
A Short Tour of Tractability Hunting
With a special focus on Parameterized Complexity

Martin Berglund

Umeå University

September 6, 2014

On Guest Lectures

This is a slightly badly timed guest lecture

Course only starting: lot of fundamentals remain. Yet I want to
say something aspirational

As such I will give a short tour of some complexity theory
concepts ahead of their time

I will assume:
• Propositional logic
• A basic idea of what complexity, P and NP, means
• Some minor math and O-notation

Will hopefully explain the rest

On Guest Lectures

This is a slightly badly timed guest lecture

Course only starting: lot of fundamentals remain. Yet I want to
say something aspirational

As such I will give a short tour of some complexity theory
concepts ahead of their time

I will assume:
• Propositional logic
• A basic idea of what complexity, P and NP, means
• Some minor math and O-notation

Will hopefully explain the rest

Introduction

Part I: Complexity Background
and Tractability

Classical complexity

EXPTIME

PSPACE

NP

P

big-oh, poly, circuit eval, moore’s

cook 1, exptime, satne P

Classical complexity

EXPTIME

PSPACE

NP

P

big-oh, poly, circuit eval, moore’s

cook 1, exptime, sat

ne P

Classical complexity

EXPTIME

PSPACE

NP

P

big-oh, poly, circuit eval, moore’scook 1, exptime, satne P

Classical complexity

EXPTIME

PSPACE

NP

P

big-oh, poly, circuit eval, moore’scook 1, exptime, sat

ne P

Tractability = P?

cook 2, np common

Objection 1: A nicely behaved exponential is sometimes better
than an ugly polynomial.

2n vs. n10

250 < 5010

Objection 2: We simply cannot afford to consider all NP-hard
problems intractable.

Still, we cannot just consider NP tractable: Cook was right!

Tractability = P?

cook 2, np common

Objection 1: A nicely behaved exponential is sometimes better
than an ugly polynomial.

2n vs. n10

250 < 5010

Objection 2: We simply cannot afford to consider all NP-hard
problems intractable.

Still, we cannot just consider NP tractable: Cook was right!

Tractability = P?

cook 2, np common

Objection 1: A nicely behaved exponential is sometimes better
than an ugly polynomial.

2n vs. n10

250 < 5010

Objection 2: We simply cannot afford to consider all NP-hard
problems intractable.

Still, we cannot just consider NP tractable: Cook was right!

Tractability = P?

cook 2, np common

Objection 1: A nicely behaved exponential is sometimes better
than an ugly polynomial.

2n vs. n10

250 < 5010

Objection 2: We simply cannot afford to consider all NP-hard
problems intractable.

Still, we cannot just consider NP tractable: Cook was right!

VERTEX COVER

example

VERTEX COVER

Input: A graph G = (V ,E), a constant k ∈ N.
Output: “Yes” if and only if there exists some V ′ ⊆ V , |V ′| ≤ k
such that every edge in E touches a vertex in V ′.

VERTEX COVER: Example

VERTEX COVER: Example

VERTEX COVER: NP-complete

cook-karp history, proof

VERTEX COVER is known to be NP-complete.

It is one of Karp’s original 21 problems. Reduction from
CHROMATIC NUMBER (graph coloring).

It is easy to bring back to SATISFIABILITY however, or at least
3-SATISFIABILITY.

CLIQUE

CLIQUE

Practical solvability

CLIQUE is also NP-complete (reduction from SATISFIABILITY by
Karp).

dna conflicts, clique, ltl

However, while VERTEX COVER is NP-complete, but it is
solvable in practice for rather large instances (comp. bio.)

However, for CLIQUE we have no practical algorithms for large
instances

LTL MODEL CHECKING is PSPACE-complete, but used in
practice to verify hardware design

Practical solvability

CLIQUE is also NP-complete (reduction from SATISFIABILITY by
Karp).

dna conflicts, clique, ltl

However, while VERTEX COVER is NP-complete, but it is
solvable in practice for rather large instances (comp. bio.)

However, for CLIQUE we have no practical algorithms for large
instances

LTL MODEL CHECKING is PSPACE-complete, but used in
practice to verify hardware design

Practical solvability

CLIQUE is also NP-complete (reduction from SATISFIABILITY by
Karp).

dna conflicts, clique, ltl

However, while VERTEX COVER is NP-complete, but it is
solvable in practice for rather large instances (comp. bio.)

