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Motivation

• Transactions are indivisible units that either …
– … complete successfully (changes recorded on permanent storage)

– … or have no effect at all

– These under crash-failures and when multiple transactions operate on 
same objects (require concurrency control)
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a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

Objects a, b, c

Transfer 100 from a to b
Transfer 200 from c to b

Something can go 
wrong in the middle 
….

Introduction



Operations
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openTransaction() -> trans;

starts a new transaction and delivers a unique TID trans. This 

identifier will be used in the other operations in the transaction.

closeTransaction(trans) -> (commit, abort);

ends a transaction: a commit return value indicates that the 

transaction has  committed; an abort return value indicates that it

has aborted.

abortTransaction(trans);

aborts the transaction.
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ACID Properties

Atomicity: “all or nothing”

Consistency: transactions take system from one 
consistent state to another consistent state

Isolation: transactions do not interfere with each 
other

Durability: committed results of transactions are 
permanent
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Nested transactions

• Tree-structured

• Sub-transactions at one 
level may execute 
concurrently

• Sub-transactions may 
provisionally commit or 
abort independently

• parent may decide 
whether to abort or not

• Provisional commit is 
not  a proper commit!
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Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 16.13

Nested and distributed transactions



Rules for committing nested transactions

1. A transaction may commit/abort once all children 
transactions have completed

2. Sub-transactions make independent choices whether to 
provisionally commit or abort – abort is final

3. When a parent aborts, all sub-transactions abort

4. When a sub-transaction aborts, the parent may decide what 
to do

5. If the top-level transaction commits, all sub-transactions that 
have provisionally committed may commit as well
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Flat and nested distributed transactions

• Distributed transaction:
– Transactions dealing with objects managed by 

different processes

• Allows for even better performance
– At the price of increased complexity

• Transaction coordinators and object servers
– Participants in the transaction
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Flat transactions

• Requests are made to more than 
one server

• Access to servers is sequential

• A transaction can only wait for one 
object that is locked at a time

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 17.1
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Nested transactions
• Sub-transactions can be 

opened to any depth

• Sub-transactions at the 
same level can run 
concurrently

• If sub-transactions run on 
different servers, they can 
run concurrently

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 17.1
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Problems with concurrent transactions

• Transactions are carried out concurrently for higher 
performance
– Otherwise, painfully slow

• Two common problems that appear if performance is not 
handled correctly
– Lost update

– Inconsistent retrieval

• Solution
– Serial equivalence (conflicting operations)
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Transactions: problems



Lost update

T1: A=read(x), write(x, A*10)

T2: B=read(x), write(x, B*10)

If not properly isolated, we could get the following interleaving:
(T1) A=read(x) 

(T2) B=read(x) 

(T1) write(x, A*10) 

(T2) write(x, B*10)
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Executing T1 and T2 should 
have increased x by ten times 
twice, but we lost one of the 
updates

original value of x (T1) A=read(x) 
(T1) write(x, A*10) 
(T2) B=read(x)
(T2) write(x, B*10)

Transactions: problems
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Inconsistent retrieval

T1: withdraw(x, 10), deposit(y, 10) 

T2: sum all accounts

Improper interleaving:

The sum is incorrect, because it 
doesn’t account for the 10 that are 
‘in transit’ – neither in x nor in y –
the retrieval is inconsistent

(T1) withdraw(x, 10)
(T2) sum+=read(x)
(T2) sum+=read(y)
... 
(T1) deposit(y, 10)

Read concurrent with update 
transaction

(T1) withdraw(x, 10)
(T1) deposit(y, 10)
(T2) sum+=read(x)
(T2) sum+=read(y)
... 

Transactions: problems
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How to work around this problems

• Serial equivalence
– Interleaved operations produce same effect as if 

transactions have been performed one at a time
• Not actually one transaction at a time

• Conflicting operations
– Two operations are in conflict if the result depends on the 

order of execution
• Read – Read  No conflict
• Read – Write (or Write – Read)  Conflict!
• Write – Write Conflict!

Transactions: problems



15

Problems when aborting transactions: Dirty reads

T1 reads a value that T2 wrote, then commits and later, T2 aborts
• The value is “dirty”, since the update never happened

– T1 has committed, so it cannot be undone

• Fix –let T1 wait until T2 commits/aborts!
But if T2 aborts, we must abort T1

...and so on: others may depend on T1
…cascading aborts

Better rule:
Transactions are only allowed to read objects that committed
transactions have written

Transactions: problems



Premature writes

• Use “Before images” to 
recover from bad writes

Let x = 50 initially

T1: write(x, 10); T2: write(x, 20)

Let T1 execute before T2

What happens if T2 commits but T1

aborts?

