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On Guest Lectures

This is a slightly badly timed guest lecture

Course only starting: lot of fundamentals remain. Yet I want to
say something aspirational

As such I will give a short tour of some complexity theory
concepts ahead of their time

I will assume:
• Propositional logic
• A basic idea of what complexity, P and NP, means
• Some minor math and O-notation

Will hopefully explain the rest
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Introduction

Part I: Complexity Background
and Tractability
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Tractability = P?

cook 2, np common

Objection 1: A nicely behaved exponential is sometimes better
than an ugly polynomial.

2n vs. n10

250 < 5010

Objection 2: We simply cannot afford to consider all NP-hard
problems intractable.

Still, we cannot just consider NP tractable: Cook was right!



Tractability = P?

cook 2, np common

Objection 1: A nicely behaved exponential is sometimes better
than an ugly polynomial.

2n vs. n10

250 < 5010

Objection 2: We simply cannot afford to consider all NP-hard
problems intractable.

Still, we cannot just consider NP tractable: Cook was right!



Tractability = P?

cook 2, np common

Objection 1: A nicely behaved exponential is sometimes better
than an ugly polynomial.

2n vs. n10

250 < 5010

Objection 2: We simply cannot afford to consider all NP-hard
problems intractable.

Still, we cannot just consider NP tractable: Cook was right!



Tractability = P?

cook 2, np common

Objection 1: A nicely behaved exponential is sometimes better
than an ugly polynomial.

2n vs. n10

250 < 5010

Objection 2: We simply cannot afford to consider all NP-hard
problems intractable.

Still, we cannot just consider NP tractable: Cook was right!



VERTEX COVER

example

VERTEX COVER

Input: A graph G = (V ,E), a constant k ∈ N.
Output: “Yes” if and only if there exists some V ′ ⊆ V , |V ′| ≤ k
such that every edge in E touches a vertex in V ′.
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VERTEX COVER: NP-complete

cook-karp history, proof

VERTEX COVER is known to be NP-complete.

It is one of Karp’s original 21 problems. Reduction from
CHROMATIC NUMBER (graph coloring).

It is easy to bring back to SATISFIABILITY however, or at least
3-SATISFIABILITY.
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Practical solvability

CLIQUE is also NP-complete (reduction from SATISFIABILITY by
Karp).

dna conflicts, clique, ltl

However, while VERTEX COVER is NP-complete, but it is
solvable in practice for rather large instances (comp. bio.)

However, for CLIQUE we have no practical algorithms for large
instances

LTL MODEL CHECKING is PSPACE-complete, but used in
practice to verify hardware design
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Confronting intractability

1 Approximation
2 Randomization
3 “Islands of tractability”
4 Parallelization
5 Parameterization



1. Approximation

approx vc, sat, ptas

Approximation means accepting less than “perfect” solutions to
reach a tractable algorithm.
• Only well defined for optimization problems: e.g.

SATISFIABILITY has no “near” solution.

A algorithm is a c-approximation for a problem P if it computes an
answer that is at most c times worse than the optimal.

VERTEX COVER has a 2-approximation in polynomial time.

CLIQUE cannot easily be approximated (this is a complex matter
however).

PTAS: Polynomial time approximation schemes are the centerpiece.
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2. Randomization

Randomized algorithms are algorithms permitted to flip coins

The zoo is quite complex:

ZPPRP coRP

BPP

(BQP)

(PP)

Randomized is faster for many problems in P, but P ?
= BPP

list, zpp, bqp, pp silly
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3. Islands of Tractability

Not strictly defined, just a subset P ′ ⊂ P of an NP-complete
problem which is in P and has some argument why it is what is
of actual interest.

The most classic way of finding tractable subsets is slicing and
fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more
than 2 literals.

Slicing: For every constant k the k -Clique problem is in P.

Easy but clumsy: parameterized complexity picks up from here
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4. Parallelization

(log to c) n, n to k

The fan favourite parallelization: spread work among more
machines

The complexity theory is quite interesting, the NC (Nick’s Class
after Nick Pippenger) hierarchy defines how problems may be
split, within P

in general parallelization operates within P to an even greater
extent than randomization:
• Most complex problems actually resist parallelization
• Even if an NP-complete problem can be parallelized this

entails increasing the amount of hardware exponentially
(unless P=NP)
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5. Parameterization

Part II: Fixed Parameter
Tractability
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k -VERTEX COVER

Given an instance (G, k) of VERTEX COVER, this bounded
branching algorithm can solve it in time

2k · O(|G|).

This should be compared to brute force algorithms for, e.g.,
CLIQUE that run in time

Ω(|G|k ).

We say that VERTEX COVER parameterized by k is
fixed-parameter tractable.
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Parameterized problems

Definition. Let Σ be a finite alphabet. A parameterized problem
over Σ is a pair (Q, κ) consisting of
• a set Q ⊆ Σ∗ of strings over Σ, and
• a parameterization κ of Σ∗.