However, for CLIQUE we have no practical algorithms for large
instances

LTL MODEL CHECKING is PSPACE-complete, but used in
practice to verify hardware design

Practical solvability

CLIQUE is also NP-complete (reduction from SATISFIABILITY by
Karp).

dna conflicts, clique, ltl

However, while VERTEX COVER is NP-complete, but it is
solvable in practice for rather large instances (comp. bio.)

However, for CLIQUE we have no practical algorithms for large
instances

LTL MODEL CHECKING is PSPACE-complete, but used in
practice to verify hardware design

Confronting intractability

1 Approximation
2 Randomization
3 “Islands of tractability”
4 Parallelization
5 Parameterization

1. Approximation

approx vc, sat, ptas

Approximation means accepting less than “perfect” solutions to
reach a tractable algorithm.
• Only well defined for optimization problems: e.g.

SATISFIABILITY has no “near” solution.

A algorithm is a c-approximation for a problem P if it computes an
answer that is at most c times worse than the optimal.

VERTEX COVER has a 2-approximation in polynomial time.

CLIQUE cannot easily be approximated (this is a complex matter
however).

PTAS: Polynomial time approximation schemes are the centerpiece.

1. Approximation

approx vc, sat, ptas

Approximation means accepting less than “perfect” solutions to
reach a tractable algorithm.
• Only well defined for optimization problems: e.g.

SATISFIABILITY has no “near” solution.

A algorithm is a c-approximation for a problem P if it computes an
answer that is at most c times worse than the optimal.

VERTEX COVER has a 2-approximation in polynomial time.

CLIQUE cannot easily be approximated (this is a complex matter
however).

PTAS: Polynomial time approximation schemes are the centerpiece.

1. Approximation

approx vc, sat, ptas

Approximation means accepting less than “perfect” solutions to
reach a tractable algorithm.
• Only well defined for optimization problems: e.g.

SATISFIABILITY has no “near” solution.

A algorithm is a c-approximation for a problem P if it computes an
answer that is at most c times worse than the optimal.

VERTEX COVER has a 2-approximation in polynomial time.

CLIQUE cannot easily be approximated (this is a complex matter
however).

PTAS: Polynomial time approximation schemes are the centerpiece.

2. Randomization

Randomized algorithms are algorithms permitted to flip coins

The zoo is quite complex:

ZPPRP coRP

BPP

(BQP)

(PP)

Randomized is faster for many problems in P, but P ?
= BPP

list, zpp, bqp, pp silly

2. Randomization

Randomized algorithms are algorithms permitted to flip coins

The zoo is quite complex:

ZPPRP coRP

BPP

(BQP)

(PP)

Randomized is faster for many problems in P, but P ?
= BPP

list, zpp, bqp, pp silly

3. Islands of Tractability

Not strictly defined, just a subset P ′ ⊂ P of an NP-complete
problem which is in P and has some argument why it is what is
of actual interest.

The most classic way of finding tractable subsets is slicing and
fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more
than 2 literals.

Slicing: For every constant k the k -Clique problem is in P.

Easy but clumsy: parameterized complexity picks up from here

3. Islands of Tractability

Not strictly defined, just a subset P ′ ⊂ P of an NP-complete
problem which is in P and has some argument why it is what is
of actual interest.

The most classic way of finding tractable subsets is slicing and
fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more
than 2 literals.

Slicing: For every constant k the k -Clique problem is in P.

Easy but clumsy: parameterized complexity picks up from here

3. Islands of Tractability

Not strictly defined, just a subset P ′ ⊂ P of an NP-complete
problem which is in P and has some argument why it is what is
of actual interest.

The most classic way of finding tractable subsets is slicing and
fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more
than 2 literals.

Slicing: For every constant k the k -Clique problem is in P.

Easy but clumsy: parameterized complexity picks up from here

3. Islands of Tractability

Not strictly defined, just a subset P ′ ⊂ P of an NP-complete
problem which is in P and has some argument why it is what is
of actual interest.

The most classic way of finding tractable subsets is slicing and
fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more
than 2 literals.

Slicing: For every constant k the k -Clique problem is in P.

Easy but clumsy: parameterized complexity picks up from here

3. Islands of Tractability

Not strictly defined, just a subset P ′ ⊂ P of an NP-complete
problem which is in P and has some argument why it is what is
of actual interest.

