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Time and Global States
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Time and the lack thereof
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Motivation examples

Replication
Updates applied in the same order at all sites

Monitoring
all processes receive notification events in the same 

order

Allocation of share resources
Fairness in processing requests
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Motivation



Why do we not have global time?

Clocks drift, are inaccurate, may fail arbitrarily, etc.

A global notion of a correct time would be 
tremendously useful
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Motivation

proc1 proc2



Why is this a problem?

What does it mean that one event occurs after 
another one? 

How can we know if events are concurrent if we can’t 
compare when they happened?

… but, perhaps, all we need is that all nodes agree on a 
form of time

…or, at least, agree on the order in which events occur

Not a global time but a global clock
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Motivation



Logical time and logical clocks
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Motivation

Difficult to have a single global time

What can we do? Let’s consider one processes:
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1. a = 10
2. b = 2
3. c = a + b
4. send(c, proc2)
5. a = 4

…
i. receive(b, proc1)

…

proc1

 What can we say about the order in 
which these operations are executed?

(1, 2, 3, 4, 5, …, i, …)

Logical Time



Now for two processes …

What can we say about the combined order of execution?
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1. a = 10
2. b = 2
3. c = a + b
4. send(c, proc2)
5. a = 4
6. receive(b, proc1)

…

proc1

1. a = 5
2. b = 2
3. c = a - b
4. receive(b, proc1)
5. c = 9
6. send(b, proc1)

…

proc2

What can we say about proc1.3 and proc2.2?

What can we say about proc1.4 and proc2.4?

What can we say about proc1.6 and proc2.6?

Logical Time



Now for two processes …
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send(c, proc2)

receive(b, proc1)

proc1

receive(b, proc1)

send(b, proc1)

proc2

proc1.send proc2.receive proc2.send proc1.receive

… we can say something about the order of some operations

Logical Time



What do we know now?

We know the order of events occurring at the same 
process

We know something about send and receive events
 send causes a receive

 receive is the effect of send

Cause and effect may not be violated
 An effect cannot be observed before the cause

 send operations must always come before receive operations
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Logical Time



Let’s be more formal
Let’s consider a distributed system P, of N processes: 

pi, i = 1, 2, …, N

Each process has state si
Three type of events e can occur at each pi :

Internal events, send events, receive events
Events are ordered within a process by the relation →i

e0 →i e1 →i e2

Events define a history of pi as described by →i
history(pi) = hi = <ei

0, ei
1, ei

2, ...>

11

Logical Time



Happened-before relation “→”

HB1: If there exists a process pi: e →i e', then e → e'

HB2: For any message m:send(m) → receive(m)

HB3: If e, e', and e” are events such that e → e' and 
e' → e”,  then e → e”

Two events are said to be concurrent if:

𝑒 ↛ 𝑒′ and 𝑒′ ↛ 𝑒
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Logical Time



A simple example
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No ordering for e.g., b and e

They are concurrent, denoted b || e
HB1: a → b, c → d, e → f

HB2: b → c, d → f

HB3: a → b → c → d → f

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – Figure 14.5

Logical Time



How can we use the “→” relation 
when implementing systems?
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Logical Time



Lamport’s logical clocks
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Lamport’s logical clocks

Monotonically increasing counter

Counter serves as a timestamp

Each process has a counter that increases when an 
event occurs (send and receive)

Counter is sent with message
Recipient sets own clock to max(own, received) and 

then increases its own counter
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Lamport’s Clocks



Details
Denote timestamp of event e at pi by Li(e) and globally L(e)

LC1: Increment Li before each event at pi , Li = Li + 1

LC2 : (m is a message, t is a timestamp)

a) When pi sends m, it sends along the value t= Li

b) On receiving (m, t), pj computes Lj = max (Lj , t)

and then applies LC1 before time stamping the 
received event receive(m)
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Lamport’s Clocks



What can we say about our simple example
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Evident that e → e' ⇒ L(e) < L(e')

But, the opposite does not hold!

