
Distributed Systems (5DV147)

Fall 2014

Time and Global States

1

Time and the lack thereof

2

Motivation examples

Replication
Updates applied in the same order at all sites

Monitoring
all processes receive notification events in the same

order

Allocation of share resources
Fairness in processing requests

3

Motivation

Why do we not have global time?

Clocks drift, are inaccurate, may fail arbitrarily, etc.

A global notion of a correct time would be
tremendously useful

4

Motivation

proc1 proc2

Why is this a problem?

What does it mean that one event occurs after
another one?

How can we know if events are concurrent if we can’t
compare when they happened?

… but, perhaps, all we need is that all nodes agree on a
form of time

…or, at least, agree on the order in which events occur

Not a global time but a global clock

5

Motivation

Logical time and logical clocks

6

Motivation

Difficult to have a single global time

What can we do? Let’s consider one processes:

7

1. a = 10
2. b = 2
3. c = a + b
4. send(c, proc2)
5. a = 4

…
i. receive(b, proc1)

…

proc1

 What can we say about the order in
which these operations are executed?

(1, 2, 3, 4, 5, …, i, …)

Logical Time

Now for two processes …

What can we say about the combined order of execution?

8

1. a = 10
2. b = 2
3. c = a + b
4. send(c, proc2)
5. a = 4
6. receive(b, proc1)

…

proc1

1. a = 5
2. b = 2
3. c = a - b
4. receive(b, proc1)
5. c = 9
6. send(b, proc1)

…

proc2

What can we say about proc1.3 and proc2.2?

What can we say about proc1.4 and proc2.4?

What can we say about proc1.6 and proc2.6?

Logical Time

Now for two processes …

9

send(c, proc2)

receive(b, proc1)

proc1

receive(b, proc1)

send(b, proc1)

proc2

proc1.send proc2.receive proc2.send proc1.receive

… we can say something about the order of some operations

Logical Time

What do we know now?

We know the order of events occurring at the same
process

We know something about send and receive events
 send causes a receive

 receive is the effect of send

Cause and effect may not be violated
 An effect cannot be observed before the cause

 send operations must always come before receive operations

10

Logical Time

Let’s be more formal
Let’s consider a distributed system P, of N processes:

pi, i = 1, 2, …, N

Each process has state si
Three type of events e can occur at each pi :

Internal events, send events, receive events
Events are ordered within a process by the relation →i

e0 →i e1 →i e2

Events define a history of pi as described by →i
history(pi) = hi = <ei

0, ei
1, ei

2, ...>

11

Logical Time

Happened-before relation “→”

HB1: If there exists a process pi: e →i e', then e → e'

HB2: For any message m:send(m) → receive(m)

HB3: If e, e', and e” are events such that e → e' and
e' → e”, then e → e”

Two events are said to be concurrent if:

𝑒 ↛ 𝑒′ and 𝑒′ ↛ 𝑒

12

Logical Time

A simple example

13

No ordering for e.g., b and e

They are concurrent, denoted b || e
HB1: a → b, c → d, e → f

HB2: b → c, d → f

HB3: a → b → c → d → f

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 14.5

Logical Time

How can we use the “→” relation
when implementing systems?

14

Logical Time

Lamport’s logical clocks

15

Lamport’s logical clocks

Monotonically increasing counter

Counter serves as a timestamp

Each process has a counter that increases when an
event occurs (send and receive)

Counter is sent with message
Recipient sets own clock to max(own, received) and

then increases its own counter

16

Lamport’s Clocks

Details
Denote timestamp of event e at pi by Li(e) and globally L(e)

LC1: Increment Li before each event at pi , Li = Li + 1

LC2 : (m is a message, t is a timestamp)

a) When pi sends m, it sends along the value t= Li

b) On receiving (m, t), pj computes Lj = max (Lj , t)

and then applies LC1 before time stamping the
received event receive(m)

17

Lamport’s Clocks

What can we say about our simple example

18

Evident that e → e' ⇒ L(e) < L(e')

But, the opposite does not hold!

