

$-\Delta u = f \quad \text{in } \Omega$ $u = 0 \quad \text{on } \Gamma_D \qquad \text{Finite-element}$ $\frac{\partial u}{\partial n} = g \quad \text{on } \Gamma_N \qquad \Rightarrow \quad \mathbf{A}\mathbf{u} = \mathbf{b}$

Steps in the process:

- 1. Apply a **test function** v to the PDE and integrate. The test function is arbitrary but **vanishing** at the part of the boundary where u is known (Γ_D)
- 2. Use **integration by parts** to move one derivative from the **trial function** (*u*) to the test function. Avoids the need to differentiate the trial function twice. Yields a **variational problem**.
- 3. Apply a **Galerkin approximation** of the variational form using continuous, piecewise-linear functions

Martin Be	rggren ()	
-----------	-----------	--

10 oktober 2011 3 / 11

• A system of *n* linear equation is equivalent to **one** equation—a

 $v_1(a_{11}u_1 + a_{12}u_2) + v_2(a_{21}u_1 + a_{22}u_2) = v_1b_1 + v_2b_2 \quad \forall v_1, v_2$

 $\mathbf{A}\mathbf{u} = \mathbf{b} \quad \Longleftrightarrow \quad \mathbf{v}^T \mathbf{A}\mathbf{u} = \mathbf{v}^T \mathbf{b} \qquad \forall \mathbf{v} \in \mathbb{R}^n$

 $a_{11}u_1 + a_{12}u_2 = b_1$ $a_{21}u_1 + a_{22}u_2 = b_2$

- variational form that contains an $\ensuremath{\textit{arbitrary}}$ "test vector" \ensuremath{v}
- ► The variational form is equivalent to the original problem
- ▶ By choosing $\mathbf{v} = \mathbf{e}_i$, i = 1, ..., n (\mathbf{e}_i = standard basis vectors), we recover the original system of equations $\mathbf{A}\mathbf{u} = \mathbf{b}$.

systems:

Variational form derivation

The boundary value problem:

$-\Delta u = f$	in Ω	(1a)
u = 0	on Γ_D	(1b)
$\frac{\partial u}{\partial n} = g$	on Γ_N	(1c)

Let *v* be an arbitrary smooth test function with $v(\mathbf{x}) = 0$ on Γ_D (where *u* i known). Multiply (1a) with *v* and integrate, using Green's formula:

$$\int_{\Omega} vf \, dV = -\int_{\Omega} v \Delta u \, dV$$

= $-\int_{\Gamma_D} \underbrace{v}_{=0} \frac{\partial u}{\partial n} \, dS - \int_{\Gamma_N} v \underbrace{\frac{\partial u}{\partial n}}_{=g} \, dS + \int_{\Omega} \nabla v \cdot \nabla u \, dV$
= $-\int_{\Gamma_N} vg + \int_{\Gamma} \nabla v \cdot \nabla u \, dS$

Martin Berggren ()

Review and some extensions: FEM

Weak solutions

The variational problem:

Find $u \in V$ such that

$$\int_{\Omega} \nabla v \cdot \nabla u \, dV = \int_{\Gamma_N} vg \, dS + \int_{\Omega} vf \, dV \qquad \forall v \in V$$
⁽²⁾

- Solutions to variational problem (2) are called *weak solutions* to boundary-value problem (1).
- Theorem on previous page: solutions to boundary-value problem (1) are weak solutions
- Weak solutions are also solutions boundary-value problem (1) provided that f, g, and Ω are regular enough

The variational form

Theorem

If u solves the Poisson problem (1), then

$$\int_{\Omega} \nabla v \cdot \nabla u \, dV = \int_{\Gamma_N} vg \, dS + \int_{\Omega} vf \, dV$$

for each smooth function v vanishing on $\partial \Omega$.

However, the variational form is meaningful even without reference to (1).

Introduce the energy space (a Sobolev space of order one)

$$V = \left\{ v \mid \int_{\Omega} |\nabla v|^2 \, dV < +\infty \text{ and } v = 0 \text{ on } \Gamma_D \right\}$$

 $V \subset H^1(\Omega)$

Martin Berggren ()

Review and some extensions: FEM

10 oktober 2011 6 / 11

Finite element approximations

A *Galerkin approximation* to *u* is obtain by choosing $V_h \subset V$ and solving

Find $u_h \in V_h$ such that

$$\int_{\Omega} \nabla v_h \cdot \nabla u_h \, dV = \int_{\Gamma_N} v_h g \, dS + \int_{\Omega} v_h f \, dV \qquad \forall v_h \in V_h$$
⁽³⁾

Choosing V_h to be **continuous functions** that are **polynomials** on each **element** in a **triangulation** of Ω , we obtain a *Finite-Element Approximation* of boundary-value problem (1).

10 oktober 2011 5 / 11

Martin Berggren ()

The algebraic problem

Substitute

 $u_h = \sum_{j=1}^N u_j \phi_j$

into the finite-element problem (3):

$$\sum_{j=1}^{N} u_j \int_{\Omega} \nabla v_h \cdot \nabla \phi_j \, dV = \int_{\Gamma_N} v_h g \, dS + \int_{\Omega} v_h f \, dV \quad \forall v_h \in V_h$$

In particular, since $\phi_i \in V_h$

$$\sum_{j=1}^{N} u_j \int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j \, dV = \int_{\Gamma_N} \phi_i g \, dS + \int_{\Omega} \phi_i f \, dV$$

for i = 1, ..., N. This is a linear system in the coefficients u_j :

Au = b

Martin Berggren ()

Review and some extensions: FEM 10 oktober 2011 9 / 11

Boundary condition terminology

PDE problem	Variational problem	
Dirichlet BC	Essential BC	
	(constraints explicitly enforced	
	in the definition of spaces)	
Neumann and Robin BC	Natural BC	
	(conditions included in	
	the variational problem)	
tin Berggren () Review and	some extensions: FEM 10 oktober 2011	11

Stiffness matrix properties

- Matrix A is *sparse*. Most elements are zero. Generally true for all matrices from finite-element discretizations!
- In this case:
 - A is symmetric ($\mathbf{A}^T = \mathbf{A}$)

• A is *positive definite*, and the linear system thus has a unique solution These properties are due to properties of this particular boundary-value problems.

Review and some extensions: FEM

10 oktober 2011 10 / 11