A Short Tour of Tractability Hunting
 With a special focus on Parameterized Complexity

Martin Berglund
Umeå University

September 6, 2014

On Guest Lectures

This is a slightly badly timed guest lecture
Course only starting: lot of fundamentals remain. Yet I want to say something aspirational

On Guest Lectures

This is a slightly badly timed guest lecture
Course only starting: lot of fundamentals remain. Yet I want to say something aspirational

As such I will give a short tour of some complexity theory concepts ahead of their time

I will assume:

- Propositional logic
- A basic idea of what complexity, P and NP, means
- Some minor math and \mathcal{O}-notation

Will hopefully explain the rest

Part I: Complexity Background and Tractability

Classical complexity

Classical complexity

Classical complexity

Classical complexity

Tractability = P?

Tractability = P?

Objection 1: A nicely behaved exponential is sometimes better than an ugly polynomial.

$$
\begin{array}{ccc}
2^{n} & \text { vs. } & n^{10} \\
2^{50} & < & 50^{10}
\end{array}
$$

Tractability = P?

Objection 1: A nicely behaved exponential is sometimes better than an ugly polynomial.

$$
\begin{array}{ccc}
2^{n} & \text { vs. } & n^{10} \\
2^{50} & < & 50^{10}
\end{array}
$$

Objection 2: We simply cannot afford to consider all NP-hard problems intractable.

Tractability = P?

Objection 1: A nicely behaved exponential is sometimes better than an ugly polynomial.

$$
\begin{array}{rll}
2^{n} & \text { vs. } & n^{10} \\
2^{50} & < & 50^{10}
\end{array}
$$

Objection 2: We simply cannot afford to consider all NP-hard problems intractable.

Still, we cannot just consider NP tractable: Cook was right!

Vertex Cover

Vertex Cover

Input: A graph $G=(V, E)$, a constant $k \in N$. Output: "Yes" if and only if there exists some $V^{\prime} \subseteq V,\left|V^{\prime}\right| \leq k$ such that every edge in E touches a vertex in V^{\prime}.

Vertex Cover: Example

Vertex Cover: Example

Vertex Cover: NP-complete

Vertex Cover is known to be NP-complete.

It is one of Karp's original 21 problems. Reduction from Chromatic Number (graph coloring).

It is easy to bring back to SAtisfiability however, or at least 3-SATISFIABILITY.

$$
\left[\begin{array}{c}
20-20 \\
20
\end{array}\right.
$$

Practical solvability

Clique is also NP-complete (reduction from SATISFIABILITY by Karp).

Practical solvability

Clique is also NP-complete (reduction from Satisfiability by Karp).

However, while Vertex Cover is NP-complete, but it is solvable in practice for rather large instances (comp. bio.)

Practical solvability

Clique is also NP-complete (reduction from Satisfiability by Karp).

However, while Vertex Cover is NP-complete, but it is solvable in practice for rather large instances (comp. bio.)

However, for Clique we have no practical algorithms for large instances

Practical solvability

Clique is also NP-complete (reduction from Satisfiability by Karp).

However, while Vertex Cover is NP-complete, but it is solvable in practice for rather large instances (comp. bio.)

However, for Clique we have no practical algorithms for large instances

LTL Model Checking is PSPACE-complete, but used in practice to verify hardware design

Confronting intractability

(1) Approximation
(2) Randomization
(3) "Islands of tractability"
(4) Parallelization
(5) Parameterization

1. Approximation

Approximation means accepting less than "perfect" solutions to reach a tractable algorithm.

- Only well defined for optimization problems: e.g. SATISFIABILITY has no "near" solution.

1. Approximation

Approximation means accepting less than "perfect" solutions to reach a tractable algorithm.

- Only well defined for optimization problems: e.g. SATISFIABILITY has no "near" solution.

A algorithm is a c-approximation for a problem P if it computes an answer that is at most c times worse than the optimal.

Vertex Cover has a 2-approximation in polynomial time.
ClIQUE cannot easily be approximated (this is a complex matter however).

