
Distributed Systems (5DV147)

Fall 2013

Introduction

1

about the course

2

Staff presentation

3

about the course

Francisco Hernandez-Rodriguez
francisco@cs.umu.se

4

staff

Ewnetu Bayuh Lakew
ewnetu@cs.umu.se

5

staff

Cristian Klein
cklein@cs.umu.se

6

staff

• Questions about the assignment?
– Send to 5dv147-staff@cs.umu.se

• Questions about lectures?
– Send email to the appropriate teacher!

• Ewentu’s and Cristian’s office hours: Monday,
Tuesdays, and Thursday between 14:00 and
15:00, MIT-huset, D447 and D444
– Priority / FIFO queue

7

about the course

Course presentation

8

about the course

9

The goal of this course is to introduce basic
knowledge to understand how modern
distributed systems operate. Our focus will be
on distributed algorithms and on practical
aspects that should be considered when
designing and implementing real systems.

about the course

10

Although students will need to learn various
distributed algorithms, this is not only a
theoretical course. Thus, computer based
assignments will be used extensively so that
students will gain practical experience designing
and implementing real systems.

about the course

11

About the book…

Distributed Systems, 5th ed. Coulouris,
Dollimore, Kindberg, and Blair,
Addison-Wesley/Pearson Education

1. Buy the book.

2. No, seriously. Buy it!

3. 5th edition

about the course

12

The course covers:

– Fundamental models of distributed systems

– System performance

– Replication, transactions, transparency, peer-to-
pear, consistency, coordination and
synchronization …

– Computer security in a broad perspective

about the course

13

Monday Thursday

(10 - 11) (11 - 12) (10 - 11) (11 - 12)

V45 (7 Nov) (1) Introduction to the course (2) Introduction to the course

V46 (11,14 Nov) (3) Fundamental models (4) Fundamental models (5) Security (6) Security

V47 (18,21 Nov) (7) System Performance

Lecture

(8) System Performance

Practical

(9) Indirect communication (10) Explanation Java RMI

V48 (25,28 Nov) (11) Logical time (12) Global states (13) Mutual exclusion (14) Elections

V49 (2,5 Dec) (15) Group communication (16) GCoM design (17) Consensus (18) Consensus

V50 (9,12 Dec) (19) Replication (20) Consistency (21) Cassandra Lecture (22) Cassandra practical

V51 (16,19 Dec) (23) Transactions (24) Distributed

transactions

(25) Peer-to-peer (26) Persistent GCom design

V2 (6,9 Jan) Hacking day (28) Hacking day (29) Course summary (30) Questions regarding third

project

about the course

14

What to learn?
• Book is dense with information

– See reading guide on web page but consider
it a guide not a guarantee

– Not an easy read
• Start now! You will be busy later...

• Understand the problems and solutions
– Learn the general ideas of algorithms and how/why they

work, not every minute step

• Definitions are very important

about the course

Lessons from last year

15

about the course

What was positive about the course and should be
retained?

• The course content as a whole

• The examples presented on the board

• The slide presentations

• The project assignment

16

lessons from last year

What can be improved?

• Faster feedback on the first deliverable of the project
• Teach lectures at a slower pace (talk slower)
• Give examples of distributed systems before having to design the

project
• Suggestions about the slides- avoid too much text and keep titles at

the top of each slide
• Present examples on message orderings: e.g. message ordering

such as causal is a bit difficult to understand theoretically
• It is a bit unclear what is expected from assignment one

17

lessons from last year

Do you think the programming assignments utilized or
build on the topics covered in the lectures?

• Most of the students answered that the practical
part is in line with the theory presented during
lectures. They claim that this is one of the best
course in doing this

• One student feels that the project gives too much
focus to message orderings

18

lessons from last year

This year

19

about the course

Learning outcomes

• Explain general properties, challenges, and characteristics of
distributed systems

• Explain the notions of causality and time in light of the design and
implementation of distributed systems

• Explain general distributed algorithms for synchronization and
concurrency, coordination, transactions, and replication

• Compare replication schemes with respect to performance,
availability, and consistency concerns

• Explain practical issues that need to be considered when
designing, implementing, and debugging distributed systems

20

this year

Skills and abilities

• Design, implement, and debug distributed systems

• Employ fundamental distributed algorithms to solve
problems that arise when engineering distributed systems

• Explain the inner mechanisms of current production
distributed systems

21

this year

Evaluation

22

this year

23

Credit points (7.5 ECTS)