– e.g., L(b) > L(e), but b || e

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 14.6

Lamport’s Clocks

Ordering of events:

How can we create a total order?

19

Define global timestamps for e and e' to be (Ti, i) and (Tj, j)

and (Ti, i) < (Tj, j) iff Ti < Tj ,or Ti = Tj and i < j

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 14.5

(1,1) (2,1)

(3,2) (4,2)

(1,3)

(5,3)

Total order:

a → e → b → c → d → f

Lamport’s Clocks

20

But coming back to 𝐿 𝑒 < 𝐿 𝑒′ ⇏ 𝑒 → 𝑒′

Lamport’s Clocks

Vector clocks

21

Vector clocks

Keep track of known events at all processes (a vector
or array of timestamps)

Each process keeps a vector clock to timestamp local
events

Send vector clock with message

Receiver merges clocks by setting own values to
the maximum of own values and received ones

22

Vector Clocks

Formally
VC1: Initially, Vi[j] = 0, for i, j = 1, 2, …, N

VC2: Just before pi timestamps e, it sets Vi[i] = Vi[i] + 1

VC3: pi includes timestamp = Vi in every send(m, timestamp)

VC4: When pi receives timestamp in a message, it sets

Vi[j] = max (Vi[j] , timestamp[j]), for j = 1, 2, …, N

23

Vector Clocks

Back to our simple example

24

Vector clocks can be ordered
V=V' if all values are the same

V≤V' if all values in V are ≤ those in V'
V<V' if V≤V' and V and V' are non-equal

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 14.7

𝑉 = (𝐿1, 𝐿2, 𝐿3)

𝑉1 = (0,0,0)

𝑉2 = (0,0,0)

𝑉3 = (0,0,0)

Vector Clocks

Concurrent events

Concurrent events (b || e):
Neither V(b) < V(e) nor V(e) < V(b)

25

e → e′ ⇒ V e < V e′ 𝑎𝑛𝑑 V e < V e′ ⇒ e → e′

Vector Clocks

Vector clocks have nice properties
Causal paths can be visualized
Causal paths help learn updates that occurred on

other processes previous to an event

However…
They use more space

 expensive in terms of memory and bandwidth (O(N) in both
cases)

 no upper bound on clock size

It is better if processes don’t change dynamically

26

Vector Clocks

Summary
We don’t have universal or global time

 Logical clocks are based on events in processes and
the inter-event relationships (between processes)

Detect causal relationships – capability of one
event to affect another event either directly or
transitively

Happened-before relation

Some events are concurrent
27

Summary: Time and its logic

Summary (2)

 Lamport's logical clocks are simple, but have problems
with concurrent events

 Can derive total order, but with no physical significance

 Completely distributed

 Fault tolerant

 Impose minimal overhead

 Vector clocks are more powerful, but also more costly

 Can differentiate when two events are concurrent

28

Summary: Time and its logic

Global states

29

We often need to know the state of the entire
distributed system of knowing if a particular property is
true for the system as it executes

Distributed garbage collection

Stable property detection: distributed deadlocks,
distributed termination detection

Checkpointing

30

Global states

What prevents us from observing a global state
in a Distributed System?

Non-instantaneous communication
The view of a global state of a system depends on the

observer

Relativistic effects
Synchronization by time is not a reliable mechanism

Interruptions
Different machines don’t react at the same time

31

Global states

32

Simple with global time!
Just issue “report state at time X”

…we do not have this luxury

p1 p2 pn

Global
state

Global states

A simple approach

• Collect the state of each process one by one

33

Global states

34

Just process states are not enough!

