
Distributed Systems
Performance

2013-11-18

Cristian Klein, Ewnetu Bayuh
Department of Computing Science

Umeå University

2013-11-18 Distributed computing: performance 1

2013-11-18 Distributed computing: performance 2

Outline

•  Why do performance evaluation?
•  Performance metrics
•  System
•  Workloads
•  Analytic models

Instead of introduction

“Amazon found every 100ms of
latency cost them 1% in sales”

“Bing found that a 2 second slowdown
changed queries/user by -1.8%”

“Diablo III launch overwhelms
Blizzard servers”

2013-11-18 Distributed computing: performance 3

Why understand performance?

•  To make users happy
•  To provision computing resources

–  Manually
–  Auto-scaling à la Clouds

•  To detect faulty components
–  Limplock: some component is sloooow

•  Auto-tuning
–  System has some knobs
–  How to auto-adjust those for peak

performance
–  E.g., number of worker threads

2013-11-18 Distributed computing: performance 4

Questions to ask?

•  What do we want to improve?
•  How do we measure that?
•  In what conditions?

•  Metrics
•  System
•  Workload

2013-11-18 Distributed computing: performance 5

Metrics

Request = message sent to a process, needing processing

•  Response time (latency)
–  Amount of time to serve a request
–  End-to-end latency (includes e.g., network latency)

•  Throughput
–  Number of requests per time interval

•  Utilization
–  Percentage of time the system is busy serving requests

2013-11-18 Distributed computing: performance 6

system

throughput

latency

requests

utilization replies

Metrics (cont.)

•  A lot of noise
–  Requests of different nature
–  OS noise
–  Caching, etc.

•  Do statistics over some interval (1 second)
–  Average, minimum, maximum
–  Distribution

2013-11-18 Distributed computing: performance 7

Latency (1/2)
Operation Latency (ns)
L1 cache reference 0.5
Branch mispredict 5
L2 cache reference 7
Mutex lock/unlock 25
Main memory reference 100
Compress 1K bytes with Zippy 3,000
Send 2K bytes over 1 Gbps network 20,000
Read 1 MB sequentially from memory 250,000
Round trip within same datacenter 500,000
Disk seek 10,000,000
Read 1 MB sequentially from disk 20,000,000
Send packet CA->Netherlands->CA 150,000,000

2013-11-18 Distributed computing: performance 8

Latency numbers every programmer should know, Jeff Dean
(http://research.google.com/people/jeff/)

Latency (2/2)

•  Average latency
•  Tail of distribution

–  95th percentile
–  99th percentile
–  Maximum

2013-11-18 Distributed computing: performance 9

latency

frequency
(# requests)

tail

Throughput

•  Number of request per second
•  Related to latency, but not the

same due to
– Pipelining
– Parallelism

2013-11-18 Distributed computing: performance 10

system

throughput

latency

requests

Utilization

•  Percentage of time the system was
busy serving requests

•  Examples:
– 60% CPU utilization
– 100% disk utilization

•  Indication of spare capacity
•  Spot bottlenecks

2013-11-18 Distributed computing: performance 11

Cold vs. warm

•  Cold
–  System just booted
–  Caches are empty

•  E.g., database read from disk instead of
memory

–  System did not adapt to workload
•  E.g., processes need to be fork()-ed

•  Warm
–  System ran for some time
–  Filled caches, adapted to workload
–  Generally faster than cold

2013-11-18 Distributed computing: performance 12

Transient- vs. steady-state

•  Transient-state
–  Some parameters just changed

•  E.g., number of users, distribution of requests, number
of CPUs, …

–  System needs time to adapt
•  E.g., refill caches, create/destroy processes

•  Steady-state
–  Parameters do not change
–  System adapted to peak-performance
–  Generally faster than transient-state

2013-11-18 Distributed computing: performance 13

time

metric

Workload: closed vs. open

2013-11-18 Distributed computing: performance 14
Bianca Schroeder et al, Open versus closed: a cautionary tale, NSDI'06

Workloads: distribution of
requests

•  E.g., Video sharing website
(YouTube)

•  Some videos are more popular
•  Cache them in memory

–  Improves performance
•  Testing the system with a uniform

distribution would hide any
potential improvements

2013-11-18 Distributed computing: performance 15

Queuing theory

•  Analytic formula for metrics
– Assumes a certain model (i.e., a

simplification of the actual system)
•  Helpful to bridge theory with

practice
– Either the model is too simple
– Or you have a performance bug in your

code

2013-11-18 Distributed computing: performance 16

M/M/1 queue

•  λ – arrival rate [requests / s]
•  µ – service rate [requests / s]

•  Utilization

•  Response time

•  What if µ < λ?
2013-11-18 Distributed computing: performance 17

t = 1
µ −λ

ρ =
λ
µ

M/M/1 queue (cont.)

2013-11-18 Distributed computing: performance 18

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

p
on

se
 t

im
e

(t
)

Utilization (ρ)

1 CPU

M/M/c queue
•  c concurrent “servers” (e.g., CPUs)

•  Utilization

2013-11-18 Distributed computing: performance 19

ρ =
cλ
µ

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1

R
es

p
on

se
 t

im
e

(t
)

Utilization (ρ)

1 CPU

2 CPUs

4 CPUs

Summary

•  Why do performance evaluation?
– Make users happy, provisioning, etc.

•  Metrics
– Response time, throughput, utilization

•  System issues
– Cold vs. hot, transient vs. steady

•  Workload
– Closed vs open, distribution of requests

•  Queuing theory
– M/M/c queues

2013-11-18 Distributed computing: performance 20

“In theory, …

•  theory and practice are the same.
In practice, they are not.”

•  Due to
– Caching effects
– Context switches
– OS noise
– Lock contention

•  We need to measure!

2013-11-18 Distributed computing: performance 21

