Martin Berglund

Umea University

September 6, 2014

ME
OME
s B
,

-
&
I/E RS\

On Guest Lectures

This is a slightly badly timed guest lecture

Course only starting: lot of fundamentals remain. Yet | want to
say something aspirational

On Guest Lectures

This is a slightly badly timed guest lecture

Course only starting: lot of fundamentals remain. Yet | want to
say something aspirational

As such | will give a short tour of some complexity theory
concepts ahead of their time

| will assume:
¢ Propositional logic
e A basic idea of what complexity, P and NP, means
e Some minor math and O-notation

Will hopefully explain the rest

Introduction

Part |: Complexity Background
and Tractability

Classical complexity

Classical complexity

NP

Classical complexity

PSPACE

NP

Classical complexity

EXPTIME

PSPACE

NP

cook 2, np common

Objection 1: A nicely behaved exponential is sometimes better
than an ugly polynomial.

2" vs. n'°
250 < 5010

cook 2, np common

Tractability = P?

Objection 1: A nicely behaved exponential is sometimes better
than an ugly polynomial.

2" vs. n'°

250 < 5010

Objection 2: We simply cannot afford to consider all NP-hard
problems intractable.

Tractability = P?

Objection 1: A nicely behaved exponential is sometimes better

than an ugly polynomial.
2" vs. n'°

250 < 5010

Objection 2: We simply cannot afford to consider all NP-hard
problems intractable.

Still, we cannot just consider NP tractable: Cook was right!

Input: A graph G = (V, E), a constant k € N.
Output: “Yes” if and only if there exists some V' C V, |V'| < k
such that every edge in E touches a vertex in V'.

example

VERTEX COVER: Example

VERTEX COVER: Example

VERTEX COVER: NP-complete

VERTEX COVER is known to be NP-complete.

It is one of Karp’s original 21 problems. Reduction from
CHROMATIC NUMBER (graph coloring).

It is easy to bring back to SATISFIABILITY however, or at least
3-SATISFIABILITY.

CLIQUE

CLIQUE

CLIQUE is also NP-complete (reduction from SATISFIABILITY by
Karp).

dna conflicts, clique, Itl

Practical solvability

CLIQUE is also NP-complete (reduction from SATISFIABILITY by
Karp).

However, while VERTEX COVER is NP-complete, but it is
solvable in practice for rather large instances (comp. bio.)

Practical solvability

CLIQUE is also NP-complete (reduction from SATISFIABILITY by
Karp).

However, while VERTEX COVER is NP-complete, but it is
solvable in practice for rather large instances (comp. bio.)

However, for CLIQUE we have no practical algorithms for large
instances

Practical solvability

CLIQUE is also NP-complete (reduction from SATISFIABILITY by
Karp).

However, while VERTEX COVER is NP-complete, but it is
solvable in practice for rather large instances (comp. bio.)

However, for CLIQUE we have no practical algorithms for large
instances

LTL MoDEL CHECKING is PSPACE-complete, but used in
practice to verify hardware design

@ Approximation

® Randomization

® ‘Islands of tractability”
O Parallelization

@® Parameterization

1. Approximation

Approximation means accepting less than “perfect” solutions to
reach a tractable algorithm.
¢ Only well defined for optimization problems: e.g.
SATISFIABILITY has no “near” solution.

1. Approximation

Approximation means accepting less than “perfect” solutions to
reach a tractable algorithm.

¢ Only well defined for optimization problems: e.g.
SATISFIABILITY has no “near” solution.

A algorithm is a c-approximation for a problem P if it computes an
answer that is at most ¢ times worse than the optimal.

VERTEX COVER has a 2-approximation in polynomial time.

CLIQUE cannot easily be approximated (this is a complex matter
however).

1. Approximation

Approximation means accepting less than “perfect” solutions to
reach a tractable algorithm.

¢ Only well defined for optimization problems: e.g.
SATISFIABILITY has no “near” solution.

A algorithm is a c-approximation for a problem P if it computes an
answer that is at most ¢ times worse than the optimal.