Messages currently in the channels

Global states

Motivation

35

1. a = 10
2. b = 2
3. c = a + b
4. send(c, proc2)
5. a = 4
6. receive(b, proc1)

…

proc1

1. a = 5
2. b = 2
3. c = a - b
4. receive(b, proc1)
5. c = 9
6. send(b, proc1)

…

proc2

Global States

S1

S2

S3

S4

S5

S6

…

S1

S2

S3

S4

S5

S6

…

proc1 { s1, s2, s3, s4, s5, s6,…}

proc2 { s1, s2, s3, s4, s5, s6,…}

Each process maintains own history

 We could create global history by just taking
union of all local histories

We only want to consider such global states
S that may have occurred at some point in
time

Global state

We can be more formal
Let’s remember that events at pi defined a history

history(pi) = hi = <ei
0, ei

1, ei
2, ...>

each process changes state accordingly
si = <si

0, si
1, si

2, ...>

The global history is the union of processes histories:

𝐻 = ℎ0 ℎ1 …

Let’s consider a prefix (first K events) of a process histories
hi

k = <ei
0, ei

1, ..., ei
k>

36

Cuts

Cuts

A cut is a union of prefixes of process histories:

𝐶 = ℎ1
𝐶
1 ℎ2

𝐶
2 … ℎ𝑁

𝐶
𝑁

Frontier of the cut

States in which each process is after processing the
last event in the cut:

𝑒𝑖
𝑐
𝑖: 𝑖 = 1,2, … , 𝑁

37

Cuts

A simple example

According to the definition, we can make any cut that
we want, including ones that make no sense!

38

m1 m2

p1

p2
Physical

time

e1
0

Consistent cutInconsistent cut

e 1
1

e 1
2

e 1
3

e 2
0

e 2
1

e 2
2

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 14.9

Cuts

Consistent cuts and global states

A cut is consistent if for each event in the cut

all events that happened before are also in the cut
e ∈ C, f → e ⇒ f ∈ C

We want to only consider consistent cuts

Consistent global states correspond to consistent
global cuts

We only move between consistent global states
during execution: S0 → S1 → S2 → …

39

Cuts

Linearization and runs
Total orderings of all events in the global history
A run is only consistent with the ordering of each

process' own local history
A linearization is consistent with the (global)

happened-before relation

Runs do not have to pass through consistent
global states, but all linearizations do
 S' is reachable from S if ∃ a linearization from S to S'

40

Cuts

Snapshot algorithm
(Chandy-Lamport algorithm)

41

Snapshot algorithm

Chandy and Lamport, distributed algorithm for
determining global states of a distributed system

Constructs a snapshot of the global state (both
processes and channels)

Ensures that the global state is consistent

Makes no guarantee that the system was actually
in the recorded state!

42

Snapshot algorithm

Assumptions

Neither channel nor processes fail

Communication is reliable

 There’s a communication path between any two processes

Unidirectional channels with FIFO message delivery

 Any process may initiate a global snapshot at any time

 Algorithm does not interfere with the normal execution
of the processes

43

Snapshot algorithm

How does the algorithm works?

Each process records its local state and the state of the
incoming channels

The algorithm works by using markers for two purposes:
As a signal for saving a process state

As a means of determining which messages belong to the
channel state

State is recorded at each process,
Global state is formed by collecting states from all processes

44

Algorithm

45

Marker receiving rule for process pi

On pi’s receipt of a marker message over channel c:

if (pi has not yet recorded its state) it

records its process state now;

records the state of c as the empty set;

turns on recording of messages arriving over other incoming channels;

else

pi records the state of c as the set of messages it has received over c

since it saved its state.

end if

Marker sending rule for process pi

After pi has recorded its state, for each outgoing channel c:

pi sends one marker message over c

(before it sends any other message over c).

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figures14.10

Snapshot algorithm

P2 received marker on P1P2 after , so it
is part of recorded state

46

Snapshot example

P1

P3P2

Note that is neither part of the
state of P3 nor of P2 at this point!

Snapshot algorithm

Same for P3 and

However, P3 sent out before
the marker, and P2’s state
snapshot does not include it

Algorithm concludes that was
in transit between P3 and P2

Summary

 There are some cases where it is necessary to know the
global state of a system
 Lacking a global clock makes this difficult

 Global state encompasses both processes and channels
states

 We Introduced the concept of cuts and consistent cuts
We learned how to captured consistent global states

corresponding to consistent cuts
 Snapshot algorithm (Chandy & Lamport)

48

Summary: Global states

Next Lecture

49

Mutual exclusion and Elections

