
Distributed Systems (5DV147)

Fall 2013

Replication and consistency

1

Replication

2

What is replication?

• Make different copies of data ensuring that all
copies are identical
– Immutable data – trivial
– Often updated data – tricky, can be expensive to

maintain copies identical

• Replication requirements
– Replication transparency (illusion of single copy)
– Consistency

3

Introduction

Why replication?

• Reliability
– Fault tolerance (redundancy, switching to other replica)
– Protection against corrupted data (majority)
– Availability

• Performance
– Scalability (divide the work)
– Load balancing
– Reducing access latency (data closer to process)

• Caching

4

Introduction

Problems that you may find

• Problems if multiple clients access replicas
– Concurrent access, rather than exclusive
– Operations are interleaved

• How do we ensure correctness?

• Replica placement
– Servers
– Content

• Overhead required to keep replicas up to date
– Global synchronization (Atomic operations)

• Relaxed atomicity constraint, but copies will not always be the same
– Depends on access and update patterns of data

5

Introduction

Example

Client 1 Client2

setBalanceB(x,1)

setBalanceA(y,2)

readBalanceA(y) 2

readBalanceA(x) 0

6

• Local replica of Client 1 is B
• Local replica of Client 2 is A

Interleaving

Correctness of interleaving

• “Basic” correctness property
– An interleaved sequence of operations must meet the

specification of a single correct copy of the object(s)

• Sequential consistency property
– Order of operations is consistent with the program order in

which each individual process executed them

• Linearizability property
– Order of operations is consistent with the real times at

which the operations occurred during execution

7

Interleaving

Example of interleaved operations for 2 clients:

An interleaving with sequential consistency:
A, B, d, e, f, C

Interleaving with linearizability:
A, B, d, C, e, f

8

C1: A, B, C C2: d, e, f Real Order during execution: A, B, d, C, e, f

Fall 2012

Interleaving

Passive replication

• One primary replica manager, many backup replicas
– If primary fails, backups can take its place (election!)

9

FEC

FEC

RM

Primary

Backup

Backup

RM

RM

• Implements linearizability if:
• A failing primary is replaced by a

unique backup
• Backups agree on which

operations were performed
before primary crashed
• View-synchronous group

communication!

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 18.3

Replication: models

Steps of passive
replication
1. Request

– Front end issues request
with unique ID

2. Coordination
– Primary checks if request

has been carried out, if so,
returns cached response

3. Execution
– Perform operation, cache

results

4. Agreement
– Primary sends updated state

to backups

5. Response
– Primary sends result to front

end, which forwards to the
client

10

FEC

FEC

RM

Primary

Backup

Backup

RM

RM

1

2 3

4

5

1

What happens if the primary RM crashes?
• Before agreement
• After agreement

Replication: models

Active replication

• More distributed

• All replica managers carry out all operations

11

• Requests to RM are totally
ordered

• Front ends issue one request at
a time (FIFO)

• Implements sequential
consistency

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 18.4

FE CFEC RM

RM

RM

Replication: models

Steps of active
replication
1. Request

– Front end adds unique
identifier to request,
multicasts to RMs

2. Coordination
– Totally ordered request

delivery to RMs

3. Execution
– Each RM executes request

4. Agreement
– Not needed

5. Response
– All RMs respond to front

end, front end interprets
response and forwards
response to client

12

FE CFEC RM

RM

RM

1
2

2
2

3

3

3

1

5

5

5

Replication: models

• Both handle crash failures (but differently)
• Only active can handle arbitrary failures
• Optimizations?
– Send “reads” to backups in passive

Lose linearizability property!

