Review and some extensions: FEM

Martin Berggren

10 oktober 2011

Model problem

$$
\begin{aligned}
-\Delta u & =f & & \text { in } \Omega & & \\
u & =0 & & \text { on } \Gamma_{D} & & \begin{array}{l}
\text { Finite-element } \\
\text { approximation }
\end{array} \quad \Rightarrow \quad \mathbf{A u}=\mathbf{b} \\
\frac{\partial u}{\partial n} & =g & & \text { on } \Gamma_{N} & &
\end{aligned}
$$

Steps in the process:

1. Apply a test function v to the PDE and integrate. The test function is arbitrary but vanishing at the part of the boundary where u is known (Γ_{D})
2. Use integration by parts to move one derivative from the trial function (u) to the test function. Avoids the need to differentiate the trial function twice. Yields a variational problem.
3. Apply a Galerkin approximation of the variational form using continuous, piecewise-linear functions

Approximations and representations of functions in the Finite Element Method

- The given domain is triangulated
- Functions u_{h} are glued together from simple functions, typically polynomials, defined on each element of the triangulation
- Easiest example: u_{h} is continuous and
 piecewise linear:
- The nodal values $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ are stored
- The function can be recreated from the nodal values by using the "hat" basis functions $\phi_{i}(\boldsymbol{x}), i=1, \ldots, n$

Martin Berggren ()

$$
u_{h}(\boldsymbol{x})=\sum_{i=1}^{n} u_{i} \phi_{i}(\boldsymbol{x})
$$

Review and some extensions: FEM
10 oktober $2011 \quad 2 / 1$

"Test vectors" for linear systems

Test functions are nothing mysterious. The idea can also be applied to linear systems:

$$
\begin{gathered}
\mathbf{A u}=\mathbf{b} \quad \Longleftrightarrow \quad \mathbf{v}^{T} \mathbf{A} \mathbf{u}=\mathbf{v}^{T} \mathbf{b} \quad \forall \mathbf{v} \in \mathbb{R}^{n} \\
a_{11} u_{1}+a_{12} u_{2}=b_{1} \\
a_{21} u_{1}+a_{22} u_{2}=b_{2} \\
\Longleftrightarrow \\
v_{1}\left(a_{11} u_{1}+a_{12} u_{2}\right)+v_{2}\left(a_{21} u_{1}+a_{22} u_{2}\right)=v_{1} b_{1}+v_{2} b_{2} \quad \forall v_{1}, v_{2}
\end{gathered}
$$

- A system of n linear equation is equivalent to one equation-a variational form that contains an arbitrary "test vector" \mathbf{v}
- The variational form is equivalent to the original problem
- By choosing $\mathbf{v}=\mathbf{e}_{i}, i=1, \ldots, n$ ($\mathbf{e}_{i}=$ standard basis vectors), we recover the original system of equations $\mathbf{A u}=\mathbf{b}$.

Variational form derivation

The boundary value problem:

$$
\begin{align*}
-\Delta u & =f & & \text { in } \Omega \tag{1a}\\
u & =0 & & \text { on } \Gamma_{D} \\
\frac{\partial u}{\partial n} & =g & & \text { on } \Gamma_{N} \tag{1b}
\end{align*}
$$

(1c)
Let v be an arbitrary smooth test function with $v(\boldsymbol{x})=0$ on Γ_{D} (where u i known). Multiply (1a) with v and integrate, using Green's formula:

$$
\begin{aligned}
\int_{\Omega} v f d V & =-\int_{\Omega} v \Delta u d V \\
& =-\int_{\Gamma_{D}} \underbrace{v}_{=0} \frac{\partial u}{\partial n} d S-\int_{\Gamma_{N}} v \underbrace{\frac{\partial u}{\partial n}}_{=g} d S+\int_{\Omega} \nabla v \cdot \nabla u d V \\
& =-\int_{\Gamma_{N}} v g+\int_{\Gamma} \nabla v \cdot \nabla u d S
\end{aligned}
$$

Martin Berggren 0
Review and some extensions: FEM

Weak solutions

The variational problem:

$$
\begin{align*}
& \text { Find } u \in V \text { such that } \\
& \int_{\Omega} \nabla v \cdot \nabla u d V=\int_{\Gamma_{N}} v g d S+\int_{\Omega} v f d V \quad \forall v \in V \tag{2}
\end{align*}
$$

- Solutions to variational problem (2) are called weak solutions to boundary-value problem (1).
- Theorem on previous page: solutions to boundary-value problem (1) are weak solutions
- Weak solutions are also solutions boundary-value problem (1) provided that f, g, and Ω are regular enough

The variational form

Theorem

If u solves the Poisson problem (1), then

$$
\int_{\Omega} \nabla v \cdot \nabla u d V=\int_{\Gamma_{N}} v g d S+\int_{\Omega} v f d V
$$

for each smooth function v vanishing on $\partial \Omega$.
However, the variational form is meaningful even without reference to (1).
Introduce the energy space (a Sobolev space of order one)

$$
V=\left\{\left.v\left|\int_{\Omega}\right| \nabla \boldsymbol{v}\right|^{2} d V<+\infty \text { and } v=0 \text { on } \Gamma_{D}\right\}
$$

$V \subset H^{1}(\Omega)$

> Martin Berggren ()

Review and some extensions: FEM
10 oktober $2011 \quad 6 / 1$

Finite element approximations

A Galerkin approximation to u is obtain by choosing $V_{h} \subset V$ and solving
Find $u_{h} \in V_{h}$ such that

$$
\begin{equation*}
\int_{\Omega} \nabla v_{h} \cdot \nabla u_{h} d V=\int_{\Gamma_{N}} v_{h} g d S+\int_{\Omega} v_{h} f d V \quad \forall v_{h} \in V_{h} \tag{3}
\end{equation*}
$$

Choosing V_{h} to be continuous functions that are polynomials on each element in a triangulation of Ω, we obtain a Finite-Element Approximation of boundary-value problem (1).

The algebraic problem

Substitute

$$
u_{h}=\sum_{j=1}^{N} u_{j} \phi_{j}
$$

into the finite-element problem (3):

$$
\sum_{j=1}^{N} u_{j} \int_{\Omega} \nabla v_{h} \cdot \nabla \phi_{j} d V=\int_{\Gamma_{N}} v_{h} g d S+\int_{\Omega} v_{h} f d V \quad \forall v_{h} \in V_{h}
$$

In particular, since $\phi_{i} \in V_{h}$

$$
\sum_{j=1}^{N} u_{j} \int_{\Omega} \nabla \phi_{i} \cdot \nabla \phi_{j} d V=\int_{\Gamma_{N}} \phi_{i} g d S+\int_{\Omega} \phi_{i} f d V
$$

for $i=1, \ldots, N$. This is a linear system in the coefficients u_{j} :

$$
\mathbf{A} \mathbf{u}=\mathbf{b}
$$

Boundary condition terminology

PDE problem	Variational problem
Dirichlet BC	Essential BC
	(constraints explicitly enforced
in the definition of spaces)	

Neumann and Robin BC Natural BC
(conditions included in the variational problem)

Stiffness matrix properties

- Matrix \mathbf{A} is sparse. Most elements are zero. Generally true for all matrices from finite-element discretizations!
- In this case:
- \mathbf{A} is symmetric $\left(\mathbf{A}^{T}=\mathbf{A}\right)$
- A is positive definite, and the linear system thus has a unique solution These properties are due to properties of this particular boundary-value problems.