1. Approximation

Approximation means accepting less than "perfect" solutions to reach a tractable algorithm.

- Only well defined for optimization problems: e.g. SATISFIABILITY has no "near" solution.

A algorithm is a c-approximation for a problem P if it computes an answer that is at most c times worse than the optimal.

Vertex Cover has a 2-approximation in polynomial time.
Clique cannot easily be approximated (this is a complex matter however).

PTAS: Polynomial time approximation schemes are the centerpiece.

2. Randomization

Randomized algorithms are algorithms permitted to flip coins

2. Randomization

Randomized algorithms are algorithms permitted to flip coins
The zoo is quite complex:

Randomized is faster for many problems in P, but $P \stackrel{?}{=} B P P$

3. Islands of Tractability

Not strictly defined, just a subset $P^{\prime} \subset P$ of an NP-complete problem which is in P and has some argument why it is what is of actual interest.

3. Islands of Tractability

Not strictly defined, just a subset $P^{\prime} \subset P$ of an NP-complete problem which is in P and has some argument why it is what is of actual interest.

The most classic way of finding tractable subsets is slicing and fixing constants

3. Islands of Tractability

Not strictly defined, just a subset $P^{\prime} \subset P$ of an NP-complete problem which is in P and has some argument why it is what is of actual interest.

The most classic way of finding tractable subsets is slicing and fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more than 2 literals.

3. Islands of Tractability

Not strictly defined, just a subset $P^{\prime} \subset P$ of an NP-complete problem which is in P and has some argument why it is what is of actual interest.

The most classic way of finding tractable subsets is slicing and fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more than 2 literals.

Slicing: For every constant k the k-Clique problem is in P .

3. Islands of Tractability

Not strictly defined, just a subset $P^{\prime} \subset P$ of an NP-complete problem which is in P and has some argument why it is what is of actual interest.

The most classic way of finding tractable subsets is slicing and fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more than 2 literals.

Slicing: For every constant k the k-Clique problem is in P .

Easy but clumsy: parameterized complexity picks up from here

4. Parallelization

The fan favourite parallelization: spread work among more machines

4. Parallelization

The fan favourite parallelization: spread work among more machines

The complexity theory is quite interesting, the NC (Nick's Class after Nick Pippenger) hierarchy defines how problems may be split

4. Parallelization

The fan favourite parallelization: spread work among more machines

The complexity theory is quite interesting, the NC (Nick's Class after Nick Pippenger) hierarchy defines how problems may be split, within P

4. Parallelization

The fan favourite parallelization: spread work among more machines

The complexity theory is quite interesting, the NC (Nick's Class after Nick Pippenger) hierarchy defines how problems may be split, within P
in general parallelization operates within P to an even greater extent than randomization:

- Most complex problems actually resist parallelization
- Even if an NP-complete problem can be parallelized this entails increasing the amount of hardware exponentially (unless $\mathrm{P}=\mathrm{NP}$)

5. Parameterization

Part II: Fixed Parameter Tractability

Solving 3-Vertex Cover

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

?

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

Solving 3-VERTEX COVER

$$
c^{c}
$$

Solving 3-VERTEX COVER

$$
\left.0^{4}\right)^{(3)}
$$

Solving 3-VERTEX COVER

(6)

Solving 3-VERTEX COVER

(b)

Solving 3-VERTEX COVER

(b) (d)

Solving 3-VERTEX COVER

(b) (d)

Solving 3-VERTEX COVER

(b) (d)