The most classic way of finding tractable subsets is slicing and
fixing constants

Fixing constants: SATISFIABILITY is in P if no clause has more
than 2 literals.

Slicing: For every constant k the k -Clique problem is in P.

Easy but clumsy: parameterized complexity picks up from here

4. Parallelization

(log to c) n, n to k

The fan favourite parallelization: spread work among more
machines

The complexity theory is quite interesting, the NC (Nick’s Class
after Nick Pippenger) hierarchy defines how problems may be
split, within P

in general parallelization operates within P to an even greater
extent than randomization:
• Most complex problems actually resist parallelization
• Even if an NP-complete problem can be parallelized this

entails increasing the amount of hardware exponentially
(unless P=NP)

4. Parallelization

(log to c) n, n to k

The fan favourite parallelization: spread work among more
machines

The complexity theory is quite interesting, the NC (Nick’s Class
after Nick Pippenger) hierarchy defines how problems may be
split

, within P

in general parallelization operates within P to an even greater
extent than randomization:
• Most complex problems actually resist parallelization
• Even if an NP-complete problem can be parallelized this

entails increasing the amount of hardware exponentially
(unless P=NP)

4. Parallelization

(log to c) n, n to k

The fan favourite parallelization: spread work among more
machines

The complexity theory is quite interesting, the NC (Nick’s Class
after Nick Pippenger) hierarchy defines how problems may be
split, within P

in general parallelization operates within P to an even greater
extent than randomization:
• Most complex problems actually resist parallelization
• Even if an NP-complete problem can be parallelized this

entails increasing the amount of hardware exponentially
(unless P=NP)

4. Parallelization

(log to c) n, n to k

The fan favourite parallelization: spread work among more
machines

The complexity theory is quite interesting, the NC (Nick’s Class
after Nick Pippenger) hierarchy defines how problems may be
split, within P

in general parallelization operates within P to an even greater
extent than randomization:
• Most complex problems actually resist parallelization
• Even if an NP-complete problem can be parallelized this

entails increasing the amount of hardware exponentially
(unless P=NP)

5. Parameterization

Part II: Fixed Parameter
Tractability

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?1

?3 ?2

?4 ?5 ?3 ?5

? ? ?

a d

b c a c

c d b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?1

?3 ?2

?4 ?5 ?3 ?5

? ? ?

a d

b c a c

c d b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?3 ?2

?4 ?5 ?3 ?5

? ? ?

a d

b c a c

c d b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?3 ?2

?4 ?5 ?3 ?5

? ? ?

a d

b c a c

c d b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3 ?2

?4 ?5 ?3 ?5

? ? ?

a

d

b c a c

c d b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3 ?2

?4 ?5 ?3 ?5

? ? ?

a

d

b c a c

c d b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?4 ?5 ?3 ?5

? ? ?

a

d

b c a c

c d b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4 ?5 ?3 ?5

? ? ?

a

d

b

c a c

c d b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4 ?5 ?3 ?5

? ? ?

a

d

b

c a c

c d b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4

?5 ?3 ?5

? ? ?

a

d

b

c a c

c d b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4

?5 ?3 ?5

?

? ?

a

d

b

c a c

c

d b f

Solving 3-VERTEX COVER

a

b

cc

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4

?5 ?3 ?5

?

? ?

a

d

b

c a c

c

d b f

Solving 3-VERTEX COVER

a

b

cc

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4

?5 ?3 ?5

? ? ?

a

d

b

c a c

c

d b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4

?5 ?3 ?5

?

?

?

a

d

b

c a c

c d

b f

Solving 3-VERTEX COVER

a

b

c

c

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4

?5 ?3 ?5

? ? ?

a

d

b

c a c

c d

b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4

?5 ?3 ?5

? ? ?

a

d

b

c a c

c d

b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4 ?

5 ?3 ?5

? ? ?

a

d

b c

a c

c d

b f

Solving 3-VERTEX COVER

a

b

cc

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4 ?

5 ?3 ?5

? ? ?

a

d

b c

a c

c d

b f

Solving 3-VERTEX COVER

a

b

cc

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4

?

5

?3 ?5

? ? ?

a

d

b c

a c

c d

b f

Solving 3-VERTEX COVER

a

b

cc

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?2

?

4

?

5

?3 ?5

? ? ?

a

d

b c

a c

c d

b f

Solving 3-VERTEX COVER

a

b

c

c

d

d

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3 ?

2

?

4

?

