
Distributed Systems (5DV147)

Fall 2013

Fundamentals

1

…basics

2

Single process

3

- Steps are strictly sequential

- Program behavior &
variables’ state determined
by sequence of operations

int i;

i=i+1;

…

1 CPU

1 memory

basics

Distributed processes

4

basics

“A distributed system is one in which
components located at networked

computers communicate and
coordinate their actions only by

passing messages.”
Coulouris, Dollimore, Kindberg, and Blair, 2012

5

6

Definition of steps of each
process including transmission
of messages between processes
(computation, send, receive)

int i;

i=i+1;

send(i,p2);

…

int a;

…

receive(p1,a);

…

p1 p2

State is private and hidden

Can’t predict the rate at which
each process executes nor the
timing of transmissions

Progress depends on internal
local state and of messages
received

basics

Impossible to describe all states of a
distributed algorithm because of failure of
any of the processes or of message
transmissions

7

basics

Models

8

Why models?
– to abstract underlying properties that are common to a

large range of systems so that it enables to distinguish the
fundamental from the accessory

– to make explicit all relevant assumptions about the system

– to discover common design problems

– to prevent reinvent the wheel for every minor variant of
the problem

A model abstracts away the key components and the way
they interact

9

Models

Message-passing model

10

Models

Characteristics:

• Synchrony of the system

• Type of communication network

– point-to-point or broadcast channel

• Model of process and communication failures
that may occur

11

Models

Synchronous systems

12

Models

• There is a known upper bound on the time required
by any process to execute a step

• Every process has a clock with known bound rate of
drift with respect to real time

• There is a known bound on message delay – time to
send, transport, and receive a message over a link

(Hadzilacos and Toueg, 1994)

13

Models

Asynchronous systems

14

Models

No timing assumptions, in particular on the
maximum message delay, clock drift, or the time
needed to execute a step

(Hadzilacos and Toueg, 1994)

15

Models

Attractive because of:

• Simple semantics

• Applications are easier to port

• Variable or unexpected workloads are sources of
asynchrony

• Processes share resources and communications
channels share the network

16

Models

Point-to-point networks

17

Models

18

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 2.14

message delays or message loss

can fail, be slow, or produce incorrect output

Two assumptions:

1. If p sends a message m to q then q eventually
receives m

2. Every process executes an infinite sequence of steps

Models

Failure model

19

“A distributed system is one in
which the failure of computer
you didn't even know existed

can render your own computer
unusable.”

Leslie Lamport, 1987

20

Why computer systems fail?
• Hardware reliability

– Dominant until late in the 1980s
– Minor component of overall reliability concerns
– Not so for mechanical devices, e.g., networks or disks

• Software reliability
– Software bugs account for a substantial fraction of unplanned

downtime (25-35%)
• Bohrbugs – easily localized and reproducible
• Heisenbug – symptoms of other bugs that don’t cause an immediate

crash (extremely hard to fix, also known as transient bugs)

• Planned maintenance and environmental factors
21

Failure model

Processes and communication channels may
fail, i.e., deviation from correct behavior.

The failure model defines ways in which
failures may occur in order to understand the
effects of failures.

22

Failure model

Omission failures

23

Process or communication channel fails to
do what it is supposed to do.

Failure model

Process Omission failures:

24

1. Crash
2. Fail-stop
3. Send-omission
4. Receive-omission

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 2.14

Failure model

Channel Omission failures:

25

m is inserted into p’s outgoing message buffer but
m is not transported into q’s incoming message
buffer

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 2.14

Failure model

Timing failures

26

(only for synchronous systems)

Failure model

27

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 2.11

• Omission failures

(asynchronous networks)

• Timing failures

(synchronous networks)

Benign failures

Failure model

Arbitrary failures

28

(Byzantine or malicious failures)

Failure model

• Any type of error may occur

• If the sequence of steps executed by a process
deviates arbitrarily from what it should do,
e.g., change its state arbitrarily or send a
message that it was not supposed to send

• In communication channels messages may be
corrupted, duplicated, or non-existent
messages be delivered

29

Failure model

Why do we want to know the failure
characteristics of a component?

– We can mask the failure of the components on
which it depends by either hiding it or converting
it into a more acceptable type of failure

30

Arbitrary failure Omission failure
checksums

Failure model

Failure masking by Redundancy

31

• Information redundancy

• Time redundancy

• Physical redundancy

Failure model

Reliability of one-to-one communication:

32

Validity: any message in the outgoing buffer is eventually
delivered to the incoming message buffer

Integrity: The message received is identical to the one
sent, and no messages are delivered twice

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 2.14

Failure model

Reliability of broadcast communication:

33

Reliable broadcast: all processes agree on
messages delivered despite failures

Consensus: all processes reach a common decision
depending on initial inputs, despite failures

p

q1

q2

q3

m1(a=1) What happens if p fails
in the middle?

Failure model

How would you design a reliable
broadcast protocol?

34

Failure model

End-to-end reliability or hop-by-hop?

35

End-to-end: only between source process and target
process of a message

Hop-by-hop: reliability at every intermediate node

Hop-by-hop reliability increases complexity and
reduces performance, and end-to-end reliability is still
required.

Failure model

http://groups.csail.mit.edu/ana/Publications/PubPDFs/End-to-End%20Arguments%20in%20System%20Design.pdf

End-To-End Arguments in System Design
J. H. SALTZER, D. P. REED, and D. D. CLARK
ACM Transactions on Computer Systems,
Vol. 2, No. 4, November 1984, Pages 277-288

http://groups.csail.mit.edu/ana/Publications/PubPDFs/End-to-End Arguments in System Design.pdf

Summary

36

• Difference between single process and
distributed algorithms

• Message-passing model
– Synchrony of the system

– Type of communication network

– Model of process and communication failures that
may occur

• Differences between synchronous and
asynchronous systems

37

summary

38

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send, but the message is not put
in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

Figure adapted rom Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – based on Figure 2.11 and Figure 2.15

Failure Model summary

• Failure masking

– Failure masking by redundancy

• Reliable point-to-point and broadcast
communication

• End-to-end arguments in system design

39

summary

Communication paradigms

40

Inter-process communication
&

remote invocation

41

Communication paradigms

Low level support for communication

between processes

message passing

socket programming

multicast communication

42

Inter-process communication
Communication paradigms

Two-way exchange between

communication entities

calling of a remote operation, procedure

or method

43

Remote invocation
Communication paradigms

Request-reply protocols – pairwise exchange of
messages from client to server

Remote procedure calls – procedures in
processes on remote computers can be called as
if they were in the local address space

Remote method invocation – a calling object
can invoke a method in a remote object

44

Communication paradigms

Communicating entities and
communication paradigms

45Figure adapted from Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012 – Figure 2.2

Communication paradigms

Next Lecture

Security

46

