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Conservation laws

Def.: A (scalar) conservation law is a partial differential equation of the type

@�

@t
C r � f .�/ D 0

�: conserved quantity. Examples: density of mass, momentum
(sv. rörelsemängd), or energy, concentration of a chemical compound.

f : flux function; simplest example: f D u�. The flux function is a
nonlinear function of the conserved quantity in many interesting cases.

In integral form: for any control volume V holds

d
dt

Z

V
� dV C

Z

@V
n � f .�/ dS D 0
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Conservation laws in one space dimension

Differential form:
ut C f .u/x D 0I (1)

Integral form:

d
dt

Z b

a
u dxC f .u.b; t// � f .u.a; t// D 0; (2)

for any interval .a; b/.

Equation (1) is written in conservative form.
If everything is smooth, the chain rule yields that equation (1) also can be
written in the primitive form

ut C f 0.u/ux D 0I
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The transport equation

Simplest example of 1D conservation law, the transport equation

ut C cux D 0

Expresses transport of a function in the positive x-axis direction and has the
general solution

u.x; t/ D f .x � ct/

for a given (differentiable) function f .
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Characteristics for the transport equation

The characteristics of the transport equation ut C cux are the lines in the
.x; t/ plane satisfying the equation x � ct D x0,

The characteristic curves (lines) in parametric form: .x0 C ct; t/ D .X.t/; t/,
where X.t/ is the solution to

PX.t/ D c t > 0;

X.0/ D x0:

The solution to the transport equation is
constant along the characteristics

d
dt

u.X.t/; t/ D ut .X.t/; t/ C ux.X.t/; t/ PX.t/

D ut .X.t/; t/ C cux.X.t/; t/ D 0

Martin Berggren () Conservation laws & FVM 14 november 2011 5 / 12

Characteristics for nonlinear conservation laws

Smooth solutions to nonlinear conservation laws are also constant along
each characteristic curve. To see this, assume that u is a smooth solution to

ut C f .u/x D ut C f 0.u/ux D 0:

Define the characteristic curves .X.t/; t/ where X.t/ solves the nonlinear
ODE

PX.t/ D f 0.u.X.t/; t// t > 0;

X.0/ D x0:
(3)

Then u.X.t/; t/ is constant:
d
dt

u.X.t/; t/ D ut .X.t/; t/ C ux.X.t/; t/ PX.t/

D ut .X.t/; t/ C f 0.u.X.t/; t/ux.X.t/; t/ D 0

The right-hand side of (3) is constant (since u.X.t/; t/ is constant)

Thus the characteristics are also here straight lines
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Nonlinear conservation laws

I Discontinuities can both appear and disappear in the solution to
nonlinear conservation laws

I Shock (sv. stötar): discontinuities in the solution appearing when
characteristics intersect

I Rarefaction wave (sv. expansionsvåg): a discontinuity is smeared out
by diverging characteristics

I Thus, an important feature of numerical schemes for conservation laws:
the ability to handle discontinuities in the solution!
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Finite volume methods for 1D conservation laws
The finite volume method seeks approximations to cell averages at times tn:

un
i � 1

�x

Z xiC1=2

xi�1=2

u.x; tn/ dx

A family of conservative, explicit schemes:

unC1
i D un

i � �t

�x

�
F n

iC1=2 � F n
i�1=2

�
(4)

F n
iC1=2

� f .u.xiC1=2; tn//: numerical flux function. Defines the
particular method.
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The upwind method

Recall: ut C f .u/x D ut C f 0.u/ux D 0. Thus:

f 0.u/ > 0: transport to the right
f 0.u/ < 0: transport to the left

Motivates the choice

FiC1=2 D
(

f .un
i / if f 0.u/ > 0,

f .un
iC1/ if f 0.u/ < 0

The flux function is evaluated in the “upwind direction.”

Yields the scheme:

unC1
i D

(
un

i � �t
�x

�
f .un

i / � f .un
i�1/

�
if f 0 > 0,

un
i � �t

�x

�
f .un

iC1/ � f .un
i /

�
if f 0 < 0
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The Lax–Friedrich scheme

unC1
i D 1

2

�
un

iC1 C un
i�1

�
C �t

2�x

�
f .un

iC1/ � f .un
i�1/

�

Belongs to the family (4) of schemes with the numerical flux

F n
iC1=2 D 1

2

�
f .un

iC1/ C f .un
i /

�
� �x

2�t

�
un

iC1 � un
i

�

The upwind and Lax–Friedrich schemes behave similarly:
I Very robust and stable
I Only first-order accurate in space and time for smooth solutions: need

very small �t , �x for accurate solutions
I Tend to smear out sharp spatial gradients
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Second-order-accurate methods

In lab 1 we tested a method that was second order in space and time:
the Richtmyer two-step Lax–Wendroff method

I Performs much better for smooth solutions
I However, tends to generate oscillations around discontinuities

More advanced methods: “high-resolution methods”
I Second-order accurate (or better) in smooth regions of the solution
I A limiter or artificial dissipation used in the cells around discontinuities

to avoid oscillations. The scheme typically reduces to an upwind-like
scheme around the shock

I The scheme becomes nonlinear! Needs “sensors” that detects regions of
sharp gradients.
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The CFL condition
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Lax–Friedrich
Lax–Wendroff

Correct upwind
(Stable)

Incorrect upwind
(unstable)

A necessary condition for stability:

The characteristics through the “update” point must pass through the
numerical domain of dependency (the gray region)

From picture, for schemes involving points un
i�1, un

i , and un
iC1,

�t

�x
� 1

c

Thus, it is necessary that �t � �x=c
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