Solving 3-Vertex Cover

Solving 3-Vertex Cover

$$
\text { (b) (a) } 0^{4} 0^{b} b^{d} \sigma^{c} \sigma^{5}
$$

Solving 3-Vertex Cover

$$
\text { (b) (a) } 0^{4} 0^{b} b^{d} \sigma^{c} \sigma^{5}
$$

Solving 3-Vertex Cover

$$
\begin{aligned}
& \text { (a) (b) (a) }
\end{aligned}
$$

Solving 3-Vertex Cover

$$
\text { (b) (a) } 0_{0}^{4} 0^{b} b^{d} 0^{a} 0^{a}
$$

Solving 3-VERTEX COVER

$$
\begin{aligned}
& \text { (e) } \\
& \text { (b) }
\end{aligned}
$$

Solving 3-VERTEX COVER

$$
\begin{aligned}
& \text { (e) } \\
& \text { (b) }
\end{aligned}
$$

Solving 3-Vertex Cover

k-Vertex Cover

Given an instance (G, k) of Vertex Cover, this bounded branching algorithm can solve it in time

$$
2^{k} \cdot \mathcal{O}(|G|)
$$

k-Vertex Cover

Given an instance (G, k) of Vertex Cover, this bounded branching algorithm can solve it in time

$$
2^{k} \cdot \mathcal{O}(|G|)
$$

This should be compared to brute force algorithms for, e.g., Clique that run in time

$$
\Omega\left(|G|^{k}\right)
$$

k-Vertex Cover

Given an instance (G, k) of Vertex Cover, this bounded branching algorithm can solve it in time

$$
2^{k} \cdot \mathcal{O}(|G|) .
$$

This should be compared to brute force algorithms for, e.g., Clique that run in time

$$
\Omega\left(|G|^{k}\right)
$$

We say that Vertex Cover parameterized by k is fixed-parameter tractable.

Parameterizations

Definition. Let Σ be a finite alphabet. A parameterization of Σ^{*} is a mapping $\kappa: \Sigma^{*} \rightarrow \mathbb{N}$ that is computable in polynomial time.

Parameterizations

Definition. Let Σ be a finite alphabet. A parameterization of Σ^{*} is a mapping $\kappa: \Sigma^{*} \rightarrow \mathbb{N}$ that is computable in polynomial time.

Example. We can parameterize Vertex Cover by setting

$$
\kappa(G, k)=k
$$

Parameterized problems

Definition. Let Σ be a finite alphabet. A parameterized problem over Σ is a pair (Q, κ) consisting of

- a set $Q \subseteq \Sigma^{*}$ of strings over Σ, and
- a parameterization κ of Σ^{*}.

FPT algorithms

Definition. Let Σ be a finite alphabet and κ a parameterization of Σ^{*}.

- An algorithm is FPT w.r.t. κ if there is a computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ and a polynomial p such that for every $x \in \Sigma^{*}$, the algorithm, when given x, has running time at most

$$
f(\kappa(x)) \cdot p(|x|) .
$$

Parameterized tractability

Definition. Let Σ be a finite alphabet and κ a parameterization of Σ.

A parameterized problem (Q, κ) over Σ is fixed-parameter tractable if there is an FPT-algorithm w.r.t. κ that decides Q.

Parameterized tractability

Definition. Let Σ be a finite alphabet and κ a parameterization of Σ.

A parameterized problem (Q, κ) over Σ is fixed-parameter tractable if there is an FPT-algorithm w.r.t. κ that decides Q.

FPT is the class of all fixed-parameter tractable problems.

Kernelization

Kernelization

Kernelization

Solving 4-Vertex Cover

$k=4$

Solving 4-Vertex Cover

$k=4$

$\operatorname{deg}(c)>4$

Solving 4-Vertex Cover

$$
k=3
$$

Solving 4-Vertex Cover

$$
k=3
$$

$\operatorname{deg}(f)>3$

Solving 4-Vertex Cover

$$
k=2
$$

(a)
(b)
(h)

Solving 4-Vertex Cover

$$
k=2
$$

$|E|<2^{2}$

Solving k-Vertex Cover

More generally: exhaustively applying the 3 reduction rules transforms any VERTEX COVER instance into one where every vertex has a degree $2 \leq d \leq k$

Solving k-Vertex Cover

More generally: exhaustively applying the 3 reduction rules transforms any Vertex Cover instance into one where every vertex has a degree $2 \leq d \leq k$