– Send “reads” to specific RM in active
Lose fault tolerance

– Exploit commutativity of requests to avoid ordering
requests in active

13

Comparing active and passive replication
Replication: models

Consistency

14

Consistency problem

Replication improves reliability and performance
… but

when a replica is updated, it becomes different from the
others

… so
we need to propagate updates in a way that temporal
inconsistencies are not noticed

… however
this may degrade performance severely

15

Consistency

Consistency models

• Is a contract between processes and a data store

– if processes agree to obey certain rules, the store
promises to work correctly
(Tanenbaum and van Steen, 2002)

– What to expect when reading and updating shared
date (while others do the same)

– Data-centric models (system-wide)

– Client-centric models (single client)

16

Consistency

Data-centric consistency models

17

Strict consistency

• Every read of x returns a value corresponding to the
result of the most recent write to x

• True replication transparency, every process receives a
response that is consistent with the real time

• All writes are instantaneously visible to all process

• Assumes absolute global time
– Due to message latency, strict consistency is difficult to

implement

18

Data centric consistency

Strict consistency example:

19

A:

B:

W(x) a

R(x) a

A:

B:

W(x) a

R(x) aR(x) NIL

Strictly consistent Not strictly consistent

In general, A:writet(x,a) then B:readt’(x,a) ; t’>t
(regardless on the number of replicas of x)

Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.5

Data centric consistency

Linearizability

• Interleaving of reads and writes into a single total order
that respects the local ordering of the operations of every
process
– A trace is consistent when every read returns the latest write

preceding the read

• A trace is linearizable when
– It is consistent
– If t1, t2 are the times at which pi and pj perform operations, and

t1 < t2 , then the consistent trace must satisfy the condition that
t1 < t2

20

Data centric consistency

Linearizability example:

21

A:

B:

W(x) 1

W(y) 1

The linearizable trace is A:W(x,1), B:W(y,1), A:R(y,1), B:R(x,1)

R(y) 1

R(x) 1

Data centric consistency

Sequential consistency

• “The result of any execution is the same as if the (read and
write) operations by all processes on the data store were
executed in some sequential order and the operations of
each individual process appear in this sequence in the order
specified by its program” (Lamport 1979)

• Requires that interleaving preserving local temporal order
of reads and writes are consistent traces

• Is not concerned with real time
• All processes see the same interleaving of operations

22

Data centric consistency

Sequential consistency example

23

Sequentially consistent Not sequentially consistent

W2 (x)b, R3(x)b, R4(x)b, W1(x)a, R3(x)a, R4(x)a W2 (x)b, R3(x)b, ???

Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.6

Data centric consistency

Causal consistency

• All writes that are causally related must be seen by
every process in the same order, and reads must be
consistent with this order

• Writes that are not causally related to one another
(concurrent) can be seen in any order

• No constraints on the order of values read by a
process if writes are not causally related

24

Data centric consistency

Example

25

Causally consistent Not causally consistent

Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.10

Data centric consistency

Example

26

Causally consistent

Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.9

Data centric consistency

Consistency Description

Strict Absolute time ordering on all shared accesses, essentially
impossible to implement it in distributed systems

Linearizability All processes see all shared accesses in the same order.
Accesses are ordered based on a global timestamp. Good for
reasoning about correctness of concurrent programs but not
really used for building programs

Sequential All processes see all shared accesses in the same order.
Accesses are not ordered in time. Feasible and popular but has
poor performance

Causal All processes see causally-related shared accesses in the same
order. There is no globally agreed upon view of the order of
operations

27
Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.18.a

Data centric consistency

Update propagation and
consistency protocols

28

Update propagation

• Price of replication Keep replicas consistent

• Replica updates

– Atomic updates (all replicas need to be identical),
maintain all replicas equal

– Maintaining replicas consistent may also generate
scalability problems

29

Update propagation

Update propagation

• Update notifications
– Good for low read-to-write ratios

• Transfer data from one copy to another
– Good for high read-to-write-ratios

• Propagate the update operation to other copies
– Active replication

• Push
– Propagation initiated by server
– Good for high read-to-write ratios

• Pull
– Client requests server to send updates
– Good for low read-to-write ratios

30

Update propagation

Consistency protocols

• Describes an implementation of a specific
consistency model

• Sequential consistency

– Passive replication remote-write protocols
and local-write protocols (primary-based)

