Scrabble!

- The classic word game, called Alfapet in Swedish.
- Invented by Alfred Mosher Butts in 1938.

Simple enough

A simple enough game:

- 2-4 players, each with 7 letter tiles.
- Players take turns placing 1-7 tiles on the 15×15 board s.t.:
- The tiles placed form a horizontal and/or vertical line.
- The line is "dense", no gaps.
- All words (gap-free lines) formed on the board are real English words.
- Score the words formed (points summed on all words created, modified by bonus squares).
- Turn ends by drawing new tiles.

What is the problem?
(1) What is my highest-scoring next move?
(2) What is my best next move ignoring opponents?
(3) What are my best next k moves, given n tiles ignoring opponents?
(4) What is my best move considering the opponent?

This gets very difficult. What can we reasonably do?

Simplifying the simplest problem

- Problem 1 is simplest. This ignores the opponent, the future state of the board and the tiles left.
- Hopefully these can be reintroduced to a successful solution?
- Bonus tiles and letter scores are also complicated, we can try generalising these away:

$$
f_{\text {score }}(\text { Board, Word, Placement }) \rightarrow \mathbb{N}
$$

- Assume that $f_{\text {score }}$ is efficient (it is!)
- But "forget" how it works to simplify the definition.
- Ignoring the future of the board makes its 2D-ness ignorable:

Breaking the board

What kind of *-constraints are there?

c_{1}	c_{2}	H	A

		H	A
B	E	E	
	N		
	D		

- Single letters and empty positions are trivial constraints.
- c_{1} says "Any letter that forms a word when followed by the letter b" (no such letter exists in English).
- c_{2} says "Any letter which forms a word when followed by the word end" (b, f, l, m, p, r, s, or t).
- Also, constraints saying "Any letter α such that w and w^{\prime} form a word when concatenated as $w \alpha w^{\prime}$." are possible
- w and w^{\prime} are either (non-word) letters or words
- For example, if be and ate are placed with a blank in between them the letter r may be placed to form the word berate.

Where are we?

The problem has three parts: (B, T, D) where

- B, the board, is a set of constraint sequences
- 30 sequences of length 15 in classic scrabble
- T is a multi-set of letters from $\{a, \ldots, z\}$
- 7 letters in classic scrabble
- D is a set of allowed words
- More than 600,000 words in the Oxford English dictionary

So, $|D| \gg|B|+|T|$. A problem? Not really, D is constant.
Moves change B and T continuously, whereas the OED remains the same for decades at a time \Longrightarrow we can do all the preprocessing we want on D (good!) but need to be careful with the complexity in D in practice (bad!)

Constraints again

Let us properly define the possible constraints. Let Σ be the alphabet and D the dictionary $\left(D \subset \Sigma^{*}\right)$ in the following.

```
Definition (Prefix constraint)
If \(w \in D \cup \Sigma\) and \(\alpha \in \Sigma\) let \(\alpha \in c_{\text {prefix }}(w, D)\) iff \(\alpha w \in D\).
```

Definition (Suffix constraint)
If $w \in D \cup \Sigma$ and $\alpha \in \Sigma$ let $\alpha \in c_{\text {suffix }}(w, D)$ iff $w \alpha \in D$.

Definition (Infix constraint)
If $w \in D \cup \Sigma$ and $\alpha \in \Sigma$ let $\alpha \in c_{\text {infix }}\left(w, w^{\prime}, D\right)$ iff $w \alpha w^{\prime} \in D$.
Not so interesting: $c_{b l a n k}=\Sigma, c_{\text {letter }(\alpha)}=\alpha$.

Precomputation!

Since D seldom changes we can just precompute the contraints!

- Construct a hash-map $c_{\text {prefix, } D}$ which for all $w \in D$ gives $c_{\text {prefix }, D}(w)=c_{\text {prefix }}(D, w)$.
- Same for suffix.
- Almost the same for infix. Construct

$$
c_{\text {infix }, D}\left(w, w^{\prime}\right)=c_{\text {infix }}\left(D, w, w^{\prime}\right) \text { iff } c_{\text {infix }}\left(D, w, w^{\prime}\right) \neq \emptyset
$$

Leave other (w, w^{\prime}) unmapped.

- All pairs would give a map of size $|D|^{2}$.
- Statistical experiments suggest that merely tens of thousands of "valid" pairs exist in English.
- Swedish and German might be worse?

