
Distributed Systems (5DV147)

Fall 2013

Mutual Exclusion and Elections
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Processes often need to coordinate their actions

– Which process gets to access a shared resource?

– Has the master crashed? Elect a new one!
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Distributed mutual exclusion
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Motivation

• Is needed to coordinate access to a shared resource
– Concurrent access to a shared resource is serialized

… but the solution need to be based on message passing

• Three basic approaches
– Token-based

– Permission-based

– Quorum-based
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Assumptions

• The system is asynchronous, process do not fail, and 
message delivery is reliable

• N processes pi (i=1, 2, …, N ) that do not share 
variables
– pi access shared resources in a critical section

– pi’s are well behaved, finite time on the critical section
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enter()

resourceAccesses()

exit()

Application level protocol for 
executing a critical section



Fairness

• Absence of starvation

• Order in which process enter critical section

– No global clocks

– Happened-before ordering:

• it is not possible for a process to enter the critical 
section more than once while another waits to enter.

6



Essential requirements

safety: at most 1 process may enter the critical 
section at a time
liveness: requests to enter and exit the critical 
section eventually succeed

– Freedom of deadlock and starvation
→ ordering: if a request to enter the critical section 
happened-before another, then access is granted 
according to that order
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Metrics for evaluation of algorithms

• Bandwidth consumed

– Entry and exit operations

• Client delay

• Throughput of the system

– Synchronization delay, one process exit and another one 
enters the critical section
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Central Server
Send request to server, oldest 
process in queue gets access 
(a token), return token when 
done

• No process has token 
reply (enter) immediately

• Otherwise  queue 
request

Oldest process in the queue 
gets token after released
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Server
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MUTEX: Algorithms



Properties

Safety? Yes!

Liveness? Yes (as long as server does not crash)

→ ordering? No! Why not?

Performance

Entering : 2 messages (request + grant)

Exiting : 1 message

Synch and client delay : 2 messages (release + grant)
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Performance bottleneck
Single point of failure
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Ring-based

Token is passed around a ring of 
processes

• Want access? Wait until token 
comes, and claim it (then pass 
the token along)

• Can’t use the same token 
twice

• Can’t estimate when a process 
will see a token

• Recovering from a process crash

• Receipt acknowledgments
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Properties

Safety? Liveness? Yes (assuming no crashes)

→ ordering? Not even close!

Performance

Continuously uses network bandwidth

Client delay : between 0 – N messages

Exiting : 1 message

Synchronization delay : between 1 – N messages
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Ricart and Agrawala

• Distributed algorithm, no central coordinator
– Use Lamport timestamps to order requests

• Multicast a request message 
– Enter critical section only when all other processes have 

given permission
– Processes work cooperatively to provide access in a fair 

order

• Use multicast primitive or each process needs a group 
membership list
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Details

Each process
– Has unique process ID 

– Has communication channels to the other processes

– Maintains a logical (Lamport) clock
– Has state ∈ {wanted, held, released}

Requests are multicasted to group 

(process ID and clock value) <id, value>

Lowest clock value gets access first
Equal values? Check process ID!
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On initialization
state := RELEASED; 

To enter the section
state := WANTED;
Multicast request to all processes;          request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying; 
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – Figure 15.5
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RELEASED or earlier timestamp

Have access or want access and 
<id, value> is lower than 
incoming request? 



Example
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Properties

Safety? Liveness? → ordering? Yes! 

…but every node is a point of failure

Performance

Entering : 2(N-1) messages 

• (n-1) multicast request + (n-1) replies

Client delay : 1 round-trip

Synchronization delay : 1 message transmission

Improve performance
• If process wants to re-enter critical section, and no new requests have been made, 

just do it!