VERTEX COVER has a 2-approximation in polynomial time.

CLIQUE cannot easily be approximated (this is a complex matter
however).

PTAS: Polynomial time approximation schemes are the centerpiece.

Randomized algorithms are algorithms permitted to flip coins

2. Randomization

Randomized algorithms are algorithms permitted to flip coins

The zoo is quite complex:

Randomized is faster for many problems in P, but P L BPP

3. Islands of Tractability

Not strictly defined, just a subset P’ ¢ P of an NP-complete
problem which is in P and has some argument why it is what is
of actual interest.

3. Islands of Tractability

Not strictly defined, just a subset P’ ¢ P of an NP-complete
problem which is in P and has some argument why it is what is
of actual interest.

The most classic way of finding tractable subsets is slicing and
fixing constants

3. Islands of Tractability

Not strictly defined, just a subset P’ ¢ P of an NP-complete
problem which is in P and has some argument why it is what is
of actual interest.

The most classic way of finding tractable subsets is slicing and
fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more
than 2 literals.

3. Islands of Tractability

Not strictly defined, just a subset P’ ¢ P of an NP-complete
problem which is in P and has some argument why it is what is
of actual interest.

The most classic way of finding tractable subsets is slicing and
fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more
than 2 literals.

Slicing: For every constant k the k-Clique problem is in P.

3. Islands of Tractability

Not strictly defined, just a subset P’ ¢ P of an NP-complete
problem which is in P and has some argument why it is what is
of actual interest.

The most classic way of finding tractable subsets is slicing and
fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more
than 2 literals.

Slicing: For every constant k the k-Clique problem is in P.

Easy but clumsy: parameterized complexity picks up from here

The fan favourite parallelization: spread work among more
machines

(logtoc)n,ntok

4. Parallelization

The fan favourite parallelization: spread work among more
machines

The complexity theory is quite interesting, the NC (Nick’s Class
after Nick Pippenger) hierarchy defines how problems may be
split

4. Parallelization

The fan favourite parallelization: spread work among more
machines

The complexity theory is quite interesting, the NC (Nick’s Class
after Nick Pippenger) hierarchy defines how problems may be
split, within P

4. Parallelization

The fan favourite parallelization: spread work among more
machines

The complexity theory is quite interesting, the NC (Nick’s Class
after Nick Pippenger) hierarchy defines how problems may be
split, within P

in general parallelization operates within P to an even greater
extent than randomization:

e Most complex problems actually resist parallelization

e Even if an NP-complete problem can be parallelized this
entails increasing the amount of hardware exponentially
(unless P=NP)

5. Parameterization

Part |lI: Fixed Parameter
Tractability

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

?

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Given an instance (G, k) of VERTEX COVER, this bounded
branching algorithm can solve it in time

24 o(a)).

k-VERTEX COVER

Given an instance (G, k) of VERTEX COVER, this bounded
branching algorithm can solve it in time

2. 0(|G)).
This should be compared to brute force algorithms for, e.g.,
CLIQUE that runin time

Q(IGl").

k-VERTEX COVER

Given an instance (G, k) of VERTEX COVER, this bounded
branching algorithm can solve it in time

2. 0(|G)).
This should be compared to brute force algorithms for, e.g.,
CLIQUE that runin time
Q(Gl").

We say that VERTEX COVER parameterized by k is
fixed-parameter tractable.

Definition. Let ¥ be a finite alphabet. A parameterization of ¥*
is a mapping x : ¥* — N that is computable in polynomial time.

Parameterizations

Definition. Let & be a finite alphabet. A parameterization of *
is a mapping x : ¥* — N that is computable in polynomial time.

Example. We can parameterize VERTEX COVER by setting

x(G, k) = k.

Parameterized problems

Definition. Let X be a finite alphabet. A parameterized problem
over ¥ is a pair (Q, k) consisting of

e aset Q C x* of strings over ¥, and

e a parameterization x of £*.