It does so in polynomial time in $|G|$

Solving k-Vertex Cover

More generally: exhaustively applying the 3 reduction rules transforms any Vertex Cover instance into one where every vertex has a degree $2 \leq d \leq k$

It does so in polynomial time in $|G|$

Combinatorics show that a k-coverable graph where all vertices have degree $2 \leq d \leq k$ cannot have more than k^{2} vertices

Solving k-VERTEX Cover

More generally: exhaustively applying the 3 reduction rules transforms any VERTEX COVER instance into one where every vertex has a degree $2 \leq d \leq k$

It does so in polynomial time in $|G|$

Combinatorics show that a k-coverable graph where all vertices have degree $2 \leq d \leq k$ cannot have more than k^{2} vertices

A polynomial procedure making the whole problem work in terms of k !

Applying the bounded branching algorithm to a reduced graph gives us $\mathcal{O}\left(1.2738^{k}\right) k^{2}$

Kernelizations

Let (Q, κ) be a parameterized problem over Σ. A kernelization of (Q, κ) is a mapping

$$
K: \Sigma^{*} \rightarrow \Sigma^{*}
$$

such that

- $x \in Q \Leftrightarrow K(x) \in Q$,
- there is a computable function g such that $|K(x)|<g(\kappa(x))$.

Kernelizations

Let (Q, κ) be a parameterized problem over Σ.
A kernelization of (Q, κ) is a mapping

$$
K: \Sigma^{*} \rightarrow \Sigma^{*}
$$

such that

- $x \in Q \Leftrightarrow K(x) \in Q$,
- there is a computable function g such that $|K(x)|<g(\kappa(x))$.

Theorem

If (Q, κ) has a polynomial-time computable kernelization, then $(Q, \kappa) \in F P T$.

Kernelizations

Let (Q, κ) be a parameterized problem over Σ.
A kernelization of (Q, κ) is a mapping

$$
K: \Sigma^{*} \rightarrow \Sigma^{*}
$$

such that

- $x \in Q \Leftrightarrow K(x) \in Q$,
- there is a computable function g such that $|K(x)|<g(\kappa(x))$.

Theorem

If (Q, κ) has a polynomial-time computable kernelization, then $(Q, \kappa) \in F P T$.

Theorem (!)
If $(Q, \kappa) \in F P T$ then (Q, κ) has a polynomial-time computable kernelization.

FPT and XP

The parameterized hierarchy

Parameterized Hardness

Part III: Proving Limited Parameterizability

Reductions

To show that a problem P is hard:

Reductions

To show that a problem P is hard:

- Pick a problem P^{\prime} we already know is hard

Reductions

To show that a problem P is hard:

- Pick a problem P^{\prime} we already know is hard
- Create a reduction which takes any problem $p^{\prime} \in P^{\prime}$ and constructs a problem $p \in P$ which has the same answer as p^{\prime}

Reductions

To show that a problem P is hard:

- Pick a problem P^{\prime} we already know is hard
- Create a reduction which takes any problem $p^{\prime} \in P^{\prime}$ and constructs a problem $p \in P$ which has the same answer as p^{\prime}
(1) The translation procedure can't be too powerful (or it might just solve p^{\prime} !)

Reductions

To show that a problem P is hard:

- Pick a problem P^{\prime} we already know is hard
- Create a reduction which takes any problem $p^{\prime} \in P^{\prime}$ and constructs a problem $p \in P$ which has the same answer as p^{\prime}
(1) The translation procedure can't be too powerful (or it might just solve p^{\prime} !)
(2) p can't be too much larger than p^{\prime} (or p becomes easy in in terms of its size!)