• Grant access using simple majority
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Maekawa’s voting

Optimization: only ask subset of processes for entry
– Key is how to build the subsets

• At least one common member in any two voting sets
• Each process has a voting set of the same size
• Each process is in as many voting sets as the number of 

processes in a voting set
• Works as long as subsets overlap
• Use matrix of √𝑛 by √𝑛 and voting sets are the union of 

rows and columns

– Vote only in one election at a time!
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Details
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On initialization

state := RELEASED;

voted := FALSE;

For pi to enter the critical section

state := WANTED;

Multicast request to all processes in Vi;

Wait until (number of replies received = K);

state := HELD;

On receipt of a request from pi at pj

if (state = HELD or voted = TRUE)

then

queue request from pi without replying; 

else

send reply to pi;

voted := TRUE;

end if

For pi to exit the critical section

state := RELEASED;

Multicast release to all processes in Vi;

On receipt of a release from pi at pj

if (queue of requests is non-empty)

then

remove head of queue – from pk, say; 

send reply to pk;

voted := TRUE;

else

voted := FALSE;

end if

MUTEX: Algorithms

Safety? Yes

Liveness? → ordering? No, deadlocks can 
happen! V1={p1,p2}, V2={p2,p3}, V3={p3,p1}



Comparison of Mutex algorithms

• Central server: 

– simple and error-prone!

– but otherwise good 
performance!!

• Ring-based algorithm: 

– also simple, but not single 
point of failure

• Ricart and Agrawala: 

– completely distributed and  
decentralized

– multicast request, access when 
all have replied (ordered using 
logical clocks)

• Maekawa's voting algorithm: 

– ask only a subset for access: 
works if subsets are 
overlapping
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… more comparison

Message loss?

None of the algorithms handle this

Crashing processes?

Ring? No! others? depends (central- not server nor 
holding or having requested token, Maekawa’s only 

if crashed process is not in voting set)
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Summary

• Control access to shared resources

• Algorithms

– central server

– ring-based

– Ricart and Agrawala

– Maekawa's voting algorithm
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Summary MUTEX Algorithms



Election algorithms
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Motivation

• How to choose a process to play a particular role in 
the system

• Start with all process in same state

– One process will reach state leader

– Other process will reach state lost
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Details

• Any process can call an election but can only call one 
election at a time

• Each process has the same local algorithm

• The elected process is the one with the largest 
identifier, identifiers should be unique and totally 
ordered

• The election must always produce a unique winner
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Essential requirements

safety: A participant has electedi = False or electedi
= P, where P is chosen as the non-crashed 

process with the highest identifier

liveness: All processes participate and eventually 
set electedi to not =False or crash
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Ring-based algorithm

• Goal is to elect a single process – the coordinator

• process with the largest identifier

• During election, pass max(own ID, incoming 
ID) to next process

• If a process receives own ID, it must have been highest and 
may send that it has been elected
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Details
• Safety? Liveness? Yes!

• Tolerates no failures (limited use)

Worst case, N-1 messages until reaching 
peer with largest identifier

+

N messages to complete another circuit

+ 

N messages advertising the election

3N-1 messages
• The election was started by process 17

• The highest process identifier encountered so far is 24. 

• Participant processes are shown in a darker color
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Bully algorithm

Requires:
– Synchronous system

– All processes know of each other (which ones have higher ids)

– Reliable failure detectors

– Reliable message delivery

Allows
– Crashing processes
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Details

• Process P discovers that leader has crashed
– P sends an Election message to all processes with higher 

numbers
– If no one responds, P wins the election and becomes 

coordinator
– If one of the higher ups answers, it takes over, P’s job is 

done

• Upon receiving an Election message, the receiving 
process respond to sender and initiates an election
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Example
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after the failure of p4 and then p3

Election algorithms

Safety? Not if process IDs can 
be reused!

Liveness? Yes (if message 
delivery is reliable)

Figure adapted from Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5 ©  Pearson Education 2012 – Figure 15.8



Summary

• Election algorithms

– Seems like a simple problem, but non-trivial 
solutions are... non-trivial

• Want to read more about non-trivial election 
algorithms?
– http://www.sics.se/~ali/teaching/dalg/l06.ppt
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Next Lecture

Group communication
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