
Distributed Systems (5DV147)

Fall 2013

Transactions

1

Transactions

2

Motivation

• Transactions are indivisible units that either …
– … complete successfully (changes recorded on permanent storage)

– … or have no effect at all

– These under crash-failures and when multiple transactions operate on
same objects (require concurrency control)

3

a.withdraw(100);
b.deposit(100);
c.withdraw(200);
b.deposit(200);

Objects a, b, c

Transfer 100 from a to b
Transfer 200 from c to b

Something can go
wrong in the middle
….

Introduction

Operations

4

openTransaction() -> trans;

starts a new transaction and delivers a unique TID trans. This

identifier will be used in the other operations in the transaction.

closeTransaction(trans) -> (commit, abort);

ends a transaction: a commit return value indicates that the

transaction has committed; an abort return value indicates that it

has aborted.

abortTransaction(trans);

aborts the transaction.

Introduction

ACID Properties

Atomicity: “all or nothing”

Consistency: transactions take system from one
consistent state to another consistent state

Isolation: transactions do not interfere with each
other

Durability: committed results of transactions are
permanent

5

Introduction

Nested transactions

• Tree-structured

• Sub-transactions at one
level may execute
concurrently

• Sub-transactions may
provisionally commit or
abort independently

• parent may decide
whether to abort or not

• Provisional commit is
not a proper commit!

6

T : top-level transaction

T
1

= openSubTransaction T
2

= openSubTransaction

openSubTransaction openSubTransactionopenSubTransaction

openSubTransaction

T
1

: T
2

:

T
11

: T
12

:

T
211

:

T
21 :

prov.commit

prov. commit

abort

prov. commitprov. commit

prov. commit

commit

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.13

Nested and distributed transactions

Rules for committing nested transactions

1. A transaction may commit/abort once all children
transactions have completed

2. Sub-transactions make independent choices whether to
provisionally commit or abort – abort is final

3. When a parent aborts, all sub-transactions abort

4. When a sub-transaction aborts, the parent may decide what
to do

5. If the top-level transaction commits, all sub-transactions that
have provisionally committed may commit as well

7

Nested and distributed transactions

Flat and nested distributed transactions

• Distributed transaction:
– Transactions dealing with objects managed by

different processes

• Allows for even better performance
– At the price of increased complexity

• Transaction coordinators and object servers
– Participants in the transaction

8

Nested and distributed transactions

9

Client

X

Y

Z

T

T

Flat transactions

• Requests are made to more than
one server

• Access to servers is sequential

• A transaction can only wait for one
object that is locked at a time

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 17.1

Nested and distributed transactions

10

X

Y

M

NT
1

T
2

T
11

Client

P

T

T
12

T
21

T
22

Nested transactions
• Sub-transactions can be

opened to any depth

• Sub-transactions at the
same level can run
concurrently

• If sub-transactions run on
different servers, they can
run concurrently

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 17.1

Nested and distributed transactions

Problems with concurrent transactions

• Transactions are carried out concurrently for higher
performance
– Otherwise, painfully slow

• Two common problems that appear if performance is not
handled correctly
– Lost update

– Inconsistent retrieval

• Solution
– Serial equivalence (conflicting operations)

11

Transactions: problems

Lost update

T1: A=read(x), write(x, A*10)

T2: B=read(x), write(x, B*10)

If not properly isolated, we could get the following interleaving:
(T1) A=read(x)

(T2) B=read(x)

(T1) write(x, A*10)

(T2) write(x, B*10)

12

Executing T1 and T2 should
have increased x by ten times
twice, but we lost one of the
updates

original value of x (T1) A=read(x)
(T1) write(x, A*10)
(T2) B=read(x)
(T2) write(x, B*10)

Transactions: problems

13

Inconsistent retrieval

T1: withdraw(x, 10), deposit(y, 10)

T2: sum all accounts

Improper interleaving:

The sum is incorrect, because it
doesn’t account for the 10 that are
‘in transit’ – neither in x nor in y –
the retrieval is inconsistent

(T1) withdraw(x, 10)
(T2) sum+=read(x)
(T2) sum+=read(y)
...
(T1) deposit(y, 10)

Read concurrent with update
transaction

(T1) withdraw(x, 10)
(T1) deposit(y, 10)
(T2) sum+=read(x)
(T2) sum+=read(y)
...

Transactions: problems

14

How to work around this problems

• Serial equivalence
– Interleaved operations produce same effect as if

transactions have been performed one at a time
• Not actually one transaction at a time

• Conflicting operations
– Two operations are in conflict if the result depends on the

order of execution
• Read – Read  No conflict
• Read – Write (or Write – Read)  Conflict!
• Write – Write Conflict!