– Theoretical part 50% of final grade

– Practical part 50% of final grade

– Both parts will be evaluated through

mandatory assignments

– Optional comprehensive examinations for

those that fail the theoretical part

– You need to score at least 50% of the points

on each part to pass the course

evaluation

24

Written assignments (WA) total 100 points

– Written assignment 1 – 20 points

– Written assignment 2 – 40 points

– Written assignment 3 – 40 points

evaluation

Programming projects (PP) total 100 points

– Java RMI – 10 points

– GCom – 60 points

– Persistent chat – 30 points

Final score = (WA + PP)/2
– Final score ≥ 80 5

– 65 ≤ Final score < 80 4

– 50 ≤ Final score < 65 3

– Final score < 50 U (Fail)

25

Written assignments

• Test handling of theoretical concepts
• To do at home – two working weeks
• Individually
• All normal rules apply

– Thou shall not cheat, …
http://www.student.umu.se/english/code-of-rules/
http://www8.cs.umu.se/information/hederskodex_eng.html

• Comprehensive examination if you failed to
obtain 50 points

evaluation

26

Programming projects
• Apply concepts from theory

• Vector clocks, group handling, message ordering, reliable
multicast, replication, …

• JavaRMI (just to get you started)
• GCom (group communication middleware)
• Persistent chat (a taste of a large system)
• No security, however
• Late submission policy

• Late submissions will be penalized by reducing 10% of the final
score for each late working day

• More specifics at the end of the lecture

evaluation

27

• Course evaluation

about the course

What is a distributed system?

28

“A distributed system is one in which
components located at networked

computers communicate and
coordinate their actions only by

passing messages.”
Coulouris, Dollimore, Kindberg, and Blair, 2012

29

“A distributed system is one in
which the failure of computer
you didn't even know existed

can render your own computer
unusable.”

Leslie Lamport, 1987

30

Why distributed systems?

31

32

why distributed systems ?

Finance and commerce eCommerce e.g. Amazon and eBay, PayPal, online banking and
trading

The information society Web information and search engines, ebooks, Wikipedia; social

networking: Facebook and MySpace.

Creative industries and entertainment online gaming, music and film in the home, user-generated
content, e.g. YouTube, Flickr

Healthcare health informatics, on online patient records, monitoring
patients

Education e-learning, virtual learning environments; distance learning

Transport and logistics GPS in route finding systems, map services: Google Maps,
Google Earth

Science The Grid as an enabling technology for collaboration between
scientists

Environmental management sensor technology to monitor earthquakes, floods or tsunamis

33 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 1.1 - Selected application domains and associated networked applications

why distributed systems?

why distributed systems?

Resource sharing

Cloud computing

http://opencompute.org/wp/wp-content/uploads/2011/07/Freedom-PRN1-02-1024x569.jpg
35

why distributed systems?

Distributed systems

36

Characteristics

37

Concurrency of components

http://en.wikipedia.org/wiki/Dining_philosophers_problem
38

Characteristics

Absence of shared clock
+ Absence of shared memory

Impossible to know the global state of
the system

39

Characteristics

Independent failures of components

40

Characteristics

Design challenges

41

Heterogeneity

Middleware & Virtualization

Image from: http://cyriacgeorge.files.wordpress.com/2012/05/big-endian-little-endian.jpg?w=500&h=250
42

Design challenges

43

• Distributed systems often utilize middleware to aid
development

• Offers layer of abstraction
• Extends upon traditional programming models:

– Local procedure call → Remote procedure call
– OOP → Remote Method Invocation
– Event-based programming model

Applications, Services

RMI, RPC

Request/Reply protocol
Marshalling, Unmarshalling

UDP, TCP

Middleware

Design challenges

Openness

Published interfaces and/or
according to standards

44

Design challenges

Security

authentication and authorization
denial of service attacks
security of mobile code

Server must be able to prove that something has been executed
Non repudiation: it should not be possible to claim that

something did not happen if it did
45

Design challenges

Scalability

Controlling the cost of physical resources

Controlling the performance loss

Preventing resources from running out

Avoid performance bottlenecks
46

Design challenges

47

0

200

400

600

800

1000

1200

01-12-04 01-12-05 01-12-06 01-12-07 01-12-08 01-12-09 01-12-10 01-12-11

in
 m

ill
io

n
s

Number of facebook users

users

1.01 billion — September 2012.

Design challenges

Failure handling

Detecting failures, masking failures,
tolerating failures, recovery from

failures, redundancy

Availability in the face of hardware faults
48

Design challenges

Transparency

Access, location, concurrency,
replication, failure, mobility,

performance, scaling

Users shouldn’t need to know!
49

Design challenges

Quality of Service (QoS)

Reliability, security, performance,
availability, adaptability, timeliness

guarantees

50

Design challenges

Distributed systems, a mess!

