
Distributed Systems (5DV147)

Fall 2013

Indirect Communication

1

Why?

2

Point-to-point communication

• Participants need to exist at the same time

– Establish communication

• Participants need to know address of each other and
identities

• Not a good way to communicate with several
participants

3

Indirect Communication

Indirect communication

• Communication through an intermediary

– no direct coupling between the sender and the receiver(s)

• Space uncoupling – no need to know identity of receiver(s)
and vice versa

– participants can be replaced, updated, replicated, or
migrated

• Time uncoupling – independent lifetimes

– requires persistence in the communication channel

4

Indirect Communication

Good for …

• scenarios where users connect and disconnect very often
– Mobile environments, messaging services, forums

• event dissemination where receivers may be unknown and
change often
– RSS, events feeds in financial services

• scenarios with very large number of participants
– Google Ads system, Spotify

• Commonly used in cases when change is anticipated
– need to provide dependable services

5

Indirect Communication

… but there are also some disadvantages

• performance overhead introduced by adding a level of
indirection

– reliable message delivery, ordering (-) effect on scalability

• more difficult to manage because lack of direct coupling

• difficult to achieve end-to-end properties

– real time behavior

– security

6

Indirect Communication

Examples of Indirect communication

7

Commonalities

• Some processes write information into an
abstraction and some other reads from that
abstraction

8

a queue
a group
a channel

an array of memory
a space (whiteboard)

Communication-based

State-based

Potential to scale to very large systems
• Key is routing infrastructure

Need to maintain
consistent view
Of shared state

Examples of Indirect Communication

One-to-many
communication

Management
functionality

Maintain membership and a
mechanism to deal with failure
of member(s)

9

p1

p2 p3 p4

p5

group_id

p6 join(group_id)

send(m, group_id)

Group communication
Examples of Indirect Communication

Message queue systems

Message queues offer a point-to-point service in which
producer processes send messages to a specified
queue and consumer processes receive messages from
the queue or are notified of message arrivals.

10

Examples of Indirect Communication

11

Programming model

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 6.14

blocking

non-blocking
(polling)

notify operation

Styles for receiving messages:

FIFO or priority based Select messages
based on properties

Examples of Indirect Communication

Tuple space systems (generative communication)

Processes place items of structure data (tuples) and
other processes can read or remove the tuples by
specifying patterns of interest not an address. The
tuple space is persistent, readers and writers do not
need to exist at the same time.

12

Examples of Indirect Communication

13

Programming model

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 6.20

read and take block
until there is a
matching tuple in the
space

tuples are immutable

A tuple specification includes the number of fields and the required values or types of the fields

Examples of Indirect Communication

Distributed shared memory systems

Provides an abstraction to sharing data between
processes that do not share physical memory.
Programmers operate as if they were in their own local
address spaces. The infrastructure must ensure
timeliness, synchronization, and consistency of data.

14

Examples of Indirect Communication

15Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 6.19

Individual shared data
items can be accessed
directly

Underlying runtime
system ensures that
processes executing at
different computers
observe the updates
made by one another

Examples of Indirect Communication

Publish-subscribe systems
(distributed event-based systems)

16

A large number of publishers (producers) publish
structured events to an event service and a large
number of subscribers (consumers) express
interest in particular events through
subscriptions which can be arbitrary patterns
over the structured events.

17

Pub/Sub

Applications

• Financial information systems
• Live feeds of real-time data

– RSS feeds

• Cooperative working
– Events of shared interests

• Ubiquitous computing
– Location services

• Monitoring applications
– Network monitoring, internet of things

18

Pub/Sub

19

Programming model

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 6.8

unsubscribe(t1)

unadvertise(t1)

Pub/Sub

Subscription models – from course to fine grain filters

• Channel based: only physical channel
• Topic (subject) based: fields and one is the topic, can build

hierarchies
• Content based: queries over range of fields
• Type based: types of events, matching over types or sub-

types
• Objects of interest: focus on changes in state of objects
• Context based: associate events to locations
• Complex event processing: “inform me if A happens

concurrently to B but not to C”
20

Pub/Sub

Main concern

• Deliver events efficiently to all subscribers that have
filters that match the events

– Security

– Scalability

– Failure handling

– Quality of Service (QoS)

21

Pub/Sub

• Tradeoffs:
• Latency/reliability
• Ease in implementation /

expressive power to specify
events of interest

THE HIDDEN PUB/SUB OF SPOTIFY

V. Setty, G. Kreitz, R. Vitenberg, M. van Steen, G. Urdaneta, and S. Gimåker

In Proceedings of the 7th ACM international conference on Distributed event-based systems (DEBS '13).
ACM, New York, NY, USA, 231-240, 2013.

