
Distributed Systems (5DV147)

Fall 2013

Group communication

1

Group communication

2

Characteristics

• Indirect communication
– Communication through an intermediary

– No direct coupling between the sender and the
receiver(s)

• Group communication
– Messages sent to a group of processes and

delivered to all members of the group

3

Group communication

• One-to-many
communication
• Provide reliability and

ordering guarantees

• Group management
functionality
• Maintain membership

• Detect failure of
member(s)

4

p1

p2 p3 p4 p5

group_id

p6 join(group_id)

multicast(m, group_id)

Groups (of processes)
Group communication

Types of groups

Closed or open

A group is closed if only members of
the group can multicast to it

A group is open if processes outside
the group may send to it

Overlapping or non-overlapping

In overlapping groups, processes
may be members of multiple groups

In non-overlapping groups, processes
may belong to at most one group

5

Closed group Open group

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 6.2

A B

non-overlapping group

A
B

overlapping group

Group communication

Group membership management

• Interface for group membership changes
– Create and destroy groups, add or remove members to a group

• Failure detection
– Mark processes as suspected or unsuspected and remove those

processes that have (suspected) failed

– Notify members of group membership changes

– Processes that join or leave

– Perform group address expansion

– From group id to individual group members (current)

7

Group communication

Multicast

8

Receive versus Deliver

Receive: message has arrived and
will be processed

Deliver: message is allowed to
reach upper layer

Unreliable (basic) multicast (using
reliable unicast)

• Send (unicast) to each other
process in the group!

• What if sender fails halfway
through?

9Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 15.10

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming

messages

When delivery
guarantees are
met

message
receipt

message
delivery

Multicast communication

Reliable multicast

Integrity
Messages delivered at most once

Validity
If a correct process multicasts message m, it will
eventually deliver m

Agreement
If a correct process delivers m, then all correct processes
in the group will eventually deliver m

10

Multicast communication

Reliable multicast algorithm

• Use basic multicast to send to all (including self)

• When basic multicast delivers, check if message
has been received before

1. If it has, do nothing further

2. If not, and sender is not own process
Basic multicast message to others

3. Deliver message to upper layer

11

Multicast communication

Integrity? Validity? Agreement? Yes!

Insane amounts of traffic? Yes! Every message is
sent sizeof(group) to each process!

A single message will be sent 100 times if we just
have 10 processes

12

Multicast communication

Message orderings

14

Message orderings

1. Unordered

2. FIFO

3. Total

4. Causal

5. Hybrid orderings such as Total-Causal & Total-FIFO

15

Message orderings

FIFO ordering

Intuition

• Messages from a process should be delivered in the
order in which they were sent

Solution

• Sender numbers the messages, receivers hold back
those that have been received out of order

16

Message orderings

Process P1

S(p1,g) # of messages
that p has sent to the

group

R(p2,g) sequence # of
latest message that p1
has delivered from p2
that was sent to g
R(p3,g)

R(pn,g)

17

n members of g

FO-multicast
Send S(pi,g) with message

B-multicast message
Increment by S(pi,g) 1

FO-deliver
If S=R(pj, g) + 1

FO-deliver and set R(pj, g) = S
If S>R(pj, g) + 1

Place in hold-back queue until
S = R(pj, g) + 1

Message orderings

Total ordering

Intuition

Messages from all processes should get a (unique)
group wide ordering number, so all processes can
deliver messages in a single order!

Mental pitfall: the order itself does not have to
make any sense, as long as all processes abide by it!

18

Message orderings

Implementing total ordering

Sequencer
– Simple

– Central server (= single point of failure)

ISIS-algorithm
– Not as simple

– Distributed

– Study on your own!

19

2

1

1

2

2

1 Message

P2

P3

P1

P4

3 Agreed Seq

3

3

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 15.14

Message orderings

Sequencer

• Sequencer is logically external to the group

• Messages are sent to all members, including sequencer
– Initially, have no “ordering” number

• Sequencer maps message identifiers to ordering
numbers
– Multicasts mapping to group

– Once a message has an ordering number, it can be
delivered according to that number

20

Message orderings

21Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 15.13

1

2

3

4

Send the to g and sequencer

Wait until right time to deliver (given by
sequence # from sequencer)

multicast sequential # to g
sequence # is totally ordered

Message orderings

Sequencer – final notes

• Note, again, that the ordering is completely up
to the sequencer
– It could collect all messages for half an hour and

then assign numbers according to how many a’s
there are in the message

– While annoying to use, this is still a total order,
and all processes will have to follow it!

22

Message orderings

Causal ordering

Intuition

Captures causal (cause and effect) relationships via
happened-before ordering

Vector clocks ensure that replies are delivered after the
message that they are replying to

23

Message orderings

Hybrid orderings

Causal order is not unique

– Concurrent messages

...neither is FIFO

– FIFO only guarantees per process not inter-process

Total order only guarantees a unique order

– Combine with others to get stronger delivery
semantics!

25

Message orderings

Summary

• Group communication
– One-to-many, indirect communication

• Different types of groups
– Open, closed, overlapping, and non-overlapping

• Reliability in group communication
– Integrity, validity, and agreement

• Group membership management
– changes, failure detection, notification of membership changes,

group address expansion

26

Summary group management

Summary

• Multicast, reliable and unreliable
• Message ordering

– The ordering in delivering messages is necessary in
some cases

– Ordering is expensive in terms of delivery latency and
bandwidth consumption

– FIFO – order messages from each sender

– Causal – order messages across senders
– Total – same message ordering on all recipients

27

Summary multicast communication

Next Lecture

Consensus

28