– e.g., L(b) > L(e), but b || e

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – Figure 14.6

Lamport’s Clocks

Ordering of events:



How can we create a total order?
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Define global timestamps for e and e' to be (Ti, i) and (Tj, j)

and (Ti, i) < (Tj, j) iff Ti < Tj ,or Ti = Tj and i < j

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – Figure 14.5

(1,1) (2,1)

(3,2) (4,2)

(1,3)

(5,3)

Total order:

a → e → b → c → d → f

Lamport’s Clocks
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But coming back to 𝐿 𝑒 < 𝐿 𝑒′ ⇏ 𝑒 → 𝑒′

Lamport’s Clocks



Vector clocks
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Vector clocks

Keep track of known events at all processes (a vector 
or array of timestamps)

Each process keeps a vector clock to timestamp local 
events

Send vector clock with message

Receiver merges clocks by setting own values to 
the maximum of own values and received ones
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Vector Clocks



Formally
VC1: Initially, Vi[j] = 0, for i, j = 1, 2, …, N

VC2: Just before pi timestamps e, it sets Vi[i] = Vi[i] + 1

VC3: pi includes timestamp = Vi in every send(m, timestamp)

VC4: When pi receives timestamp in a message, it sets

Vi[j] = max (Vi[j] , timestamp[j] ), for j = 1, 2, …, N
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Vector Clocks



Back to our simple example

24

Vector clocks can be ordered
V=V' if all values are the same

V≤V' if all values in V are ≤ those in V'
V<V' if V≤V' and V and V' are non-equal

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – Figure 14.7

𝑉 = (𝐿1, 𝐿2, 𝐿3)

𝑉1 = (0,0,0)

𝑉2 = (0,0,0)

𝑉3 = (0,0,0)

Vector Clocks



Concurrent events

Concurrent events (b || e):
Neither V(b) < V(e) nor V(e) < V(b)
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e → e′ ⇒ V e < V e′ 𝑎𝑛𝑑 V e < V e′ ⇒ e → e′

Vector Clocks



Vector clocks have nice properties
Causal paths can be visualized
Causal paths help learn updates that occurred on 

other processes previous to an event

However…
They use more space

 expensive in terms of memory and bandwidth (O(N) in both 
cases)

 no upper bound on clock size

It is better if processes don’t change dynamically

26

Vector Clocks



Summary
We don’t have universal or global time

 Logical clocks are based on events in processes and 
the inter-event relationships (between processes)

Detect causal relationships – capability of one 
event to affect another event either directly or 
transitively

Happened-before relation

Some events are concurrent
27

Summary: Time and its logic



Summary (2)

 Lamport's logical clocks are simple, but have problems 
with concurrent events

 Can derive total order, but with no physical significance

 Completely distributed

 Fault tolerant

 Impose minimal overhead

 Vector clocks are more powerful, but also more costly

 Can differentiate when two events are concurrent
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Summary: Time and its logic



Global states
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We often need to know the state of the entire 
distributed system of knowing if a particular property is 
true for the system as it executes

Distributed garbage collection

Stable property detection: distributed deadlocks, 
distributed termination detection

Checkpointing
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Global states



What prevents us from observing a global state 
in a Distributed System?

Non-instantaneous communication
The view of a global state of a system depends on the 

observer

Relativistic effects
Synchronization by time is not a reliable mechanism

Interruptions
Different machines don’t react at the same time
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Global states
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Simple with global time!
Just issue “report state at time X”

…we do not have this luxury

p1 p2 pn

Global 
state

Global states



A simple approach

• Collect the state of each process one by one
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Global states
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Just process states are not enough!