What happens if T1 aborts and then T2

aborts?

Order of commit/abort matters!
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• If before images are used, delay 
writes to objects until other, earlier, 
transactions that write to the same 
object have committed/aborted

• Systems that avoid both dirty reads 
and premature writes are “strict”
– Delay read(s) and write(s)
– Highly desirable!
– Tentative versions (local to each 

transaction)

Transactions: problems



Concurrency control protocols
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Concurrency control

• Serialize access to objects

• Three protocols

– Locks

– Optimistic concurrency control

– Timestamp ordering
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Locks

• Need an object? Get a lock for it!
– Read or write locks, or both (exclusive)

• Two-phase locking
– Accumulate locks gradually, then release locks gradually

• Strict two-phase locking
– Accumulate locks gradually, keep them all until completion

Enables “strict” systems
• Granularity and tradeoffs
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Transaction T :

balance = b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

Transaction U :

balance = b.getBalance()

b.setBalance(bal*1.1)

c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction
bal =  b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal =  b.getBalance() waits for T ’s
lock on BcloseTransaction unlock A , B

lock B

b.setBalance(bal*1.1)

c.withdraw(bal/10) lock C

closeTransaction unlock B , C

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 16.14
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Sharing locks

• Read locks can be shared

• Promote read lock to write lock if no other transactions 
require a lock

• Requesting a write lock when there are already read locks, or 
a read lock when there is already a write lock?
– Wait until lock is available

21

Lock compatibility

Concurrency control



Locks and nested transactions

Isolation
– From other sets of nested transactions
– From other transactions in own set

Rules:
– Parents do not run concurrently with children
– Children can temporarily acquire locks from ancestors
– Parent inherits locks when child transactions commit
– Locks are discarded if child aborts

– Sub-transactions at each level are treated as flat transactions
There are also rules for acquiring and releasing locks
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Big problem: Deadlocks

• Typical deadlock:
Transaction A waits for B,
transaction B waits for A

• Deadlocks may arise in long chains

• Conceptually, construct a wait-for graph
– Directed edge between nodes if one waits for the other

– Cycles indicate deadlocks
Abort transaction(s) as needed
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Handling deadlock

• Deadlock prevention
– Acquire all locks from the beginning

Bad performance, not always possible

• Deadlock detection
– As soon as a lock is requested, check if a deadlock will occur

Bad performance: avoid checking always

– Must include algorithm for determining which transaction to abort
• Lock timeouts

– Locks invulnerable for a certain time, then they are vulnerable
– Leads to unnecessary aborts

• Long-running transactions
• Overloaded system

– How to decide useful timeout value?
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Locking drawbacks

• Overhead (even on read-only transactions)
– Necessary only in the worst case

• Deadlock
– Prevention reduces concurrency severely
– Timeouts or detection

• Reduced concurrency in general
– Locks need to be maintained until transactions end

Enter optimistic concurrency control
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Optimistic Concurrency Control

Assumes that conflicts are rare
• Probability of multiple accesses to same object is low
• Only need to worry about real conflicts
Transaction phases:

Working
• Transaction works with tentative data (read and write sets)

Validation (Upon completion)
• Check if transaction may commit or abort
• Conflict resolution

Update
• Write tentative data from committed transactions to permanent storage
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updatevalidationworkingT

Concurrency control



Validation Tv Ti Rule

write read Ti must not read objects written by Tv

read write Tv must not read objects written by Ti

write write Ti must not read objects written by Tv and Ti must 
not read objects written by Tv

• Use conflict rules from earlier!

