Unreliable failure detectors

 Inaccurate and incomplete

 Reliable failure detectors
 Require the system to be synchronous

 The problem of agreement is for processes to agree on a
value after one or more of the processes has proposed
values (even in the presence of faults)
 Consensus, Byzantine Generals problem, Interactive

consistency,…

29

Summary: agreement

 Fisher's impossibility result (asynchronous systems)
 it is impossible to reach consensus even with a single faulty

process

Synchronous systems
 Impossible for three generals

 Possible when N ≥ 3f + 1 processes, with f faulty processes

Techniques for avoiding Fisher’s result
Masking faults

 Failure detectors

Randomization

30

Summary: agreement

Next Lecture

31

Replication