5

?3 ?5

? ? ?

a d

b c

a c

c d

b f

Solving 3-VERTEX COVER

a

b

c

c

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3 ?

2

?

4

?

5

?3 ?5

? ? ?

a d

b c

a c

c d

b f

Solving 3-VERTEX COVER

a

b

c

c

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5

?3 ?5

? ? ?

a d

b c

a c

c d

b f

Solving 3-VERTEX COVER

a

b

c

c

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5 ?

3 ?5

? ? ?

a d

b c a

c

c d

b f

Solving 3-VERTEX COVER

a

b

c

c

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5 ?

3 ?5

? ? ?

a d

b c a

c

c d

b f

Solving 3-VERTEX COVER

a

b

c

c

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5

?

3

?5

? ? ?

a d

b c a

c

c d

b f

Solving 3-VERTEX COVER

a

b

c

c

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5

?

3

?5

? ? ?

a d

b c a

c

c d

b f

Solving 3-VERTEX COVER

a

b

c

c

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5

?

3

?5

? ? ?

a d

b c a

c

c d

b f

Solving 3-VERTEX COVER

a

b

c

c

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5

?

3 ?

5

? ? ?

a d

b c a c

c d

b f

Solving 3-VERTEX COVER

a

b

cc

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5

?

3 ?

5

? ? ?

a d

b c a c

c d

b f

Solving 3-VERTEX COVER

a

b

cc

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5

?

3

?

5

? ? ?

a d

b c a c

c d

b f

Solving 3-VERTEX COVER

a

b

cc

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5

?

3

?

5

? ? ?

a d

b c a c

c d b

f

Solving 3-VERTEX COVER

a

b

cc

dd

e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5

?

3

?

5

? ?

?

a d

b c a c

c d b f

Solving 3-VERTEX COVER

a

b

cc

dd

e

ff

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5

?

3

?

5

? ?

?

a d

b c a c

c d b f

Solving 3-VERTEX COVER

a

b

cc

dd

e

ff

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5

?

3

?

5

? ? ?

a d

b c a c

c d b f

Solving 3-VERTEX COVER

a

b

c

c

d

d e

f

f

g

h

1

2

3

4

5

6

7

8

9 10

11

?

1

?

3

?

2

?

4

?

5

?

3

?

5

? ? ?

a d

b c a c

c d b f

k -VERTEX COVER

Given an instance (G, k) of VERTEX COVER, this bounded
branching algorithm can solve it in time

2k · O(|G|).

This should be compared to brute force algorithms for, e.g.,
CLIQUE that run in time

Ω(|G|k).

We say that VERTEX COVER parameterized by k is
fixed-parameter tractable.

k -VERTEX COVER

Given an instance (G, k) of VERTEX COVER, this bounded
branching algorithm can solve it in time

2k · O(|G|).

This should be compared to brute force algorithms for, e.g.,
CLIQUE that run in time

Ω(|G|k).

We say that VERTEX COVER parameterized by k is
fixed-parameter tractable.

k -VERTEX COVER

Given an instance (G, k) of VERTEX COVER, this bounded
branching algorithm can solve it in time

2k · O(|G|).

This should be compared to brute force algorithms for, e.g.,
CLIQUE that run in time

Ω(|G|k).

We say that VERTEX COVER parameterized by k is
fixed-parameter tractable.

Parameterizations

Definition. Let Σ be a finite alphabet. A parameterization of Σ∗

is a mapping κ : Σ∗ → N that is computable in polynomial time.

Example. We can parameterize VERTEX COVER by setting

κ(G, k) = k .

Parameterizations

Definition. Let Σ be a finite alphabet. A parameterization of Σ∗

is a mapping κ : Σ∗ → N that is computable in polynomial time.

Example. We can parameterize VERTEX COVER by setting

κ(G, k) = k .

Parameterized problems

Definition. Let Σ be a finite alphabet. A parameterized problem
over Σ is a pair (Q, κ) consisting of
• a set Q ⊆ Σ∗ of strings over Σ, and
• a parameterization κ of Σ∗.

FPT algorithms

Definition. Let Σ be a finite alphabet and κ a parameterization
of Σ∗.
• An algorithm is FPT w.r.t. κ if there is a computable

function f : N→ N and a polynomial p such that for every
x ∈ Σ∗, the algorithm, when given x , has running time at
most

f (κ(x)) · p(|x |).