– Active replication quorum-based protocols

31

Consistency Protocols

Primary-based protocol: remote-write

32

• Updates are blocking
operations
• non-blocking

operations improve
performance but,

problem Fault tolerance

Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.28

Consistency Protocols

Primary-based protocol: local-write

33

• Primary migrates between
processes that wish to
perform an operation

• Optimization carry out
multiple successive writes
locally

Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.30

Consistency Protocols

Active replication: quorum-based

• Clients need to request and acquire permission from
replicas before reading (read quorum) or writing
(write quorum)

• Each data item contains a version number
• Read/write requires agreement of a majority
• Constraints for read (NR) and write (NW) quorums

1. NR + NW > N
2. NW > N/2

34

Consistency Protocols

Quorum-based example

35

Correct choice of NR & NW write-write conflict ROWA (read one, write all)

Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.33

Consistency Protocols

Client-centric consistency models

36

Eventual consistency

• Maintains consistency for individual clients, not considering
that data may be shared by several clients

• If updates are infrequent, eventually all replicas will obtain
the update and become identical

• Good if clients always access the same replica

• Delay resolving conflicts

• Assume that clients connect to different replicas and that
differences in those replicas should be transparent

Several variations …
37

Client centric consistency

38
Figure adapted from Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, (c) 2002 Prentice-Hall, Inc.- based on Figure 6.19

Client centric consistency

Monotonic-read consistency

• If a process has seen a value of (data item) x at a
certain time, it will never see an older version of x at
a later time

39

Client centric consistency

Monotonic-write consistency

• A write to data item x is completed before any
successive write to x by the same process

40

Client centric consistency

Read-your-writes consistency

• A process will never see a previous value of x after a
write to that data item x

41

Client centric consistency

Write-follow-reads consistency

• When writing to x following a previous read by the
same process, is guaranteed to take place on the
same or a more recent value of x that was read

42

Client centric consistency

… more about groups

43

Group views

• Contain the set of group members at a given
point in time
– Failed identified processes are not in the view

• Events occur in views
• Views are delivered when membership changes
• View-synchronous group communication

– Based on view delivery, we can know which messages
must have been delivered (within a view)

44

groups

View delivery requirements

• Order
– View changes always occur in the same order at all processes

• Integrity
– If a process delivers a view then that process is part of that view

• Non-triviality
– Processes that have joined a group and communicate

indefinitely are members of the same group
– Membership service should eventually reflect network

partitions

45

groups

View-synchronous group communication

• Correct processes deliver the same set of messages
in any given view

• Messages are delivered at most once

• Correct processes always deliver messages they
send:

– If delivering to q fails, the next view excludes q

46Fall 2012

groups

Summary (1)

• What is replication and why is it necessary
• Correctness of interleaving

– Basic, sequential consistency, and linearizability

• General replication phases
– Request, coordination, execution, agreement,

response

• Types of ordering adapted to replication
– FIFO, Causal, Total

47

Summary

Summary (2)

• Passive replication (implements linearizability)
– A single primary replica manager and one or more backup replica

managers

• Active replication (implements sequential consistency)
– Independent replica managers executing all operations

• Updates propagation
– Update notifications, data, or operations, and push vs. pull

• Consistency protocols (implementation of consistency model)
– Primary-based protocols (passive)

• Remote-write
• Local-write

– Quorum-based protocols (active)
48

Summary

Summary (3)

• Consistency models
– Data-centric models (strict, linearizability, sequential,

causal), differ …
• In how restrictive they are

• How complex their implementations are

• Ease of programming

• Performance

– Client-centric models
• Eventual consistency

– Monotonic reads, monotonic writes, read your writes, writes follow reads

49

Summary

Summary (4)

• More about groups
– Static vs. dynamic groups and primary partition vs.

partitionable groups

• Group views
– Current list of members
– Events occur in views
– Views are delivered when membership changes
– Requirements for delivering views

• View synchronous group communication

50

Summary

Next Lecture

Cassandra

51