Getting rid of the board

With dictionary precomputations done in advance taking the board

		H	A
B	E	E	
	N		
	D		

it is not hard to construct an efficient algorithm to translate each row and column into a sequence of letters and sets of letters:
$(\emptyset,\{b, f, I, m, r, s, t, v, w\}, h, a)$,
$(\Sigma, b,\{a, i, o\},\{a, i\})$,
(b,e,e, $\{d, h, m, n, s, t, x, y\})$,
($\{a\}, e, n, d)$),
$(\{e, y\}, n,\{m, n, p, r, s, w, x, y\}, \Sigma)$,
$(h, e,\{o, u\},\{o\})$,
$(\Sigma, d, \Sigma, \Sigma)$,
(a, $\{f, n, p, r, s, t\}, \Sigma, \Sigma)$

Finally, formalisation

With a fixed dictionary D, alphabet Σ, and scoring function $f_{\text {score }}$:

Definition (Scrabble problem instance)

A Scrabble problem instance is a tuple (B, T) where T is a finite multi-set over Σ and B is a finite subset of $(\Sigma \cup \mathcal{P}(\Sigma))^{*}$.

Definition (Placement)

A valid placement for a Scrabble problem instance (B, T) is a tuple $\left(\alpha_{1} \cdots \alpha_{n}, \beta_{1} \cdots \beta_{m}, i\right) \in D \times B \times \mathbb{N}$ such that

- $n+i<m$, and
- β_{i-1} and β_{n+i+1} are both sets if they exist, and
- $\alpha_{j}=\beta_{i+j}$ or $\alpha_{j} \in \beta_{i+j}$ for all $j \in\{1, \ldots, n\}$, and
- letting $P=\left\{\alpha_{j} \mid j \in\{1, \ldots, n\}, \beta_{i+j}\right.$ is a set $\}, P \subseteq T$ and $P \neq \emptyset$.

Solutions and algorithms?

Definition (Scrabble problem solution)

For a Scrabble problem instance (B, T) a placement (w, b, i) is a solution if it maximises $f_{\text {score }}$.

We need to enumerate all possible placements (otherwise we need to analyse $f_{\text {score }}$). There shouldn't be that many (?)
(1) Set $v_{\max }=0$.
(2) Take the next $b=\beta_{1} \cdots \beta_{m} \in B$.
(3) Intersect each set β_{j} with T.
(4) If some set in b is empty, go to 2 .

5 For each word w in D which matches b : <DANGER \gg.

- Validate that (w, b, i) is a placement for some i.
- Score (w, b, i) using $f_{\text {score }}$, set v to the score.
- If $v>v_{\text {max }}$ let $v_{\text {max }}=v$.
(6) Go to 2 .

Complexity and problems

- Steps 1-4 and 6 are small stuff, $\mathcal{O}\left(|T| \sum\{|b| \mid b \in B\}\right)$.
- A naive implementation of step 5 is trouble. $|B||D|$ attempts to match words to constraints.
- For now, assume few words match. Quick way to find them?

My first approach: hash-map indexing letter-pairs.

Dictionary lookup with letter pair indexing

Looking at this subproblem:

Definition

Given $b \in(\Sigma \cup \mathcal{P}(\Sigma))^{*}$ as input does there exist a word $w \in D$ such that w matches b in the sense of a placement?

Complexity in terms of $|D|$ still considered, but preprocessing of D is allowed.
Construct a hash-map $h: \Sigma \times \mathbb{N} \times \Sigma \rightarrow \mathcal{P}(D)$, which, for $\alpha_{1}, \alpha_{2} \in \Sigma$ and $i \in \mathbb{N}$ gives $W=h\left(\alpha_{1}, i, \alpha_{2}\right)$ where W is all words which contain the letter α_{1} and α_{2} at positions i steps apart. That is,

$$
\begin{aligned}
h(x, 5, I)= & \{\text { anxiously, expertly, inexorably, maximally, obnoxiously, } \\
& \text { paradoxically, textually, textural }\}
\end{aligned}
$$

Pretty large but not difficult pre-processing.
The ispell american-english dictionary of 98,569 yields a map with $2,996,606$ words.
A key maps to an average of 492.54 words.

Dictionary lookup with letter pair indexing (cont'd)

Matching ($\Sigma, b,\{a, i, o\},\{a, i\})$ can then be speeded up (?) by matching it to the words in

$$
(h(b, 0, a) \cup h(b, 0, i) \cup h(b, 0, o)) \cap(h(b, 1, a) \cup h(b, 1, i))
$$

instead of all of D (408 words in ispell american-english).
This depends on the structure of English words for speed. Hard to analyse. For other languages maybe h will map to gigantic classes?

Constructing the B-automaton

If we avoid relying on the structure of D then scanning may be necessary. How do we do scanning the best?

We can construct a deterministic finite automaton that attempts to match all of B at once!