• On overlapping transactions

• Validate one transaction at a 
time against others

• Transactions are numbered 
(not to be confused with IDs) as 
they enter the validation 
phase

• Only a single transaction at a 
time in update phase

• Backward or Forward 
validation
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Earlier committed

transactions

Working Validation Update

T 1

T v

Transaction
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T 2

T 3

Later active

transactions

active
1

active
2

B

F
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Backward validation

• Check read set against write set of transactions that:
– were active at the same time as the transaction currently being 

validated; and

– have already committed

• Transactions with only write set need not be checked

• If overlap is found, then current transaction must be aborted!
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Tv
Transaction

being validated

T3

write

read

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 16.28
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Backward validation - example
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Backward validation of transaction Tv
boolean valid = true;
for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;
}

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction

being validated

T2

T3

Later active

transactions

active
1

active
2

write sets 
must be 

saved until 
active

finishes

Concurrency control



Forward validation

• Check write set against read set of transactions that are currently 
active
– Note that read sets of active transactions may change during validation

• Transactions with only write set need not be checked

• If overlap is found, we can choose which transaction(s) to abort
– Wait until conflicting transactions have finished

– Abort conflicting active transactions

– Abort transactions being validated
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Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 18.2
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Forward validation - example
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Comparison of optimistic concurrency control

• Size of read/write sets
– Read sets are usually bigger
– Forward compares against “growing” read sets

• Choice of transaction to abort
– Backward a single choice, Forward three choices
– Linked to starvation

• Overhead
– Backward requires storing old write sets
– Forward may need to re-run each time the read set for any 

active transaction changes and must allow for checking new
valid transactions
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Comparison of concurrency control schemes

• Pessimistic CC (two-phase locking)
– Transactions need to wait for locks ...and yet, can still be 

aborted

– Large overhead (avoided in new systems)

• For systems with many CC-related issues
– Pessimistic will give a more stable quality of service

– Optimistic will abort a large number of transactions and 
requires substantial work
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Two-phase commit
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Atomic commit

Problem of ensuring atomicity relies on 
ensuring that all participants vote and 
reach the same decision

• Distributed transaction

• Transactions dealing 
with objects managed 
by different servers

• All servers commit or all 
abort

• … at the same time

• in spite of (crash) 
failures and 
asynchronous systems
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Two-phase commit protocol

Phase 1: Coordinator collects votes

“Abort”, any participant can abort its part of the transaction

“Prepared to commit”, save updates to permanent storage to 
survive crashes (May not change vote to “abort”)

Phase 2: Participants carry out the joint decision
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Protocol can fail due to servers crashing or network partition

• Log actions into permanent storage

Two-phase commit



Algorithm
Phase 1 (voting)
1. Coordinator sends “canCommit?” to each participant
2. Participants answer “yes” or “no”

• “Yes”: update saved to permanent storage
• “No”: abort immediately

Phase 2 (completion)
3. Coordinator collects votes (including own)

– No failures and all “yes”? Send “doCommit” to each participant, 
otherwise, send “doAbort”

4. Confirm commit via “haveCommitted”
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Note: Participants are in “uncertain” state until they receive 
“doCommit” or “doAbort”, and may act accordingly (send 
“getDecision” message to coordinator)

Two-phase commit



Timeout actions
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canCommit?

Yes

doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)

prepared to commit

committed

statusstepstatus

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – based on Figure 17.6

If coordinator fails:

• Participants are 
“uncertain”

– If some have received an 
answer (or they can 
figure it out themselves), 
they can coordinate 
themselves

• Participants can request 
status (send “getDecision” 
message to coordinator)

• If participant has not 
received “canCommit?” 
and waits too long, it may 
abort

If participant fails:
• No reply to “canCommit?” in time?

Coordinator can abort

Crash after “canCommit?”
Use permanent storage to get up to speed

Two-phase commit



Two-phase commit protocol for nested transactions

• Sub-transactions “provisional commit”
– Nothing written to permanent storage

Ancestor could still abort!

– If they crash, the replacement cannot commit

• Status information is passed upward in tree
– List of provisionally committed sub-transactions 

eventually reach top level

• Hierarchical or flat voting phase
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Summary (1)

• Transactions – specify sequence of operations 
that are atomic in presence of concurrent 
transactions and server crashes

• ACID properties
• Problems with transactions – lost updates, 

inconsistent retrievals
• Serial equivalence

– Conflicting operations – read-read, read-write, write-read
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Summary (2)

• Aborted transactions – dirty reads, premature writes

• Nested transactions – allow additional concurrency, can work in parallel, 
commit or abort independently

• Concurrency control protocols – locks and optimistic concurrency control

• Locks – (strict) two-phase locking, shared locks, nested transactions

• Deadlocks – how to handle them

• Optimistic concurrency control – backward and forward validation

• Two-phase commit
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Next Lecture

Peer-to-peer
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