FPT algorithms

Definition. Let Σ be a finite alphabet and κ a parameterization
of Σ∗.
• An algorithm is FPT w.r.t. κ if there is a computable

function f : N→ N and a polynomial p such that for every
x ∈ Σ∗, the algorithm, when given x , has running time at
most

f (κ(x)) · p(|x |).
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Solving k -VERTEX COVER

More generally: exhaustively applying the 3 reduction rules
transforms any VERTEX COVER instance into one where every
vertex has a degree 2 ≤ d ≤ k

It does so in polynomial time in |G|

Combinatorics show that a k -coverable graph where all vertices
have degree 2 ≤ d ≤ k cannot have more than k2 vertices

A polynomial procedure making the whole problem work in terms
of k !

Applying the bounded branching algorithm to a reduced graph
gives us O(1.2738k )k2
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Kernelizations

Let (Q, κ) be a parameterized problem over Σ.
A kernelization of (Q, κ) is a mapping

K : Σ∗ → Σ∗

such that
• x ∈ Q ⇔ K (x) ∈ Q,
• there is a computable function g such that
|K (x)| < g(κ(x)).

Theorem
If (Q, κ) has a polynomial-time computable kernelization, then
(Q, κ) ∈ FPT .

Theorem (!)

If (Q, κ) ∈ FPT then (Q, κ) has a polynomial-time computable
kernelization.



Kernelizations

Let (Q, κ) be a parameterized problem over Σ.
A kernelization of (Q, κ) is a mapping

K : Σ∗ → Σ∗

such that
• x ∈ Q ⇔ K (x) ∈ Q,
• there is a computable function g such that
|K (x)| < g(κ(x)).

Theorem
If (Q, κ) has a polynomial-time computable kernelization, then
(Q, κ) ∈ FPT .

Theorem (!)

If (Q, κ) ∈ FPT then (Q, κ) has a polynomial-time computable
kernelization.



Kernelizations

Let (Q, κ) be a parameterized problem over Σ.
A kernelization of (Q, κ) is a mapping

K : Σ∗ → Σ∗

such that
• x ∈ Q ⇔ K (x) ∈ Q,
• there is a computable function g such that
|K (x)| < g(κ(x)).

Theorem
If (Q, κ) has a polynomial-time computable kernelization, then
(Q, κ) ∈ FPT .

Theorem (!)

If (Q, κ) ∈ FPT then (Q, κ) has a polynomial-time computable
kernelization.



FPT and XP

XP

FPT



FPT and XP

XP

FPT



The parameterized hierarchy

XP

W[P]

...

W[1]

FPT



Parameterized Hardness

Part III: Proving Limited
Parameterizability



Reductions

To show that a problem P is hard:

• Pick a problem P ′ we already know is hard
• Create a reduction which takes any problem p′ ∈ P ′ and

constructs a problem p ∈ P which has the same answer as p′

1 The translation procedure can’t be too powerful (or it might
just solve p′!)

2 p can’t be too much larger than p′ (or p becomes easy in in
terms of its size!)

• For P and NP: any reduction which runs in P solves both
• For parameterized complexity more care is needed
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Parameterized Reductions

Definition. Let (Q, κ) and (Q′, κ′) be two parameterized
problems over Σ and Γ.

An FPT-reduction from (Q, κ) to (Q′, κ′) is a mapping
R : Σ∗ → Γ∗ such that

1 x ∈ Q ⇔ R(x) ∈ Q′, for all x ∈ Σ∗,
2 R is FPT-computable w.r.t. κ, and
3 there is a computable function g such that
κ′(R(x)) ≤ g(κ(x)) for all x ∈ Σ∗.



Demonstrating a Reduction

Unfortunately demonstrating a reduction gets complex

Suffice to say: k -Clique can be proven to be W[1]-hard

The top of the hierarchy, XP, is also interesting
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The class XP

Definition. Let (Q, κ) be a parameterized problem over Σ. Then
(Q, κ) belongs to XP if there is a function f : N→ N and an
algorithm that decides Q and runs on input x ∈ Σ∗ in time

|x |f (κ(x)) + f (κ(x)).

In other words, XP is the class of all slice-wise polynomial
problems.

Recall slicing as an island of tractability technique

This should illustrate why it can be viewed as crude compared
to parameterized complexity: it is the worst case of the
hierarchy
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Conclusion

This completes the small tour of tractability hunting

Good books to read:

Computational Complexity by Christos H. Paradimitriou

An excellent treatment of the central concepts in computational
complexity.

Parameterized Complexity Theory by Jörg Flum and Martin
Grohe

A standard text on parameterized complexity theory.

For now: Thanks for listening and enjoy the rest of the course!
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