51

Availability Fault tolerant

Consistency

Security

Reliability

Low latency

Privacy

Scalability

53

Communication performance variations:
Latency (delay), bandwidth (throughput), jitter
(variation in time)

Clocks and timing: Clock drift

Interaction models: asynchronous, synchronous

Event ordering: Delays cause replies to arrive to

some process before the request

Failures: Distributed systems are much more

likely to fail unexpectedly due to e.g., lost
packets, bit errors, local failures, no response,
method does not exist, etc. …

If you can write stable programs
in spite of these difficulties,

you are a great programmer!

Projects

54

GCom

55

Projects

• Middleware for group communication
– Vector clocks
– Handling of group membership

• Dynamic groups

– Leader election
– (Reliable) Multicast communication
– Message ordering guarantees

• Causal ordering

– Debugging functionality
– Client chat application

• Theory from the second set of lectures
http://www8.cs.umu.se/kurser/5DV147/HT13/

• Presentation of working implementation

56

Projects

Rules and grading

57

Projects

• Solved in pairs – select your partner ASAP

• Bonus points

– Tree-based reliable multicast (20p bonus)

– Need at least 50 points on the written assignments
valid only for this year

58

Projects

Constraints

59

Projects

• May use any programming language and any tools
you like
– … as long as they don’t provide too much advantage

(check with us)

– We will only help with Java RMI and Python

You may absolutely not use plain sockets

• All normal rules apply
– Thou shall not cheat, …

http://www.student.umu.se/english/code-of-rules/

http://www8.cs.umu.se/information/hederskodex_eng.html

60

Projects

What do you need to turn in?

61

Projects

• Test application
– A chat client that shows the functionality of the system

• Debug application
– Used to demonstrate the correctness of your

implementation

These programs can be the same but make
the debug parts non-essential to use the
application, and they must be GUI
applications!

62

Projects

• Project plan – December 5 (Optional)

– Your interpretation of the assignment

– Requirement analysis

– Project and time plan

– Basic design of the system

63

Projects

• Report – December 23
– Describe your system

– … the usual

– More information when the text of the assignment
is posted

– Make something to be proud of!

One of your biggest projects during your time
here at CS

64

Projects

• Written test protocol to demonstrate your system
Two nodes – A,B

1. A sends message M1 to B

2. A sends message …

3. Message M1 is delayed on B

65

Projects

Persistent chat

66

Projects

• Make GCom persistent
– Clients can disconnect

• Retrieve messages sent during disconnected periods

– Save messages maintaining the ordering
• Causal ordering

– Use Cassandra for storing data
– Debugging functionality
– Fault tolerant

• Theory from the third set of lectures
http://www8.cs.umu.se/kurser/5DV147/HT13/

• Presentation of working implementation

67

Projects

Rules and grading

68

Projects

• Solved in pairs – same pairs as for GCom

• Bonus points

– Surprise us (10p bonus-subjective)

• Search functionality, statistical information, performance
evaluation, only display or highlight unread messages, …

– Need at least 50 points on the written assignments
valid only for this year

69

Projects

Constraints

70

Projects

• May use any programming language and any tools
you like
– … as long as they don’t provide too much advantage

(check with us)

– We will only help with Java RMI and Python

You may absolutely not use plain sockets

• All normal rules apply
– Thou shall not cheat, …

http://www.student.umu.se/english/code-of-rules/

http://www8.cs.umu.se/information/hederskodex_eng.html

71

Projects

What do you need to turn in?

72

Projects

• Test application
– A chat client that shows the functionality of the system

• Debug application
– Used to demonstrate the correctness of your

implementation

These programs can be the same but make
the debug parts non-essential to use the
application, and they must be GUI
applications!

73

Projects

• Project plan – December 17

– Your interpretation of the assignment

– Requirement analysis

– Project and time plan

– Basic design of the system

74

Projects

• Report – January 20

– Describe your system

– … the usual

– More information when the text of the assignment
is posted

– Make something to be proud of!

75

Projects

• Written test protocol to demonstrate your system
Two nodes – A,B,C

1. A sends message M1

2. A sends message …

3. B replies to message M1

4. C connects and receives messages

5. C replies to message M2

6. A disconnects

76

Projects

Good luck!

77

• Students have done this before and succeeded

– It is certainly not easy

– Hard work, big payoff

– All students that attempted the entire assignment
passed!

… remember

– Start on time

– Read the whole specification (it’s long but it helps)

78

Projects

Next Lecture

Fundamental properties of
distributed systems

79