Transactions: problems

15

Problems when aborting transactions: Dirty reads

T1 reads a value that T2 wrote, then commits and later, T2 aborts
• The value is “dirty”, since the update never happened

– T1 has committed, so it cannot be undone

• Fix –let T1 wait until T2 commits/aborts!
But if T2 aborts, we must abort T1

...and so on: others may depend on T1
…cascading aborts

Better rule:
Transactions are only allowed to read objects that committed
transactions have written

Transactions: problems

Premature writes

• Use “Before images” to
recover from bad writes

Let x = 50 initially

T1: write(x, 10); T2: write(x, 20)

Let T1 execute before T2

What happens if T2 commits but T1

aborts?

What happens if T1 aborts and then T2

aborts?

Order of commit/abort matters!

16

• If before images are used, delay
writes to objects until other, earlier,
transactions that write to the same
object have committed/aborted

• Systems that avoid both dirty reads
and premature writes are “strict”
– Delay read(s) and write(s)
– Highly desirable!
– Tentative versions (local to each

transaction)

Transactions: problems

Concurrency control protocols

17

Concurrency control

• Serialize access to objects

• Three protocols

– Locks

– Optimistic concurrency control

– Timestamp ordering

18

Concurrency control

Locks

• Need an object? Get a lock for it!
– Read or write locks, or both (exclusive)

• Two-phase locking
– Accumulate locks gradually, then release locks gradually

• Strict two-phase locking
– Accumulate locks gradually, keep them all until completion

Enables “strict” systems
• Granularity and tradeoffs

19

Concurrency control

20

Transaction T :

balance = b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

Transaction U :

balance = b.getBalance()

b.setBalance(bal*1.1)

c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction
bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T ’s
lock on BcloseTransaction unlock A , B

lock B

b.setBalance(bal*1.1)

c.withdraw(bal/10) lock C

closeTransaction unlock B , C

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.14

Concurrency control

Sharing locks

• Read locks can be shared

• Promote read lock to write lock if no other transactions
require a lock

• Requesting a write lock when there are already read locks, or
a read lock when there is already a write lock?
– Wait until lock is available

21

Lock compatibility

Concurrency control

Locks and nested transactions

Isolation
– From other sets of nested transactions
– From other transactions in own set

Rules:
– Parents do not run concurrently with children
– Children can temporarily acquire locks from ancestors
– Parent inherits locks when child transactions commit
– Locks are discarded if child aborts

– Sub-transactions at each level are treated as flat transactions
There are also rules for acquiring and releasing locks

22

Concurrency control

Big problem: Deadlocks

• Typical deadlock:
Transaction A waits for B,
transaction B waits for A

• Deadlocks may arise in long chains

• Conceptually, construct a wait-for graph
– Directed edge between nodes if one waits for the other

– Cycles indicate deadlocks
Abort transaction(s) as needed

23

Concurrency control

Handling deadlock

• Deadlock prevention
– Acquire all locks from the beginning

Bad performance, not always possible

• Deadlock detection
– As soon as a lock is requested, check if a deadlock will occur

Bad performance: avoid checking always

– Must include algorithm for determining which transaction to abort
• Lock timeouts

– Locks invulnerable for a certain time, then they are vulnerable
– Leads to unnecessary aborts

• Long-running transactions
• Overloaded system

– How to decide useful timeout value?

24

Concurrency control

Locking drawbacks

• Overhead (even on read-only transactions)
– Necessary only in the worst case

• Deadlock
– Prevention reduces concurrency severely
– Timeouts or detection

• Reduced concurrency in general
– Locks need to be maintained until transactions end

Enter optimistic concurrency control

25

Concurrency control

Optimistic Concurrency Control

Assumes that conflicts are rare
• Probability of multiple accesses to same object is low
• Only need to worry about real conflicts
Transaction phases:

Working
• Transaction works with tentative data (read and write sets)

Validation (Upon completion)
• Check if transaction may commit or abort
• Conflict resolution

Update
• Write tentative data from committed transactions to permanent storage

26

updatevalidationworkingT

Concurrency control

Validation Tv Ti Rule

write read Ti must not read objects written by Tv

read write Tv must not read objects written by Ti

write write Ti must not read objects written by Tv and Ti must
not read objects written by Tv

• Use conflict rules from earlier!

• On overlapping transactions

• Validate one transaction at a
time against others

• Transactions are numbered
(not to be confused with IDs) as
they enter the validation
phase

• Only a single transaction at a
time in update phase

• Backward or Forward
validation

27

Earlier committed

transactions

Working Validation Update

T 1

T v

Transaction

being validated

T 2

T 3

Later active

transactions

active
1

active
2

B

F

Concurrency control

Backward validation

• Check read set against write set of transactions that:
– were active at the same time as the transaction currently being

validated; and

– have already committed

• Transactions with only write set need not be checked

• If overlap is found, then current transaction must be aborted!