FPT algorithms

Definition. Let ¥ be a finite alphabet and x a parameterization
of X*.
e An algorithm is FPT w.r.t. if there is a computable
function f : N — N and a polynomial p such that for every
x € ¥*, the algorithm, when given x, has running time at
most

f(r(x)) - p(Ix1)-

Parameterized tractability

Definition. Let ¥ be a finite alphabet and x a parameterization
of X.

A parameterized problem (Q,) over ¥ is fixed-parameter
tractable if there is an FPT-algorithm w.r.t. x that decides Q.

Parameterized tractability

Definition. Let ¥ be a finite alphabet and x a parameterization
of X.

A parameterized problem (Q,) over ¥ is fixed-parameter
tractable if there is an FPT-algorithm w.r.t. x that decides Q.

FPT is the class of all fixed-parameter tractable problems.

Kernelization

Kernelization

Solving 4-VERTEX COVER

Solving 4-VERTEX COVER

Solving 4-VERTEX COVER

Solving 4-VERTEX COVER

deg(f) > 3

Solving 4-VERTEX COVER

O
O,

Solving 4-VERTEX COVER

|E| < 22

Solving k-VERTEX COVER

More generally: exhaustively applying the 3 reduction rules
transforms any VERTEX COVER instance into one where every
vertex has adegree 2 < d < k

Solving k-VERTEX COVER

More generally: exhaustively applying the 3 reduction rules
transforms any VERTEX COVER instance into one where every

vertex has adegree 2 < d < k

It does so in polynomial time in |G|

Solving k-VERTEX COVER

More generally: exhaustively applying the 3 reduction rules
transforms any VERTEX COVER instance into one where every
vertex has adegree 2 < d < k

It does so in polynomial time in |G|

Combinatorics show that a k-coverable graph where all vertices
have degree 2 < d < k cannot have more than k? vertices

Solving k-VERTEX COVER

More generally: exhaustively applying the 3 reduction rules
transforms any VERTEX COVER instance into one where every
vertex has adegree 2 < d < k

It does so in polynomial time in |G|

Combinatorics show that a k-coverable graph where all vertices
have degree 2 < d < k cannot have more than k? vertices

A polynomial procedure making the whole problem work in terms
of k!

Applying the bounded branching algorithm to a reduced graph
gives us O(1.2738%)k?

Let (Q, k) be a parameterized problem over %.
A kernelization of (Q,) is a mapping
K: ¥ — %"

such that
e xe Q& K(x)eQ,
¢ there is a computable function g such that
IK(x)| < 9(k(x))-

Kernelizations

Kernelizations
Let (Q, k) be a parameterized problem over %.
A kernelization of (Q,) is a mapping
K: ¥ — %"
such that

e xe Q& K(x)eQ,
¢ there is a computable function g such that

KOOI < g(k(x)).

Theorem

If(Q, k) has a polynomial-time computable kernelization, then
(Q, k) € FPT.

Kernelizations
Let (Q, k) be a parameterized problem over %.
A kernelization of (Q,) is a mapping
K: ¥ — 3"
such that

e xe Q& K(x)eQ,
¢ there is a computable function g such that

KOOI < g(k(x)).

Theorem
If(Q, k) has a polynomial-time computable kernelization, then

(Q, k) € FPT.
Theorem (!)

If(Q,) € FPT then (Q, k) has a polynomial-time computable
kernelization.

FPT and XP

XP

The parameterized hierarchy

Parameterized Hardness

Part Ill: Proving Limited
Parameterizability

To show that a problem P is hard:

To show that a problem P is hard:
e Pick a problem P’ we already know is hard

Reductions

To show that a problem P is hard:

e Pick a problem P’ we already know is hard
e Create a reduction which takes any problem p’ € P’ and
constructs a problem p € P which has the same answer as p/

Reductions

To show that a problem P is hard:

e Pick a problem P’ we already know is hard
e Create a reduction which takes any problem p’ € P’ and
constructs a problem p € P which has the same answer as p/

© The translation procedure can't be too powerful (or it might
just solve p'!)

