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On Guest Lectures

This is a slightly badly timed guest lecture

Course only starting: lot of fundamentals remain. Yet | want to
say something aspirational

As such | will give a short tour of some complexity theory
concepts ahead of their time

| will assume:
¢ Propositional logic
e A basic idea of what complexity, P and NP, means
e Some minor math and O-notation

Will hopefully explain the rest



Introduction

Part |: Complexity Background
and Tractability
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Objection 1: A nicely behaved exponential is sometimes better
than an ugly polynomial.

2" vs. n'°
250 < 5010
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Tractability = P?

Objection 1: A nicely behaved exponential is sometimes better

than an ugly polynomial.
2" vs. n'°

250 < 5010

Objection 2: We simply cannot afford to consider all NP-hard
problems intractable.

Still, we cannot just consider NP tractable: Cook was right!



Input: A graph G = (V, E), a constant k € N.
Output: “Yes” if and only if there exists some V' C V, |V'| < k
such that every edge in E touches a vertex in V'.

example
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VERTEX COVER: NP-complete

VERTEX COVER is known to be NP-complete.

It is one of Karp’s original 21 problems. Reduction from
CHROMATIC NUMBER (graph coloring).

It is easy to bring back to SATISFIABILITY however, or at least
3-SATISFIABILITY.
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CLIQUE is also NP-complete (reduction from SATISFIABILITY by
Karp).

dna conflicts, clique, Itl
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Practical solvability

CLIQUE is also NP-complete (reduction from SATISFIABILITY by
Karp).

However, while VERTEX COVER is NP-complete, but it is
solvable in practice for rather large instances (comp. bio.)

However, for CLIQUE we have no practical algorithms for large
instances

LTL MoDEL CHECKING is PSPACE-complete, but used in
practice to verify hardware design



@ Approximation

® Randomization

® ‘Islands of tractability”
O Parallelization

@® Parameterization
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reach a tractable algorithm.
¢ Only well defined for optimization problems: e.g.
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however).



1. Approximation

Approximation means accepting less than “perfect” solutions to
reach a tractable algorithm.

¢ Only well defined for optimization problems: e.g.
SATISFIABILITY has no “near” solution.

A algorithm is a c-approximation for a problem P if it computes an
answer that is at most ¢ times worse than the optimal.

VERTEX COVER has a 2-approximation in polynomial time.

CLIQUE cannot easily be approximated (this is a complex matter
however).

PTAS: Polynomial time approximation schemes are the centerpiece.
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2. Randomization

Randomized algorithms are algorithms permitted to flip coins

The zoo is quite complex:

Randomized is faster for many problems in P, but P L BPP
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3. Islands of Tractability

Not strictly defined, just a subset P’ ¢ P of an NP-complete
problem which is in P and has some argument why it is what is
of actual interest.

The most classic way of finding tractable subsets is slicing and
fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more
than 2 literals.

Slicing: For every constant k the k-Clique problem is in P.

Easy but clumsy: parameterized complexity picks up from here



The fan favourite parallelization: spread work among more
machines

(logtoc)n,ntok
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4. Parallelization

The fan favourite parallelization: spread work among more
machines

The complexity theory is quite interesting, the NC (Nick’s Class
after Nick Pippenger) hierarchy defines how problems may be
split, within P

in general parallelization operates within P to an even greater
extent than randomization:

e Most complex problems actually resist parallelization

e Even if an NP-complete problem can be parallelized this
entails increasing the amount of hardware exponentially
(unless P=NP)



5. Parameterization

Part |lI: Fixed Parameter
Tractability
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Given an instance (G, k) of VERTEX COVER, this bounded
branching algorithm can solve it in time

24 o(a)).
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k-VERTEX COVER

Given an instance (G, k) of VERTEX COVER, this bounded
branching algorithm can solve it in time

2. 0(|G)).
This should be compared to brute force algorithms for, e.g.,
CLIQUE that runin time
Q(Gl").

We say that VERTEX COVER parameterized by k is
fixed-parameter tractable.



Definition. Let ¥ be a finite alphabet. A parameterization of ¥*
is a mapping x : ¥* — N that is computable in polynomial time.



Parameterizations

Definition. Let & be a finite alphabet. A parameterization of *
is a mapping x : ¥* — N that is computable in polynomial time.

Example. We can parameterize VERTEX COVER by setting

x(G, k) = k.



Parameterized problems

Definition. Let X be a finite alphabet. A parameterized problem
over ¥ is a pair (Q, k) consisting of

e aset Q C x* of strings over ¥, and

e a parameterization x of £*.



FPT algorithms

Definition. Let ¥ be a finite alphabet and x a parameterization
of X*.
e An algorithm is FPT w.r.t.  if there is a computable
function f : N — N and a polynomial p such that for every
x € ¥*, the algorithm, when given x, has running time at
most

f(r(x)) - p(Ix1)-
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Definition. Let ¥ be a finite alphabet and x a parameterization
of X.

