

Martin Berggren

14 november 2011

Martin Berggren ()

Conservation laws & FVM

14 november 2011 1 / 12

Conservation laws in one space dimension

Differential form:

$$u_t + f(u)_x = 0; (1)$$

Integral form:

$$\frac{d}{dt}\int_{a}^{b} u\,dx + f(u(b,t)) - f(u(a,t)) = 0,$$
(2)

for any interval (a, b).

Equation (1) is written in **conservative form**.

If everything is smooth, the chain rule yields that equation (1) also can be written in the **primitive form**

$$u_t + f'(u)u_x = 0;$$

Conservation laws

Def.: A (scalar) **conservation law** is a partial differential equation of the type

$$\frac{\partial \lambda}{\partial t} + \nabla \cdot \boldsymbol{f}(\lambda) = 0$$

λ: conserved quantity. Examples: density of mass, momentum (sv. *rörelsemängd*), or energy, concentration of a chemical compound.

f: flux function; simplest example: $f = u\lambda$. The flux function is a *nonlinear* function of the conserved quantity in many interesting cases.

In integral form: for any control volume V holds

$$\frac{d}{dt} \int_{V} \lambda \, dV + \int_{\partial V} \boldsymbol{n} \cdot \boldsymbol{f}(\lambda) \, dS = 0$$

Martin Berggren ()

Conservation laws & FVM

14 november 2011 2 / 12

The transport equation

Simplest example of 1D conservation law, the **transport equation**

$$u_t + cu_x = 0$$

Expresses **transport** of a function in the positive *x*-axis direction and has the general solution

$$u(x,t) = f(x - ct)$$

for a given (differentiable) function f.

Characteristics for the transport equation

The **characteristics** of the transport equation $u_t + cu_x$ are the lines in the (x, t) plane satisfying the equation $x - ct = x_0$,

The characteristic curves (lines) in parametric form: $(x_0 + ct, t) = (X(t), t)$, where X(t) is the solution to

$$\dot{X}(t) = c \qquad t > 0,$$

$$X(0) = x_0.$$

The solution to the transport equation is constant along the characteristics

$$\frac{d}{dt}u(X(t),t) = u_t(X(t),t) + u_x(X(t),t)\dot{X}(t)$$
$$= u_t(X(t),t) + cu_x(X(t),t) = 0$$

Conservation laws & FVM

Nonlinear conservation laws

- Discontinuities can both appear and disappear in the solution to nonlinear conservation laws
- Shock (sv. stötar): discontinuities in the solution appearing when characteristics intersect
- Rarefaction wave (sv. *expansionsvåg*): a discontinuity is smeared out by diverging characteristics
- Thus, an important feature of numerical schemes for conservation laws: the ability to handle discontinuities in the solution!

Characteristics for nonlinear conservation laws

Smooth solutions to nonlinear conservation laws are also constant along each characteristic curve. To see this, assume that u is a smooth solution to

$$u_t + f(u)_x = u_t + f'(u)u_x = 0.$$

Define the characteristic curves (X(t), t) where X(t) solves the nonlinear ODE

$$X(t) = f'(u(X(t), t)) \quad t > 0,$$

$$X(0) = x_0.$$
(3)

Then u(X(t), t) is constant:

$$\frac{d}{dt}u(X(t),t) = u_t(X(t),t) + u_x(X(t),t)\dot{X}(t) = u_t(X(t),t) + f'(u(X(t),t)u_x(X(t),t) = 0)$$

The right-hand side of (3) is constant (since u(X(t), t) is constant)

Thus the characteristics are also here straight lines

Martin Berggren ()

```
Conservation laws & FVM
```

14 november 2011 6 / 12

Finite volume methods for 1D conservation laws

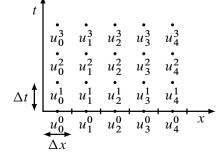
The finite volume method seeks approximations to **cell averages** at times *t_n*:

$$u_i^n \approx \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} u(x, t_n) \, dx$$

A family of **conservative**, **explicit** schemes:

$$u_i^{n+1} = u_i^n - \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right)$$
(4)

 $F_{i+1/2}^n \approx f(u(x_{i+1/2}, t_n))$: numerical flux function. Defines the particular method.



14 november 2011 5 / 12

Martin Berggren ()

Conservation laws & FVM

The upwind method

Recall: $u_t + f(u)_x = u_t + f'(u)u_x = 0$. Thus:

f'(u) > 0: transport to the **right** f'(u) < 0: transport to the **left**

Motivates the choice

$$F_{i+1/2} = \begin{cases} f(u_i^n) & \text{if } f'(u) > 0, \\ f(u_{i+1}^n) & \text{if } f'(u) < 0 \end{cases}$$

The flux function is evaluated in the "upwind direction."

Yields the scheme:

$$u_i^{n+1} = \begin{cases} u_i^n - \frac{\Delta t}{\Delta x} \left(f(u_i^n) - f(u_{i-1}^n) \right) & \text{if } f' > 0, \\ u_i^n - \frac{\Delta t}{\Delta x} \left(f(u_{i+1}^n) - f(u_i^n) \right) & \text{if } f' < 0 \end{cases}$$

Martin Berggren ()

Conservation laws & FVM

14 november 2011 9 / 12

14 november 2011

11/12

Second-order-accurate methods

In lab 1 we tested a method that was second order in space and time: the Richtmyer two-step Lax–Wendroff method

- Performs much better for smooth solutions
- However, tends to generate oscillations around discontinuities

More advanced methods: "high-resolution methods"

- Second-order accurate (or better) in smooth regions of the solution
- A *limiter* or *artificial dissipation* used in the cells around discontinuities to avoid oscillations. The scheme typically reduces to an upwind-like scheme around the shock
- The scheme becomes nonlinear! Needs "sensors" that detects regions of sharp gradients.

The Lax-Friedrich scheme

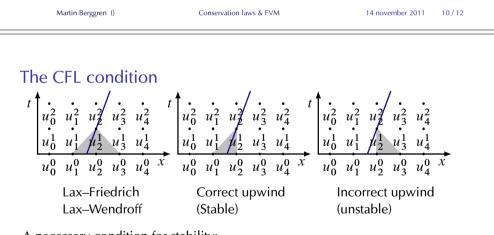
$$u_i^{n+1} = \frac{1}{2} \left(u_{i+1}^n + u_{i-1}^n \right) + \frac{\Delta t}{2\Delta x} \left[f(u_{i+1}^n) - f(u_{i-1}^n) \right]$$

Belongs to the family (4) of schemes with the numerical flux

$$F_{i+1/2}^{n} = \frac{1}{2} \left[f(u_{i+1}^{n}) + f(u_{i}^{n}) \right] - \frac{\Delta x}{2\Delta t} \left[u_{i+1}^{n} - u_{i}^{n} \right]$$

The upwind and Lax-Friedrich schemes behave similarly:

- Very robust and stable
- Only first-order accurate in space and time for smooth solutions: need very small Δt , Δx for accurate solutions
- Tend to smear out sharp spatial gradients



A necessary condition for stability:

The characteristics through the "update" point must pass through the **numerical domain of dependency** (the gray region)

From picture, for schemes involving points u_{i-1}^n , u_i^n , and u_{i+1}^n ,

$$\frac{\Delta t}{\Delta x} \le \frac{1}{c}$$

Thus, it is necessary that $\Delta t \leq \Delta x/c$

Martin Berggren ()

Conservation laws & FVM

Martin Berggren ()