
UMEÅ UNIVERSITY, DEPARTMENT OF COMPUTING SCIENCE

Written Assignment 1 (20 points)

Distributed Systems - 5DV147

You need to complete and submit this assignment individually. Collaboration is permitted
only as described in the Guidelines for compulsory assignments and the Honor code. You
need to submit this assignment by November 29 at 13:00 (hard deadline). You can either
email your solution to us (5dv147-staff(at)cs.umu.se) or drop off your solution in the box
outside the department.

1 SECURITY (8 POINTS)

The Transport Layer Security (TLS) protocol is the most widely employed protocol to secure
communication on the Internet. However, it has become a victim of its own popularity and
many vulnerabilities have been found over time, either in the TLS specification itself, or
in an implementation of it. For example, during the lecture you saw that an early version
of the Netscape browser failed to properly initialize the pseudo-random number genera-
tor, which lead to the creation of predictable session keys. Such examples serve as a lesson
about how to design secure protocols and systems. As the saying goes, “those who fail to
learn from history are doomed to repeat it.”

Unfortunately, during the security lecture we have only been able to briefly cover how to
build secure distributed systems. Therefore, to further your knowledge, we now ask you to
document one vulnerability that was found in TLS or the way it was implemented. First,
choose a vulnerability of TLS. You can do this either by reading the Wikipedia1 article, or
searching through popular vulnerability databases2. Make sure you read in-depth, i.e., you

1https://en.wikipedia.org/wiki/Transport_Layer_Security#Attacks_against_
TLS.2FSSL

2http://cve.mitre.org/find/index.html

1

http://www8.cs.umu.se/information/RiktlinjerLabbar_eng.htm
http://www8.cs.umu.se/information/hederskodex_eng.html
https://en.wikipedia.org/wiki/Transport_Layer_Security#Attacks_against_TLS.2FSSL
http://cve.mitre.org/find/index.html
 https://en.wikipedia.org/wiki/Transport_Layer_Security#Attacks_against_TLS.2FSSL
 https://en.wikipedia.org/wiki/Transport_Layer_Security#Attacks_against_TLS.2FSSL
http://cve.mitre.org/find/index.html


might need to look up terms such as “replay attack” or “man-in-the-middle”, or dig deeper
into the RSA algorithm. Once you think you have enough information, write a report of
at least 1 page but no more than 2 pages (Times 12pt, 2cm-margin on all sides). You are
free to structure the report any way you feel fit, however, you should make sure that it is
as informative as possible. Write it for a person that has just attended the security lecture,
i.e., is familiar with security in general and the workings of TLS, but does not have in-depth
knowledge about building secure protocols. We would like to see the following issues cov-
ered:

• Some background and context (What part of TLS? What implementation? What was
it supposed to do?)

• How was the vulnerability discovered?

• What does the vulnerability allow? What basic attack (e.g., replay) is it based on?

• What is the potential impact? Can an exploit be easily made? What users are affected?

• How easy is it to remedy the vulnerability? Is there a temporary workaround? Does
one have to do a software update? Must the protocol be redesigned? Would this affect
compatibility with “old” systems?

• What would you recommend to prevent such a vulnerability in the future? What have
you learned by reading about this vulnerability?

As computing scientists, we realize that it is a lot more fun to write code instead of En-
glish. However, by having to write, instead of just read about a vulnerability, you not only
improve your English writing skills, but also your communication and synthesis skills in
general. Plus, as the saying goes, “you never really understand something unless you can
explain it”.

To check whether the report is informative enough, you may ask a colleague to read it and
see how much he/she learned out of it. Note, however, that the writing itself must be indi-
vidual.

2 PUBLISH-SUBSCRIBE SYSTEMS (8 POINTS)

Publish-subscribe systems, sometimes called distributed event-based systems, are used to
disseminate information (or events) to multiple recipients through an intermediary. In
these systems, a large number of publishers (producers) publish structured events to an
event service and a large number of subscribers (consumers) express interest in particular
events through subscriptions which can be arbitrary patterns over the structured events.

There are many examples of such systems. For example, if you want to fly to certain desti-
nation, let’s say Melbourne, you may register on certain services and get notified when the

2



ticket price drops below a point, let’s say 5K SEK. Another example that may be very famil-
iar to you is the Really Simple Syndication (RSS) that is used to publish information that is
frequently updated such as news feeds.

Let’s imagine that you are hired to design a basic financial trading system like the one pre-
sented in section 1.2.3 of the course book, you can see the figure illustrating the system be-
low. You quickly realized that this type of system perfectly matches the publish-subscribe
pattern learned in class and chose to designed the system according to that pattern. We
now ask you to show us your design.

In your design it is important to cover at least the following aspects:

• The architecture, centralized or decentralized?

• Types of subscription filters to use (channel-based, topic-based, content-based, or
type-based), and how would the system be able to filter events accordingly.

• How publishers and subscribers would register to the system and how would that
information be maintained.

• How events are sent from publishers to subscribers.

• How to assure a level of confidentiality so that subscribers are only able to see events
sent to them.

• How would you make the system tolerant to crash failures?

Figure 2.1: An example financial trading system, from [DS5]

[DS5] Coulouris G., Dollimore J., Kindberg T. and Blair G.: Distributed Systems - Concept
and Design. Fifth edition. Addison Wesley (2005)

3 SYSTEM PERFORMANCE (4 POINTS)

As we saw in class, high level requests such as loading a web page, fetching a data file from
the network, or querying a database, depend on a number of low level operations. Each

3



Operation Latency (ns)
L1 cache reference 0.5
Branch mis-predict 5
L2 cache reference 7
Mutex lock/unlock 25
Main memory reference 100
Compress 1K bytes with Zippy 3,000
Send 2K bytes over 1 Gbps network 20,000
Read 1 MB sequentially from memory 250,000
Round trip within same datacenter 500,000
Disk seek 10,000,000
Read 1 MB sequentially from disk 20,000,000
Send packet CA->Netherlands->CA 150,000,000

Table 3.1: Latency numbers every programmer should know.

low level operation adds a little bit of latency to the overall high level request latency.

When you program web applications, it is very important that requests are served with very
short latencies . If you were to design an on-line store, you would lose many customers if it
takes a minute to check whether certain product is available. Thus, it is very important for
you to understand where the time is spent so that you can optimize at the right places.

Taking into account the latencies presented in class3 and reproduced above4, propose 3
strategies that you could use to reduce latency in a web application that you (theoretically)
have developed.

3From “Latency numbers every programmer should know”, Jeff Dean
4You can also take a look at http://www.eecs.berkeley.edu/~rcs/research/interactive_
latency.html if you want to know how those numbers have varied in the past (and into the future).

4

http://research.google.com/people/jeff
http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html
http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html

	Security (8 points)
	Publish-Subscribe Systems (8 points)
	System Performance (4 points)