Parameterized tractability

Definition. Let Σ be a finite alphabet and κ a parameterization
of Σ.

A parameterized problem (Q, κ) over Σ is fixed-parameter
tractable if there is an FPT-algorithm w.r.t. κ that decides Q.

FPT is the class of all fixed-parameter tractable problems.

Parameterized tractability

Definition. Let Σ be a finite alphabet and κ a parameterization
of Σ.

A parameterized problem (Q, κ) over Σ is fixed-parameter
tractable if there is an FPT-algorithm w.r.t. κ that decides Q.

FPT is the class of all fixed-parameter tractable problems.

Kernelization

⇒

Kernelization

⇒

Kernelization

⇒

Solving 4-VERTEX COVER

k = 4

a

b

c

d e

f

g

h

deg(c) > 4deg(f) > 3|E | < 22

Solving 4-VERTEX COVER

k = 4

a

b

c

d e

f

g

h

deg(c) > 4

deg(f) > 3|E | < 22

Solving 4-VERTEX COVER

k = 3

a

b

c

d e

f

g

h

deg(c) > 4deg(f) > 3|E | < 22

Solving 4-VERTEX COVER

k = 3

a

b

c

d e

f

g

h

deg(c) > 4

deg(f) > 3

|E | < 22

Solving 4-VERTEX COVER

k = 2

a

b

c

d e

f

g

h

deg(c) > 4deg(f) > 3|E | < 22

Solving 4-VERTEX COVER

k = 2

a

b

c

d e

f

g

h

deg(c) > 4deg(f) > 3

|E | < 22

Solving k -VERTEX COVER

More generally: exhaustively applying the 3 reduction rules
transforms any VERTEX COVER instance into one where every
vertex has a degree 2 ≤ d ≤ k

It does so in polynomial time in |G|

Combinatorics show that a k -coverable graph where all vertices
have degree 2 ≤ d ≤ k cannot have more than k2 vertices

A polynomial procedure making the whole problem work in terms
of k !

Applying the bounded branching algorithm to a reduced graph
gives us O(1.2738k)k2

Solving k -VERTEX COVER

More generally: exhaustively applying the 3 reduction rules
transforms any VERTEX COVER instance into one where every
vertex has a degree 2 ≤ d ≤ k

It does so in polynomial time in |G|

Combinatorics show that a k -coverable graph where all vertices
have degree 2 ≤ d ≤ k cannot have more than k2 vertices

A polynomial procedure making the whole problem work in terms
of k !

Applying the bounded branching algorithm to a reduced graph
gives us O(1.2738k)k2

Solving k -VERTEX COVER

More generally: exhaustively applying the 3 reduction rules
transforms any VERTEX COVER instance into one where every
vertex has a degree 2 ≤ d ≤ k

It does so in polynomial time in |G|

Combinatorics show that a k -coverable graph where all vertices
have degree 2 ≤ d ≤ k cannot have more than k2 vertices

A polynomial procedure making the whole problem work in terms
of k !

Applying the bounded branching algorithm to a reduced graph
gives us O(1.2738k)k2

Solving k -VERTEX COVER

More generally: exhaustively applying the 3 reduction rules
transforms any VERTEX COVER instance into one where every
vertex has a degree 2 ≤ d ≤ k

It does so in polynomial time in |G|

Combinatorics show that a k -coverable graph where all vertices
have degree 2 ≤ d ≤ k cannot have more than k2 vertices

A polynomial procedure making the whole problem work in terms
of k !

Applying the bounded branching algorithm to a reduced graph
gives us O(1.2738k)k2

Kernelizations

Let (Q, κ) be a parameterized problem over Σ.
A kernelization of (Q, κ) is a mapping

K : Σ∗ → Σ∗

such that
• x ∈ Q ⇔ K (x) ∈ Q,
• there is a computable function g such that
|K (x)| < g(κ(x)).

Theorem
If (Q, κ) has a polynomial-time computable kernelization, then
(Q, κ) ∈ FPT .

Theorem (!)

If (Q, κ) ∈ FPT then (Q, κ) has a polynomial-time computable
kernelization.

Kernelizations

Let (Q, κ) be a parameterized problem over Σ.
A kernelization of (Q, κ) is a mapping

K : Σ∗ → Σ∗

such that
• x ∈ Q ⇔ K (x) ∈ Q,
• there is a computable function g such that
|K (x)| < g(κ(x)).

