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Approximations and representations of functions in the

Finite Element Method

I The given domain is triangulated
I Functions uh are glued together from

simple functions, typically polynomials,

defined on each element of the

triangulation
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I Easiest example: uh is continuous and

piecewise linear:
I The nodal values u D .u1; : : : ; un/ are

stored

I The function can be recreated from

the nodal values by using the “hat”

basis functions �i .x/, i D 1, . . . , n

uh.x/ D
nX

iD1

ui �i .x/
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Model problem

��u D f in �

u D 0 on �D

@u

@n
D g on �N

Finite-element

approximation
) Au D b

Steps in the process:

1. Apply a test function v to the PDE and integrate. The test function is

arbitrary but vanishing at the part of the boundary where u is

known (�D )

2. Use integration by parts to move one derivative from the trial
function (u) to the test function. Avoids the need to differentiate the

trial function twice. Yields a variational problem.

3. Apply a Galerkin approximation of the variational form using

continuous, piecewise-linear functions
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“Test vectors” for linear systems

Test functions are nothing mysterious. The idea can also be applied to linear

systems:

Au D b ” vTAu D vT b 8v 2 Rn

a11u1 C a12u2 D b1

a21u1 C a22u2 D b2

”
v1.a11u1 C a12u2/ C v2.a21u1 C a22u2/ D v1b1 C v2b2 8v1; v2

I A system of n linear equation is equivalent to one equation—a

variational form that contains an arbitrary “test vector” v
I The variational form is equivalent to the original problem

I By choosing v D ei , i D 1, . . . , n (ei D standard basis vectors), we

recover the original system of equations Au D b.
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Variational form derivation

The boundary value problem:

��u D f in � (1a)

u D 0 on �D (1b)

@u

@n
D g on �N (1c)

Let v be an arbitrary smooth test function with v.x/ D 0 on �D (where u i

known). Multiply (1a) with v and integrate, using Green’s formula:

Z

�
vf dV D �

Z

�
v�u dV

D �
Z

�D

v

„ƒ‚…
D0

@u

@n
dS �

Z

�N

v
@u

@n„ƒ‚…
Dg

dS C
Z

�
rv � ru dV

D �
Z

�N

vg C
Z

�
rv � ru dS
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The variational form

Theorem

If u solves the Poisson problem (1), then
Z

�
rv � ru dV D

Z

�N

vg dS C
Z

�
vf dV

for each smooth function v vanishing on @�.

However, the variational form is meaningful even without reference to (1).

Introduce the energy space (a Sobolev space of order one)

V D
�

v j
Z

�
jrvj2 dV < C1 and v D 0 on �D

�

V � H
1
.�/

Martin Berggren () Review and some extensions: FEM 10 oktober 2011 6 / 11

Weak solutions

The variational problem:

Find u 2 V such that
Z

�
rv � ru dV D

Z

�N

vg dS C
Z

�
vf dV 8v 2 V

(2)

I Solutions to variational problem (2) are called weak solutions to

boundary-value problem (1).

I Theorem on previous page: solutions to boundary-value problem (1)

are weak solutions

I Weak solutions are also solutions boundary-value problem (1) provided

that f , g, and � are regular enough
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Finite element approximations

A Galerkin approximation to u is obtain by choosing Vh � V and solving

Find uh 2 Vh such that
Z

�
rvh � ruh dV D

Z

�N

vhg dS C
Z

�
vhf dV 8vh 2 Vh

(3)

Choosing Vh to be continuous functions that are polynomials on each

element in a triangulation of �, we obtain a Finite-Element Approximation
of boundary-value problem (1).

Martin Berggren () Review and some extensions: FEM 10 oktober 2011 8 / 11



The algebraic problem

Substitute

uh D
NX

j D1

uj �j

into the finite-element problem (3):

NX

j D1

uj

Z

�
rvh � r�j dV D

Z

�N

vhg dS C
Z

�
vhf dV 8vh 2 Vh

In particular, since �i 2 Vh

NX

j D1

uj

Z

�
r�i � r�j dV D

Z

�N

�ig dS C
Z

�
�if dV

for i D 1, . . . , N . This is a linear system in the coefficients uj :

Au D b
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Stiffness matrix properties

I Matrix A is sparse. Most elements are zero. Generally true for all

matrices from finite-element discretizations!

I In this case:

I A is symmetric (AT D A)

I A is positive definite, and the linear system thus has a unique solution

These properties are due to properties of this particular boundary-value

problems.
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Boundary condition terminology

PDE problem Variational problem
Dirichlet BC Essential BC

(constraints explicitly enforced

in the definition of spaces)

Neumann and Robin BC Natural BC

(conditions included in

the variational problem)
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