
Scrabble!

• The classic word game, called Alfapet in Swedish.

• Invented by Alfred Mosher Butts in 1938.

Simple enough

A simple enough game:

• 2–4 players, each with 7 letter
tiles.

• Players take turns placing 1–7
tiles on the 15x15 board s.t.:

• The tiles placed form a
horizontal and/or vertical line.

• The line is “dense”, no gaps.
• All words (gap-free lines)

formed on the board are real
English words.

• Score the words formed (points
summed on all words created,
modified by bonus squares).

• Turn ends by drawing new tiles.

The problem

What is the problem?

1 What is my highest-scoring next move?

2 What is my best next move ignoring opponents?

3 What are my best next k moves, given n tiles ignoring
opponents?

4 What is my best move considering the opponent?

This gets very difficult. What can we reasonably do?

Simplifying the simplest problem

• Problem 1 is simplest. This ignores the opponent, the future
state of the board and the tiles left.

• Hopefully these can be reintroduced to a successful solution?

• Bonus tiles and letter scores are also complicated, we can try
generalising these away:

fscore(Board,Word,Placement)→ N
• Assume that fscore is efficient (it is!)
• But “forget” how it works to simplify the definition.

• Ignoring the future of the board makes its 2D-ness ignorable:

H A

B E E

N

D

=⇒ B E E *

B * *

* * H A

* E N D

* N *

H E * *

D

A *

Breaking the board

H A

B E E

N

D

What kind of *-constraints are there?

c1 c2 H A

• Single letters and empty positions are trivial constraints.

• c1 says “Any letter that forms a word when followed by the
letter b” (no such letter exists in English).

• c2 says “Any letter which forms a word when followed by the
word end” (b, f, l, m, p, r, s, or t).

• Also, constraints saying “Any letter α such that w and w ′

form a word when concatenated as wαw ′.” are possible
• w and w ′ are either (non-word) letters or words
• For example, if be and ate are placed with a blank in between

them the letter r may be placed to form the word berate.

Where are we?

The problem has three parts: (B,T ,D) where

• B, the board, is a set of constraint sequences
• 30 sequences of length 15 in classic scrabble

• T is a multi-set of letters from {a, . . . , z}
• 7 letters in classic scrabble

• D is a set of allowed words
• More than 600,000 words in the Oxford English dictionary

So, |D| � |B|+ |T |. A problem? Not really, D is constant.

Moves change B and T continuously, whereas the OED remains
the same for decades at a time =⇒ we can do all the preprocessing
we want on D (good!) but need to be careful with the complexity
in D in practice (bad!)

Constraints again

Let us properly define the possible constraints. Let Σ be the
alphabet and D the dictionary (D ⊂ Σ∗) in the following.

Definition (Prefix constraint)

If w ∈ D ∪ Σ and α ∈ Σ let α ∈ cprefix(w ,D) iff αw ∈ D.

Definition (Suffix constraint)

If w ∈ D ∪ Σ and α ∈ Σ let α ∈ csuffix(w ,D) iff wα ∈ D.

Definition (Infix constraint)

If w ∈ D ∪ Σ and α ∈ Σ let α ∈ cinfix(w ,w ′,D) iff wαw ′ ∈ D.

Not so interesting: cblank = Σ, cletter(α) = α.

Precomputation!

Since D seldom changes we can just precompute the contraints!

• Construct a hash-map cprefix,D which for all w ∈ D gives
cprefix,D(w) = cprefix(D,w).

• Same for suffix.

• Almost the same for infix. Construct

cinfix,D(w ,w ′) = cinfix(D,w ,w ′) iff cinfix(D,w ,w ′) 6= ∅

Leave other (w ,w ′) unmapped.
• All pairs would give a map of size |D|2.
• Statistical experiments suggest that merely tens of thousands

of “valid” pairs exist in English.
• Swedish and German might be worse?