Theorem
If (Q, κ) has a polynomial-time computable kernelization, then
(Q, κ) ∈ FPT .

Theorem (!)

If (Q, κ) ∈ FPT then (Q, κ) has a polynomial-time computable
kernelization.

Kernelizations

Let (Q, κ) be a parameterized problem over Σ.
A kernelization of (Q, κ) is a mapping

K : Σ∗ → Σ∗

such that
• x ∈ Q ⇔ K (x) ∈ Q,
• there is a computable function g such that
|K (x)| < g(κ(x)).

Theorem
If (Q, κ) has a polynomial-time computable kernelization, then
(Q, κ) ∈ FPT .

Theorem (!)

If (Q, κ) ∈ FPT then (Q, κ) has a polynomial-time computable
kernelization.

FPT and XP

XP

FPT

FPT and XP

XP

FPT

The parameterized hierarchy

XP

W[P]

...

W[1]

FPT

Parameterized Hardness

Part III: Proving Limited
Parameterizability

Reductions

To show that a problem P is hard:

• Pick a problem P ′ we already know is hard
• Create a reduction which takes any problem p′ ∈ P ′ and

constructs a problem p ∈ P which has the same answer as p′

1 The translation procedure can’t be too powerful (or it might
just solve p′!)

2 p can’t be too much larger than p′ (or p becomes easy in in
terms of its size!)

• For P and NP: any reduction which runs in P solves both
• For parameterized complexity more care is needed

Reductions

To show that a problem P is hard:
• Pick a problem P ′ we already know is hard

• Create a reduction which takes any problem p′ ∈ P ′ and
constructs a problem p ∈ P which has the same answer as p′

1 The translation procedure can’t be too powerful (or it might
just solve p′!)

2 p can’t be too much larger than p′ (or p becomes easy in in
terms of its size!)

• For P and NP: any reduction which runs in P solves both
• For parameterized complexity more care is needed

Reductions

To show that a problem P is hard:
• Pick a problem P ′ we already know is hard
• Create a reduction which takes any problem p′ ∈ P ′ and

constructs a problem p ∈ P which has the same answer as p′

1 The translation procedure can’t be too powerful (or it might
just solve p′!)

2 p can’t be too much larger than p′ (or p becomes easy in in
terms of its size!)

• For P and NP: any reduction which runs in P solves both
• For parameterized complexity more care is needed

Reductions

To show that a problem P is hard:
• Pick a problem P ′ we already know is hard
• Create a reduction which takes any problem p′ ∈ P ′ and

constructs a problem p ∈ P which has the same answer as p′

1 The translation procedure can’t be too powerful (or it might
just solve p′!)

2 p can’t be too much larger than p′ (or p becomes easy in in
terms of its size!)

• For P and NP: any reduction which runs in P solves both
• For parameterized complexity more care is needed

Reductions

To show that a problem P is hard:
• Pick a problem P ′ we already know is hard
• Create a reduction which takes any problem p′ ∈ P ′ and

constructs a problem p ∈ P which has the same answer as p′

1 The translation procedure can’t be too powerful (or it might
just solve p′!)

2 p can’t be too much larger than p′ (or p becomes easy in in
terms of its size!)

• For P and NP: any reduction which runs in P solves both
• For parameterized complexity more care is needed

Reductions

To show that a problem P is hard:
• Pick a problem P ′ we already know is hard
• Create a reduction which takes any problem p′ ∈ P ′ and

constructs a problem p ∈ P which has the same answer as p′

1 The translation procedure can’t be too powerful (or it might
just solve p′!)

2 p can’t be too much larger than p′ (or p becomes easy in in
terms of its size!)

• For P and NP: any reduction which runs in P solves both

• For parameterized complexity more care is needed

Reductions

To show that a problem P is hard:
• Pick a problem P ′ we already know is hard
• Create a reduction which takes any problem p′ ∈ P ′ and

constructs a problem p ∈ P which has the same answer as p′

1 The translation procedure can’t be too powerful (or it might
just solve p′!)

2 p can’t be too much larger than p′ (or p becomes easy in in
terms of its size!)

• For P and NP: any reduction which runs in P solves both
• For parameterized complexity more care is needed

Parameterized Reductions

Definition. Let (Q, κ) and (Q′, κ′) be two parameterized
problems over Σ and Γ.

