
Distributed Systems (5DV147)

Fall 2013

Mutual Exclusion and Elections

1

Processes often need to coordinate their actions

– Which process gets to access a shared resource?

– Has the master crashed? Elect a new one!

2

Distributed mutual exclusion

3

Motivation

• Is needed to coordinate access to a shared resource
– Concurrent access to a shared resource is serialized

… but the solution need to be based on message passing

• Three basic approaches
– Token-based

– Permission-based

– Quorum-based

4

Assumptions

• The system is asynchronous, process do not fail, and
message delivery is reliable

• N processes pi (i=1, 2, …, N) that do not share
variables
– pi access shared resources in a critical section

– pi’s are well behaved, finite time on the critical section

5

enter()

resourceAccesses()

exit()

Application level protocol for
executing a critical section

Fairness

• Absence of starvation

• Order in which process enter critical section

– No global clocks

– Happened-before ordering:

• it is not possible for a process to enter the critical
section more than once while another waits to enter.

6

Essential requirements

safety: at most 1 process may enter the critical
section at a time
liveness: requests to enter and exit the critical
section eventually succeed

– Freedom of deadlock and starvation
→ ordering: if a request to enter the critical section
happened-before another, then access is granted
according to that order

7

Metrics for evaluation of algorithms

• Bandwidth consumed

– Entry and exit operations

• Client delay

• Throughput of the system

– Synchronization delay, one process exit and another one
enters the critical section

8

Central Server
Send request to server, oldest
process in queue gets access
(a token), return token when
done

• No process has token 
reply (enter) immediately

• Otherwise  queue
request

Oldest process in the queue
gets token after released

9

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3p

2

p
1

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 15.2

MUTEX: Algorithms

Properties

Safety? Yes!

Liveness? Yes (as long as server does not crash)

→ ordering? No! Why not?

Performance

Entering : 2 messages (request + grant)

Exiting : 1 message

Synch and client delay : 2 messages (release + grant)

10

Performance bottleneck
Single point of failure

MUTEX: Algorithms

Ring-based

Token is passed around a ring of
processes

• Want access? Wait until token
comes, and claim it (then pass
the token along)

• Can’t use the same token
twice

• Can’t estimate when a process
will see a token

• Recovering from a process crash

• Receipt acknowledgments

11

p
n

p
2

p
3

p
4

Token

p
1

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 15.3

MUTEX: Algorithms

Properties

Safety? Liveness? Yes (assuming no crashes)

→ ordering? Not even close!

Performance

Continuously uses network bandwidth

Client delay : between 0 – N messages

Exiting : 1 message

Synchronization delay : between 1 – N messages

12

MUTEX: Algorithms

Ricart and Agrawala

• Distributed algorithm, no central coordinator
– Use Lamport timestamps to order requests

• Multicast a request message
– Enter critical section only when all other processes have

given permission
– Processes work cooperatively to provide access in a fair

order

• Use multicast primitive or each process needs a group
membership list

13

MUTEX: Algorithms

Details

Each process
– Has unique process ID

– Has communication channels to the other processes

– Maintains a logical (Lamport) clock
– Has state ∈ {wanted, held, released}

Requests are multicasted to group

(process ID and clock value) <id, value>

Lowest clock value gets access first
Equal values? Check process ID!

14

MUTEX: Algorithms

15

On initialization
state := RELEASED;

To enter the section
state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying;
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 15.5

MUTEX: Algorithms

RELEASED or earlier timestamp

Have access or want access and
<id, value> is lower than
incoming request?

Example

16

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply
Reply

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 15.5

MUTEX: Algorithms

Properties

Safety? Liveness? → ordering? Yes!

…but every node is a point of failure

Performance

Entering : 2(N-1) messages

• (n-1) multicast request + (n-1) replies

Client delay : 1 round-trip

Synchronization delay : 1 message transmission

Improve performance
• If process wants to re-enter critical section, and no new requests have been made,

just do it!

• Grant access using simple majority

17

MUTEX: Algorithms

Maekawa’s voting

Optimization: only ask subset of processes for entry
– Key is how to build the subsets

• At least one common member in any two voting sets
• Each process has a voting set of the same size
• Each process is in as many voting sets as the number of

processes in a voting set
• Works as long as subsets overlap
• Use matrix of √𝑛 by √𝑛 and voting sets are the union of

rows and columns

– Vote only in one election at a time!