Reductions

To show that a problem P is hard:

e Pick a problem P’ we already know is hard
e Create a reduction which takes any problem p’ € P’ and
constructs a problem p € P which has the same answer as p/

@ The translation procedure can’t be too powerful (or it might
just solve p'!)

@® p can’t be too much /arger than p’ (or p becomes easy in in
terms of its sizel)

Reductions

To show that a problem P is hard:

e Pick a problem P’ we already know is hard
e Create a reduction which takes any problem p’ € P’ and
constructs a problem p € P which has the same answer as p/

@ The translation procedure can’t be too powerful (or it might
just solve p'!)

@® p can’t be too much /arger than p’ (or p becomes easy in in
terms of its sizel)

¢ For P and NP: any reduction which runs in P solves both

Reductions

To show that a problem P is hard:

e Pick a problem P’ we already know is hard
e Create a reduction which takes any problem p’ € P’ and
constructs a problem p € P which has the same answer as p/

@ The translation procedure can’t be too powerful (or it might
just solve p'!)
@® p can’t be too much /arger than p’ (or p becomes easy in in
terms of its sizel)
¢ For P and NP: any reduction which runs in P solves both
e For parameterized complexity more care is needed

Parameterized Reductions

Definition. Let (Q, k) and (Q', ') be two parameterized
problems over ¥ and I'.

An FPT-reduction from (Q, k) to (Q', ") is a mapping
R:¥* — '™ such that

Q@ xc Q< Rx)e @, forall x € X*,

® R is FPT-computable w.r.t. x, and

@ there is a computable function g such that
&' (R(x)) < g(k(x)) for all x € £*.

Unfortunately demonstrating a reduction gets complex

Demonstrating a Reduction

Unfortunately demonstrating a reduction gets complex

Suffice to say: k-Clique can be proven to be W[1]-hard

Demonstrating a Reduction

Unfortunately demonstrating a reduction gets complex
Suffice to say: k-Clique can be proven to be W[1]-hard

The top of the hierarchy, XP, is also interesting

The class XP

Definition. Let (Q, k) be a parameterized problem over X. Then
(Q, k) belongs to XPif there is a function f : N — N and an
algorithm that decides Q and runs on input x € ¥* in time

X" CD 4 £((x)).

The class XP

Definition. Let (Q, k) be a parameterized problem over X. Then
(Q, k) belongs to XPif there is a function f : N — N and an
algorithm that decides Q and runs on input x € ¥* in time

X" CD 4 £((x)).

In other words, XP is the class of all slice-wise polynomial
problems.

The class XP

Definition. Let (Q, k) be a parameterized problem over X. Then
(Q, k) belongs to XPif there is a function f : N — N and an
algorithm that decides Q and runs on input x € ¥* in time

X" CD 4 £((x)).

In other words, XP is the class of all slice-wise polynomial
problems.

Recall slicing as an island of tractability technique

The class XP

Definition. Let (Q, k) be a parameterized problem over X. Then
(Q, k) belongs to XPif there is a function f : N — N and an
algorithm that decides Q and runs on input x € ¥* in time

x| - £ ().
In other words, XP is the class of all slice-wise polynomial
problems.
Recall slicing as an island of tractability technique

This should illustrate why it can be viewed as crude compared
to parameterized complexity: it is the worst case of the
hierarchy

This completes the small tour of tractability hunting

Conclusion

This completes the small tour of tractability hunting

Good books to read:

Computational Complexity by Christos H. Paradimitriou

An excellent treatment of the central concepts in computational
complexity.

Parameterized Complexity Theory by Jérg Flum and Martin
Grohe

A standard text on parameterized complexity theory.

Conclusion

This completes the small tour of tractability hunting

Good books to read:

Computational Complexity by Christos H. Paradimitriou

An excellent treatment of the central concepts in computational
complexity.

Parameterized Complexity Theory by Jérg Flum and Martin
Grohe

A standard text on parameterized complexity theory.

For now: Thanks for listening and enjoy the rest of the course!