A parameterized problem (Q, ) over ¥ is fixed-parameter
tractable if there is an FPT-algorithm w.r.t. x that decides Q.



Parameterized tractability

Definition. Let ¥ be a finite alphabet and x a parameterization
of X.

A parameterized problem (Q, ) over ¥ is fixed-parameter
tractable if there is an FPT-algorithm w.r.t. x that decides Q.

FPT is the class of all fixed-parameter tractable problems.
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Solving 4-VERTEX COVER

deg(f) > 3




Solving 4-VERTEX COVER

O
O,




Solving 4-VERTEX COVER

|E| < 22




Solving k-VERTEX COVER

More generally: exhaustively applying the 3 reduction rules
transforms any VERTEX COVER instance into one where every
vertex has adegree 2 < d < k
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Solving k-VERTEX COVER

More generally: exhaustively applying the 3 reduction rules
transforms any VERTEX COVER instance into one where every
vertex has adegree 2 < d < k

It does so in polynomial time in |G|

Combinatorics show that a k-coverable graph where all vertices
have degree 2 < d < k cannot have more than k? vertices

A polynomial procedure making the whole problem work in terms
of k!

Applying the bounded branching algorithm to a reduced graph
gives us O(1.2738%)k?



Let (Q, k) be a parameterized problem over %.
A kernelization of (Q, ) is a mapping
K: ¥ — %"

such that
e xe Q& K(x)eQ,
¢ there is a computable function g such that
IK(x)| < 9(k(x))-

Kernelizations
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A kernelization of (Q, ) is a mapping
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such that

e xe Q& K(x)eQ,
¢ there is a computable function g such that

KOOI < g(k(x)).

Theorem

If(Q, k) has a polynomial-time computable kernelization, then
(Q, k) € FPT.



Kernelizations
Let (Q, k) be a parameterized problem over %.
A kernelization of (Q, ) is a mapping
K: ¥ — 3"
such that

e xe Q& K(x)eQ,
¢ there is a computable function g such that

KOOI < g(k(x)).

Theorem
If(Q, k) has a polynomial-time computable kernelization, then

(Q, k) € FPT.
Theorem (!)

If(Q, ) € FPT then (Q, k) has a polynomial-time computable
kernelization.






FPT and XP

XP




The parameterized hierarchy




Parameterized Hardness

Part Ill: Proving Limited
Parameterizability
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Reductions

To show that a problem P is hard:

e Pick a problem P’ we already know is hard
e Create a reduction which takes any problem p’ € P’ and
constructs a problem p € P which has the same answer as p/

@ The translation procedure can’t be too powerful (or it might
just solve p'!)
@® p can’t be too much /arger than p’ (or p becomes easy in in
terms of its sizel)
¢ For P and NP: any reduction which runs in P solves both
e For parameterized complexity more care is needed



Parameterized Reductions

Definition. Let (Q, k) and (Q', ') be two parameterized
problems over ¥ and I'.

An FPT-reduction from (Q, k) to (Q', ") is a mapping
R:¥* — '™ such that

Q@ xc Q< Rx)e @, forall x € X*,

® R is FPT-computable w.r.t. x, and

@ there is a computable function g such that
&' (R(x)) < g(k(x)) for all x € £*.
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Demonstrating a Reduction

Unfortunately demonstrating a reduction gets complex
Suffice to say: k-Clique can be proven to be W[1]-hard

The top of the hierarchy, XP, is also interesting
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Definition. Let (Q, k) be a parameterized problem over X. Then
(Q, k) belongs to XPif there is a function f : N — N and an
algorithm that decides Q and runs on input x € ¥* in time

X" CD 4 £((x)).
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The class XP

Definition. Let (Q, k) be a parameterized problem over X. Then
(Q, k) belongs to XPif there is a function f : N — N and an
algorithm that decides Q and runs on input x € ¥* in time

x| - £ ().
In other words, XP is the class of all slice-wise polynomial
problems.
Recall slicing as an island of tractability technique

This should illustrate why it can be viewed as crude compared
to parameterized complexity: it is the worst case of the
hierarchy
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This completes the small tour of tractability hunting

Good books to read:

Computational Complexity by Christos H. Paradimitriou

An excellent treatment of the central concepts in computational
complexity.

Parameterized Complexity Theory by Jérg Flum and Martin
Grohe

A standard text on parameterized complexity theory.



Conclusion

This completes the small tour of tractability hunting

Good books to read:

Computational Complexity by Christos H. Paradimitriou

An excellent treatment of the central concepts in computational
complexity.

Parameterized Complexity Theory by Jérg Flum and Martin
Grohe

A standard text on parameterized complexity theory.

For now: Thanks for listening and enjoy the rest of the course!