Messages currently in the channels

Global states



Motivation
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1. a = 10
2. b = 2
3. c = a + b
4. send(c, proc2)
5. a = 4
6. receive(b, proc1)

…

proc1

1. a = 5
2. b = 2
3. c = a - b
4. receive(b, proc1)
5. c = 9
6. send(b, proc1)

…

proc2

Global States

S1

S2

S3

S4

S5

S6

…

S1

S2

S3

S4

S5

S6

…

proc1 { s1, s2, s3, s4, s5, s6,…}

proc2 { s1, s2, s3, s4, s5, s6,…}

Each process maintains own history

 We could create global history by just taking 
union of all local histories

We only want to consider such global states 
S that may have occurred at some point in 
time

Global state



We can be more formal
Let’s remember that events at pi defined a history

history(pi) = hi = <ei
0, ei

1, ei
2, ...>

each process changes state accordingly
si = <si

0, si
1, si

2, ...>

The global history is the union of processes histories:

𝐻 = ℎ0 ℎ1 …

Let’s consider a prefix (first K events) of a process histories
hi

k = <ei
0, ei

1, ..., ei
k>
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Cuts



Cuts

A cut is a union of prefixes of process histories:

𝐶 = ℎ1
𝐶
1 ℎ2

𝐶
2 … ℎ𝑁

𝐶
𝑁

Frontier of the cut

States in which each process is after processing the 
last event in the cut:

𝑒𝑖
𝑐
𝑖: 𝑖 = 1,2, … , 𝑁
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Cuts



A simple example

According to the definition, we can make any cut that 
we want, including ones that make no sense!
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m1 m2

p1

p2
Physical 

time

e1
0

Consistent cutInconsistent cut

e 1
1

e 1
2

e 1
3

e 2
0

e 2
1

e 2
2

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – Figure 14.9

Cuts



Consistent cuts and global states

A cut is consistent if for each event in the cut 

all events that happened before are also in the cut
e ∈ C, f → e ⇒ f ∈ C

We want to only consider consistent cuts

Consistent global states correspond to consistent 
global cuts

We only move between consistent global states 
during execution: S0 → S1 → S2 → …
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Cuts



Linearization and runs
Total orderings of all events in the global history
A run is only consistent with the ordering of each 

process' own local history
A linearization is consistent with the (global) 

happened-before relation

Runs do not have to pass through consistent 
global states, but all linearizations do
 S' is reachable from S if ∃ a linearization from S to S'
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Cuts



Snapshot algorithm
(Chandy-Lamport algorithm)
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Snapshot algorithm

Chandy and Lamport, distributed algorithm for 
determining global states of a distributed system

Constructs a snapshot of the global state (both 
processes and channels)

Ensures that the global state is consistent

Makes no guarantee that the system was actually 
in the recorded state!
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Snapshot algorithm



Assumptions

Neither channel nor processes fail

Communication is reliable

 There’s a communication path between any two processes

Unidirectional channels with FIFO message delivery

 Any process may initiate a global snapshot at any time

 Algorithm does not interfere with the normal execution 
of the processes
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Snapshot algorithm



How does the algorithm works?

Each process records its local state and the state of the 
incoming channels

The algorithm works by using markers for two purposes:
As a signal for saving a process state

As a means of determining which messages belong to the 
channel state 

State is recorded at each process, 
Global state is formed by collecting states from all processes
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Algorithm
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Marker receiving rule for process pi

On pi’s receipt of a marker message over channel c:

if (pi has not yet recorded its state) it

records its process state now;

records the state of c as the empty set;

turns on recording of messages arriving over other incoming channels;

else

pi records the state of c as the set of messages it has received over c

since it saved its state.

end if

Marker sending rule for process pi

After pi has recorded its state, for each outgoing channel c:

pi sends one marker message over c

(before it sends any other message over c).

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – Figures14.10

Snapshot algorithm



P2 received marker on P1P2 after   , so it 
is part of recorded state
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Snapshot example

P1

P3P2

Note that  is neither part of the 
state of P3 nor of P2 at this point!

Snapshot algorithm

Same for P3 and 

However, P3 sent out    before 
the marker, and P2’s state 
snapshot does not include it

Algorithm concludes that    was 
in transit between P3 and P2



Summary

 There are some cases where it is necessary to know the 
global state of a system
 Lacking a global clock makes this difficult

 Global state encompasses both processes and channels 
states

 We Introduced the concept of cuts and consistent cuts
We learned how to captured consistent global states 

corresponding to consistent cuts
 Snapshot algorithm (Chandy & Lamport)
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Summary: Global states



Next Lecture
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Mutual exclusion and Elections