18

MUTEX: Algorithms

Details

19

On initialization

state := RELEASED;

voted := FALSE;

For pi to enter the critical section

state := WANTED;

Multicast request to all processes in Vi;

Wait until (number of replies received = K);

state := HELD;

On receipt of a request from pi at pj

if (state = HELD or voted = TRUE)

then

queue request from pi without replying;

else

send reply to pi;

voted := TRUE;

end if

For pi to exit the critical section

state := RELEASED;

Multicast release to all processes in Vi;

On receipt of a release from pi at pj

if (queue of requests is non-empty)

then

remove head of queue – from pk, say;

send reply to pk;

voted := TRUE;

else

voted := FALSE;

end if

MUTEX: Algorithms

Safety? Yes

Liveness? → ordering? No, deadlocks can
happen! V1={p1,p2}, V2={p2,p3}, V3={p3,p1}

Comparison of Mutex algorithms

• Central server:

– simple and error-prone!

– but otherwise good
performance!!

• Ring-based algorithm:

– also simple, but not single
point of failure

• Ricart and Agrawala:

– completely distributed and
decentralized

– multicast request, access when
all have replied (ordered using
logical clocks)

• Maekawa's voting algorithm:

– ask only a subset for access:
works if subsets are
overlapping

20

MUTEX: Algorithms

… more comparison

Message loss?

None of the algorithms handle this

Crashing processes?

Ring? No! others? depends (central- not server nor
holding or having requested token, Maekawa’s only

if crashed process is not in voting set)

21

MUTEX: Algorithms

Summary

• Control access to shared resources

• Algorithms

– central server

– ring-based

– Ricart and Agrawala

– Maekawa's voting algorithm

22

Summary MUTEX Algorithms

Election algorithms

23

Motivation

• How to choose a process to play a particular role in
the system

• Start with all process in same state

– One process will reach state leader

– Other process will reach state lost

24

Election

Details

• Any process can call an election but can only call one
election at a time

• Each process has the same local algorithm

• The elected process is the one with the largest
identifier, identifiers should be unique and totally
ordered

• The election must always produce a unique winner

25

Election

Essential requirements

safety: A participant has electedi = False or electedi
= P, where P is chosen as the non-crashed

process with the highest identifier

liveness: All processes participate and eventually
set electedi to not =False or crash

26

Election

Ring-based algorithm

• Goal is to elect a single process – the coordinator

• process with the largest identifier

• During election, pass max(own ID, incoming
ID) to next process

• If a process receives own ID, it must have been highest and
may send that it has been elected

27

Election algorithms

Details
• Safety? Liveness? Yes!

• Tolerates no failures (limited use)

Worst case, N-1 messages until reaching
peer with largest identifier

+

N messages to complete another circuit

+

N messages advertising the election

3N-1 messages
• The election was started by process 17

• The highest process identifier encountered so far is 24.

• Participant processes are shown in a darker color

28

24

15

9

4

3

28

17

24

1

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 15.7

Election algorithms

Bully algorithm

Requires:
– Synchronous system

– All processes know of each other (which ones have higher ids)

– Reliable failure detectors

– Reliable message delivery

Allows
– Crashing processes

29

Election algorithms

Details

• Process P discovers that leader has crashed
– P sends an Election message to all processes with higher

numbers
– If no one responds, P wins the election and becomes

coordinator
– If one of the higher ups answers, it takes over, P’s job is

done

• Upon receiving an Election message, the receiving
process respond to sender and initiates an election

30

Example

31

p1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C

coordinator

Stage 4

C

election

election

Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election

Stage 1

timeout

Stage 3

Eventually.... .

p
1

p
2

p
3

p
4

election

answer

The election of coordinator p2,

after the failure of p4 and then p3

Election algorithms

Safety? Not if process IDs can
be reused!

Liveness? Yes (if message
delivery is reliable)

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 15.8

Summary

• Election algorithms

– Seems like a simple problem, but non-trivial
solutions are... non-trivial

• Want to read more about non-trivial election
algorithms?
– http://www.sics.se/~ali/teaching/dalg/l06.ppt

32

Summary election algorithms

Next Lecture

Group communication

33