Getting rid of the board

With dictionary precomputations done in advance taking the board

H A

B E E

N

D

it is not hard to construct an efficient algorithm to translate each
row and column into a sequence of letters and sets of letters:

(∅, {b, f , l ,m, r , s, t, v ,w}, h, a), (Σ, b, {a, i , o}, {a, i}),
(b, e, e, {d , h,m, n, s, t, x , y}), ({a}, e, n, d)),
({e, y}, n, {m, n, p, r , s,w , x , y},Σ), (h, e, {o, u}, {o}),
(Σ, d ,Σ,Σ), (a, {f , n, p, r , s, t},Σ,Σ)

Finally, formalisation

With a fixed dictionary D, alphabet Σ, and scoring function fscore:

Definition (Scrabble problem instance)

A Scrabble problem instance is a tuple (B,T) where T is a finite
multi-set over Σ and B is a finite subset of (Σ ∪ P(Σ))∗.

Definition (Placement)

A valid placement for a Scrabble problem instance (B,T) is a
tuple (α1 · · ·αn, β1 · · ·βm, i) ∈ D × B × N such that

• n + i < m, and

• βi−1 and βn+i+1 are both sets if they exist, and

• αj = βi+j or αj ∈ βi+j for all j ∈ {1, . . . , n}, and

• letting P = {αj | j ∈ {1, . . . , n}, βi+j is a set}, P ⊆ T and
P 6= ∅.

Solutions and algorithms?

Definition (Scrabble problem solution)

For a Scrabble problem instance (B,T) a placement (w , b, i) is a
solution if it maximises fscore.

We need to enumerate all possible placements (otherwise we need
to analyse fscore). There shouldn’t be that many (?)

1 Set vmax = 0.

2 Take the next b = β1 · · ·βm ∈ B.

3 Intersect each set βj with T .

4 If some set in b is empty, go to 2.

5 For each word w in D which matches b: �DANGER�.
• Validate that (w , b, i) is a placement for some i .
• Score (w , b, i) using fscore, set v to the score.
• If v > vmax let vmax = v .

6 Go to 2.

Complexity and problems

• Steps 1–4 and 6 are small stuff, O(|T |
∑
{|b| | b ∈ B}).

• A naive implementation of step 5 is trouble. |B||D| attempts
to match words to constraints.

• For now, assume few words match. Quick way to find them?

My first approach: hash-map indexing letter-pairs.

Dictionary lookup with letter pair indexing

Looking at this subproblem:

Definition

Given b ∈ (Σ ∪ P(Σ))∗ as input does there exist a word w ∈ D
such that w matches b in the sense of a placement?

Complexity in terms of |D| still considered, but preprocessing of D
is allowed.
Construct a hash-map h : Σ× N× Σ→ P(D), which, for
α1, α2 ∈ Σ and i ∈ N gives W = h(α1, i , α2) where W is all words
which contain the letter α1 and α2 at positions i steps apart. That
is,

h(x , 5, l) = {anxiously, expertly, inexorably,maximally, obnoxiously,
paradoxically, textually, textural}

Pretty large but not difficult pre-processing.

The ispell american-english dictionary of 98,569 yields a map with 2,996,606 words.

A key maps to an average of 492.54 words.

Dictionary lookup with letter pair indexing (cont’d)

Matching (Σ, b, {a, i , o}, {a, i}) can then be speeded up (?) by
matching it to the words in

(h(b, 0, a) ∪ h(b, 0, i) ∪ h(b, 0, o)) ∩ (h(b, 1, a) ∪ h(b, 1, i))

instead of all of D (408 words in ispell american-english).

This depends on the structure of English words for speed. Hard to
analyse. For other languages maybe h will map to gigantic classes?

Constructing the B-automaton

If we avoid relying on the structure of D then scanning may be
necessary. How do we do scanning the best?

We can construct a deterministic finite automaton that attempts
to match all of B at once!