22

Some details

• End-to-end architecture to support social interaction
• Topic-based subscriptions
• Hybrid engine

– Relay events to online users in real time
– Store and forward selected events to offline users

• DHT based overlay
– 3 sites: Stockholm Sweden, London UK, Ashburn USA

• Design to scale
– Stores approx., 600 million subscriptions at any given time
– Matches billions of publication events every day

23

Spotify Pub/Sub

24

Desktop client

Push notification

Spotify Pub/Sub

Topic-based subscription
subscription(user_name, topic_name)

• Types of topics

– Friends (Spotify + Facebook): FB friends who are
Spotify users and by sharing music

– Playlists (URI): other users playlists (updates),
“Collaborative” playlists or only modifiable by creator

– Artists pages (follow artist): new albums or news
related to artist

25

Spotify Pub/Sub

Publication events

• All events delivered in real time (best effort and
guaranteed delivery) to online users

• Some notifications are sent by email to retrieve in the
future

• Example, new album from famous artist added
– Instant notification sent to online followers
– Email notification to offline followers
– Event persisted so that (new) followers can retrieve it in

the future (e.g., from another device)

26

Spotify Pub/Sub

Publication events

• Friend feed

– Event notification to all friends following user

• Play a track, create or modify playlist, add a
favorite(artist, track, album)

• Publish event on Facebook wall (optional)

27

Spotify Pub/Sub

Publication events

• Playlist updates

– Event notifications when

• A playlist is modified (adding or removing track,
renaming playlist) via friend feed

– Synchronize playlist across all devices of all
subscribers of the playlist

28

Spotify Pub/Sub

Publication events

• Artist pages

– Notification sent to followers of artist when

• New album added in Spotify

• Playlist created by artist

29

Spotify Pub/Sub

Publish-subscribe Architecture

30

Architecture for supporting
social interaction

Latency/Scalabilty tradeoff

3 Event flow paths :

1. Real time to online clients

• No persistence, best effort, low
latency

2. Persisted to online clients

• Critical publications Persistent,
Reliable delivery, at least once
across devices

3. Persistent to offline clients

• Clients come only pull
notifications with a timestamp

31

1 2

3

Spotify Pub/Sub

Publishers and Subscribers

Access Points

• Interface to clients

• Subscription to pub/sub system

• Publications to clients

Subscribers

• Clients

• Subscription:

user_name, service_URI

1. To Pub/Sub Engine

2. To Notification Module

Publishers

• Presence Service

• Playlist Service

• Social Service

• Artist Monitoring Service

32

1

2

Spotify Pub/Sub

4
Notifications …

Notification module

1. Receives publication events

2. Classifies events

3. Delivers events to clients

4. Pull requests (client connects)

Notification types

• In-client (guaranteed delivery)

• Push (mobile devices)

• Email

Even classification (Rule Engine)

• Online status of user

• Client device type

• User subscription preferences

33

1 2

3

Event Persistence
• Reliability
• Offline delivery
• Future retrieval
• Multiple clients delivery

Spotify Pub/Sub

How do the topics look like?

34

Hermes, protocol internal to Spotify

Spotify Pub/Sub

Publish-Subscribe Engine

Aggregators

• Aggregate subscriptions

• Hash subscriptions to brokers

• Deliver publications

DHT overlay (key subscription)

1. Manage subscriptions

2. Matches publications

3. Deliver notifications to
aggregators

4. Forwards publications across sites

5. Load balancing

• Scale in-memory storage of
over 600 million
subscriptions

35

1

2

3

4

One-to-one correspondence of brokers between sites
• Forwarding and replication of subscriptions
• Forwarding of publications

Spotify Pub/Sub

Summary

36

• Indirect communication uses an intermediary and
hence have no direct coupling between sender
and receiver(s)

• Space uncoupling and time uncoupling
• Strategies:

– Group communication
– Message queues
– Distributed shared-memory
– Tuple spaces
– Publish-subscribe systems

37

Indirect Communication

• Publish-subscribe systems
– Programming model

– Subscription models (filters)

– Main concern

– Tradeoffs

• Spotify publish-subscribe system
– When it is used

– How it is designed

38

Indirect Communication

Next Lecture

Time and global states

39