An FPT-reduction from (Q, κ) to (Q′, κ′) is a mapping
R : Σ∗ → Γ∗ such that

1 x ∈ Q ⇔ R(x) ∈ Q′, for all x ∈ Σ∗,
2 R is FPT-computable w.r.t. κ, and
3 there is a computable function g such that
κ′(R(x)) ≤ g(κ(x)) for all x ∈ Σ∗.

Demonstrating a Reduction

Unfortunately demonstrating a reduction gets complex

Suffice to say: k -Clique can be proven to be W[1]-hard

The top of the hierarchy, XP, is also interesting

Demonstrating a Reduction

Unfortunately demonstrating a reduction gets complex

Suffice to say: k -Clique can be proven to be W[1]-hard

The top of the hierarchy, XP, is also interesting

Demonstrating a Reduction

Unfortunately demonstrating a reduction gets complex

Suffice to say: k -Clique can be proven to be W[1]-hard

The top of the hierarchy, XP, is also interesting

The class XP

Definition. Let (Q, κ) be a parameterized problem over Σ. Then
(Q, κ) belongs to XP if there is a function f : N→ N and an
algorithm that decides Q and runs on input x ∈ Σ∗ in time

|x |f (κ(x)) + f (κ(x)).

In other words, XP is the class of all slice-wise polynomial
problems.

Recall slicing as an island of tractability technique

This should illustrate why it can be viewed as crude compared
to parameterized complexity: it is the worst case of the
hierarchy

The class XP

Definition. Let (Q, κ) be a parameterized problem over Σ. Then
(Q, κ) belongs to XP if there is a function f : N→ N and an
algorithm that decides Q and runs on input x ∈ Σ∗ in time

|x |f (κ(x)) + f (κ(x)).

In other words, XP is the class of all slice-wise polynomial
problems.

Recall slicing as an island of tractability technique

This should illustrate why it can be viewed as crude compared
to parameterized complexity: it is the worst case of the
hierarchy

The class XP

Definition. Let (Q, κ) be a parameterized problem over Σ. Then
(Q, κ) belongs to XP if there is a function f : N→ N and an
algorithm that decides Q and runs on input x ∈ Σ∗ in time

|x |f (κ(x)) + f (κ(x)).

In other words, XP is the class of all slice-wise polynomial
problems.

Recall slicing as an island of tractability technique

This should illustrate why it can be viewed as crude compared
to parameterized complexity: it is the worst case of the
hierarchy

The class XP

Definition. Let (Q, κ) be a parameterized problem over Σ. Then
(Q, κ) belongs to XP if there is a function f : N→ N and an
algorithm that decides Q and runs on input x ∈ Σ∗ in time

|x |f (κ(x)) + f (κ(x)).

In other words, XP is the class of all slice-wise polynomial
problems.

Recall slicing as an island of tractability technique

This should illustrate why it can be viewed as crude compared
to parameterized complexity: it is the worst case of the
hierarchy

The class XP

Definition. Let (Q, κ) be a parameterized problem over Σ. Then
(Q, κ) belongs to XP if there is a function f : N→ N and an
algorithm that decides Q and runs on input x ∈ Σ∗ in time

|x |f (κ(x)) + f (κ(x)).

In other words, XP is the class of all slice-wise polynomial
problems.

Recall slicing as an island of tractability technique

This should illustrate why it can be viewed as crude compared
to parameterized complexity: it is the worst case of the
hierarchy

Conclusion

This completes the small tour of tractability hunting

Good books to read:

Computational Complexity by Christos H. Paradimitriou

An excellent treatment of the central concepts in computational
complexity.

Parameterized Complexity Theory by Jörg Flum and Martin
Grohe

A standard text on parameterized complexity theory.

For now: Thanks for listening and enjoy the rest of the course!

Conclusion

This completes the small tour of tractability hunting

Good books to read:

Computational Complexity by Christos H. Paradimitriou

An excellent treatment of the central concepts in computational
complexity.

Parameterized Complexity Theory by Jörg Flum and Martin
Grohe

A standard text on parameterized complexity theory.

For now: Thanks for listening and enjoy the rest of the course!

Conclusion

This completes the small tour of tractability hunting

Good books to read:

Computational Complexity by Christos H. Paradimitriou

An excellent treatment of the central concepts in computational
complexity.

Parameterized Complexity Theory by Jörg Flum and Martin
Grohe

A standard text on parameterized complexity theory.

For now: Thanks for listening and enjoy the rest of the course!