Reductions

To show that a problem P is hard:

- Pick a problem P^{\prime} we already know is hard
- Create a reduction which takes any problem $p^{\prime} \in P^{\prime}$ and constructs a problem $p \in P$ which has the same answer as p^{\prime}
(1) The translation procedure can't be too powerful (or it might just solve p^{\prime} !)
(2) p can't be too much larger than p^{\prime} (or p becomes easy in in terms of its size!)
- For P and NP: any reduction which runs in P solves both

Reductions

To show that a problem P is hard:

- Pick a problem P^{\prime} we already know is hard
- Create a reduction which takes any problem $p^{\prime} \in P^{\prime}$ and constructs a problem $p \in P$ which has the same answer as p^{\prime}
(1) The translation procedure can't be too powerful (or it might just solve p^{\prime} !)
(2) p can't be too much larger than p^{\prime} (or p becomes easy in in terms of its size!)
- For P and NP: any reduction which runs in P solves both
- For parameterized complexity more care is needed

Parameterized Reductions

Definition. Let (Q, κ) and $\left(Q^{\prime}, \kappa^{\prime}\right)$ be two parameterized problems over Σ and Γ.

An FPT-reduction from (Q, κ) to ($Q^{\prime}, \kappa^{\prime}$) is a mapping $R: \Sigma^{*} \rightarrow \Gamma^{*}$ such that
(1) $x \in Q \Leftrightarrow R(x) \in Q^{\prime}$, for all $x \in \Sigma^{*}$,
(2) R is FPT-computable w.r.t. κ, and
(3) there is a computable function g such that $\kappa^{\prime}(R(x)) \leq g(\kappa(x))$ for all $x \in \Sigma^{*}$.

Demonstrating a Reduction

Unfortunately demonstrating a reduction gets complex

Demonstrating a Reduction

Unfortunately demonstrating a reduction gets complex

Suffice to say: k-Clique can be proven to be W[1]-hard

Demonstrating a Reduction

Unfortunately demonstrating a reduction gets complex

Suffice to say: k-Clique can be proven to be W[1]-hard

The top of the hierarchy, XP, is also interesting

The class XP

The class XP

Definition. Let (Q, κ) be a parameterized problem over Σ. Then (Q, κ) belongs to $X P$ if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ and an algorithm that decides Q and runs on input $x \in \Sigma^{*}$ in time

$$
|x|^{f(\kappa(x))}+f(\kappa(x)) .
$$

The class XP

Definition. Let (Q, κ) be a parameterized problem over Σ. Then (Q, κ) belongs to $X P$ if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ and an algorithm that decides Q and runs on input $x \in \Sigma^{*}$ in time

$$
|x|^{f(\kappa(x))}+f(\kappa(x)) .
$$

In other words, $X P$ is the class of all slice-wise polynomial problems.

The class XP

Definition. Let (Q, κ) be a parameterized problem over Σ. Then (Q, κ) belongs to $X P$ if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ and an algorithm that decides Q and runs on input $x \in \Sigma^{*}$ in time

$$
|x|^{f(\kappa(x))}+f(\kappa(x)) .
$$

In other words, $X P$ is the class of all slice-wise polynomial problems.

Recall slicing as an island of tractability technique

The class XP

Definition. Let (Q, κ) be a parameterized problem over Σ. Then (Q, κ) belongs to $X P$ if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ and an algorithm that decides Q and runs on input $x \in \Sigma^{*}$ in time

$$
|x|^{f(\kappa(x))}+f(\kappa(x)) .
$$

In other words, $X P$ is the class of all slice-wise polynomial problems.

Recall slicing as an island of tractability technique

This should illustrate why it can be viewed as crude compared to parameterized complexity: it is the worst case of the hierarchy

Conclusion

This completes the small tour of tractability hunting

Conclusion

This completes the small tour of tractability hunting

Good books to read:
Computational Complexity by Christos H. Paradimitriou
An excellent treatment of the central concepts in computational complexity.

Parameterized Complexity Theory by Jörg Flum and Martin Grohe

A standard text on parameterized complexity theory.

Conclusion

This completes the small tour of tractability hunting

Good books to read:
Computational Complexity by Christos H. Paradimitriou
An excellent treatment of the central concepts in computational complexity.

Parameterized Complexity Theory by Jörg Flum and Martin Grohe

A standard text on parameterized complexity theory.

For now: Thanks for listening and enjoy the rest of the course!

