	Porous media Materials with microstructure consisting of a mixture of a solid matrix (sv. <i>fastsubstans</i>) and void or pores (sv. <i>hålrum</i>). We assume that			
Review: Porous Media Flow	 the matrix is undeformable, the pores are interconnected, 			
Martin Berggren	 adhesive and capillary forces dominates over inertia when a fluid flows through the pores 			
10 oktober 2011	To simulate large-scale effects of fluid flow through porous media, a continuum approximation of the microscopic properties is typically used. <i>Porous ceramic with</i> <i>interconnected pores that</i> <i>vary in size from</i> 5–500 μm. (<i>Source: Wikimedia</i> <i>commons</i>).			
Martin Berggren () Review: Porous Media Flow 10 oktober 2011 1/7	Martin Berggren () Review: Porous Media Flow 10 oktober 2011 2 / 7			
Porosity and REV	Mass conservation			
 B_d(x₀): Ball of diameter d centered at x₀ with volume B_d(x₀) Void indicator: γ(x) =	 Control Volume: V. We assume V ≫ REV ρ: density of the fluid in the void (in kg/m³) Mass of fluid in the pores of V: m = ∫_V ρφ dV S: a surface with normal vector n. (Dimensions larger than REV) Total mass flux through S: Q_m = ∫_S ρ n · u dS (in kg/s), where u: the apparent velocity or Darcy velocity (sv. makroskopisk medelhastighet) The apparent velocity is an averaged velocity that gives the same flux as the real velocity Q_m > 0, means net flux out of from a closed volume with boundary S 			

10 oktober 2011 3 / 7

Martin Berggren ()

Review: Porous Media Flow

10 oktober 2011 4 / 7

Martin Berggren ()

Review: Porous Media Flow

Mass conservation

- Assume that all pores are filed with one fluid phase
- Changes in the mass of the fluid in a control volume V can only occur due to net in/outflux through S:

$$\underbrace{\frac{d}{dt} \int_{V} \rho \phi \, dV}_{\text{mass increase}} = \underbrace{-\int_{S} \mathbf{n} \cdot (\rho \mathbf{u}) \, dS}_{\text{influx of material}} = [\text{Divergence Theorem}]$$
$$= -\int_{V} \nabla \cdot (\rho \mathbf{u}) \, dV$$

► V arbitrary implies that

$$\frac{\partial}{\partial t}(\rho\phi) + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

Special case: constant density. The fluid is then incompressible (e.g. water) and the apparent velocity field is divergence free:

$$\nabla \cdot \boldsymbol{u} = 0$$

Martin Berggren ()	Review: Porous Media Flow	10 oktober 2011 5 / 7	Martin Berggren ()	Rev

Darcy's law

$$\boldsymbol{u} = -\frac{K}{\mu} (\nabla p - \rho g \boldsymbol{e}_g)$$

- *K*: permeability (in m^3). Measures the medium's ability for fluid flow.
- μ : dynamic viscosity (in Pas). Measures the fluid's inner friction.
- e_g : unit vector in direction of gravity
- A constitutive relation that holds for many materials
- First shown empirically (Henry Darcy 1856). Can be derived by so-called homogenization of the Navier–Stokes equations
- Above form assumes isotropic material: the same permeability properties in each direction
- ► For **anisotropic** media, the scalar *K* will be replaced by a 3-by-3 symmetric positive-definite matrix.

10 okt	ober 2011	5 / 7		Martin Berggren ()	Review: Porous Media Flow	10 oktober 2011 6 / 7	
--------	-----------	-------	--	--------------------	---------------------------	-----------------------	--

Darcy's law + mass conservation for constant ρ

Assume $-e_g = e_y = (0, 1, 0) = \nabla y$. Darcy's law:

$$\boldsymbol{u} = -\frac{K}{\mu} (\nabla p - \rho g \boldsymbol{e}_g) = -\frac{K}{\mu} (\nabla p + \rho g \nabla y)$$
$$= -\frac{K\rho g}{\mu} \nabla \left(\frac{p}{\rho g} + y\right) = -\kappa \nabla (\hat{p} + y) - \kappa \nabla h$$

where

- $\kappa = K\rho g/\mu$: hydraulic conductivity (in m/s)
- \hat{p} : pore gauge pressure (in m). (The pressure in m water column).
- $h = \hat{p} + y$: the **pressure head** (in m)
- Together with the incompressibility condition $\nabla \cdot \boldsymbol{u} = 0$, we find

 $-\nabla \cdot (\kappa \nabla)h = 0$

Martin Berggren ()

Review: Porous Media Flow