28

Tv
Transaction

being validated

T3

write

read

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 16.28

Concurrency control

Backward validation - example

29

Backward validation of transaction Tv
boolean valid = true;
for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;
}

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction

being validated

T2

T3

Later active

transactions

active
1

active
2

write sets
must be

saved until
active

finishes

Concurrency control

Forward validation

• Check write set against read set of transactions that are currently
active
– Note that read sets of active transactions may change during validation

• Transactions with only write set need not be checked

• If overlap is found, we can choose which transaction(s) to abort
– Wait until conflicting transactions have finished

– Abort conflicting active transactions

– Abort transactions being validated

30

active

read

Tv

Transaction

being validated

write

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 18.2

Concurrency control

Forward validation - example

31

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction

being validated

T2

T3

Later active

transactions

active
1

active
2

Concurrency control

Comparison of optimistic concurrency control

• Size of read/write sets
– Read sets are usually bigger
– Forward compares against “growing” read sets

• Choice of transaction to abort
– Backward a single choice, Forward three choices
– Linked to starvation

• Overhead
– Backward requires storing old write sets
– Forward may need to re-run each time the read set for any

active transaction changes and must allow for checking new
valid transactions

32

Concurrency control

Comparison of concurrency control schemes

• Pessimistic CC (two-phase locking)
– Transactions need to wait for locks ...and yet, can still be

aborted

– Large overhead (avoided in new systems)

• For systems with many CC-related issues
– Pessimistic will give a more stable quality of service

– Optimistic will abort a large number of transactions and
requires substantial work

33

Concurrency control

Two-phase commit

34

Atomic commit

Problem of ensuring atomicity relies on
ensuring that all participants vote and
reach the same decision

• Distributed transaction

• Transactions dealing
with objects managed
by different servers

• All servers commit or all
abort

• … at the same time

• in spite of (crash)
failures and
asynchronous systems

35

Two-phase commit

Two-phase commit protocol

Phase 1: Coordinator collects votes

“Abort”, any participant can abort its part of the transaction

“Prepared to commit”, save updates to permanent storage to
survive crashes (May not change vote to “abort”)

Phase 2: Participants carry out the joint decision

36

Protocol can fail due to servers crashing or network partition

• Log actions into permanent storage

Two-phase commit

Algorithm
Phase 1 (voting)
1. Coordinator sends “canCommit?” to each participant
2. Participants answer “yes” or “no”

• “Yes”: update saved to permanent storage
• “No”: abort immediately

Phase 2 (completion)
3. Coordinator collects votes (including own)

– No failures and all “yes”? Send “doCommit” to each participant,
otherwise, send “doAbort”

4. Confirm commit via “haveCommitted”

37

Note: Participants are in “uncertain” state until they receive
“doCommit” or “doAbort”, and may act accordingly (send
“getDecision” message to coordinator)

Two-phase commit

Timeout actions

38

canCommit?

Yes

doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)

prepared to commit

committed

statusstepstatus

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 17.6

If coordinator fails:

• Participants are
“uncertain”

– If some have received an
answer (or they can
figure it out themselves),
they can coordinate
themselves

• Participants can request
status (send “getDecision”
message to coordinator)

• If participant has not
received “canCommit?”
and waits too long, it may
abort

If participant fails:
• No reply to “canCommit?” in time?

Coordinator can abort

Crash after “canCommit?”
Use permanent storage to get up to speed

Two-phase commit

Two-phase commit protocol for nested transactions

• Sub-transactions “provisional commit”
– Nothing written to permanent storage

Ancestor could still abort!

– If they crash, the replacement cannot commit

• Status information is passed upward in tree
– List of provisionally committed sub-transactions

eventually reach top level

• Hierarchical or flat voting phase

39

Two-phase commit

Summary (1)

• Transactions – specify sequence of operations
that are atomic in presence of concurrent
transactions and server crashes

• ACID properties
• Problems with transactions – lost updates,

inconsistent retrievals
• Serial equivalence

– Conflicting operations – read-read, read-write, write-read

40

Summary

Summary (2)

• Aborted transactions – dirty reads, premature writes

• Nested transactions – allow additional concurrency, can work in parallel,
commit or abort independently

• Concurrency control protocols – locks and optimistic concurrency control

• Locks – (strict) two-phase locking, shared locks, nested transactions

• Deadlocks – how to handle them

• Optimistic concurrency control – backward and forward validation

• Two-phase commit

41

Summary

Next Lecture

Peer-to-peer

42

