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Modeling Immiscible Fluid Flow in

Porous Media

This chapter provides an introduction to the models used in porous medium sim-

ulations. We begin with a definition of porous media, their basic properties and
a motivation of macroscopic flow models. The subsequent sections are devoted
to the development of models for single–phase flow and transport, multiphase
flow and multiphase/multicomponent flows.

1.1 Porous Media

This subsection introduces the basic characteristics of porous media. Of special

importance is the consideration of different length scales.

1.1.1 DEFINITIONS

A porous medium is a body composed of a persistent solid part, called solid

matrix, and the remaining void space (or pore space) that can be filled with one
or more fluids (e. g. water, oil and gas). Typical examples of a porous medium
are soil, sand, cemented sandstone, karstic limestone, foam rubber, bread, lungs

or kidneys.

A phase is defined in (Bear and Bachmat 1991) as a chemically homogeneous
portion of a system under consideration that is separated from other such por-

tions by a definite physical boundary. In the case of a single–phase system the
void space of the porous medium is filled by a single fluid (e. g. water) or by
several fluids completely miscible with each other (e. g. fresh water and salt wa-
ter). In a multiphase system the void space is filled by two or more fluids that
are immiscible with each other, i. e. they maintain a distinct boundary between

them (e. g. water and oil). There may only be one gaseous phase since gases are

always completely miscible. Formally the solid matrix of the porous medium

can also be considered as a phase called the solid phase. Fig. 1.1 shows a two–

dimensional cross section of a porous medium filled with water (single–phase
system, left) or filled with water and oil (two–phase system, right).
Bear and Bachmat (1991) define a component to be part of a phase that is

composed of an identifiable homogeneous chemical species or of an assembly
of species (ions, molecules). The number of components needed to describe a

phase is given by the conceptual model, i. e. it depends on the physical processes

to be modeled. The example of fresh and salt water given above is described by

a single–phase two component system.
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solid matrix water oil (or air)

Figure 1.1: Schematic drawing of a porous mediumfilled with one or twofluids.

In order to derive mathematical models forfluid flow in porous media some
restrictions are placed upon the geometry of the porous medium (Corey 1994,
p. 1):

(P1) The void space of the porous medium is interconnected.

(P2) The dimensions of the void space must be large compared to the mean
free path length1 of thefluid molecules.

(P3) The dimensions of the void space must be small enough so that thefluid
flow is controlled by adhesive forces atfluid–solid interfaces and cohesive
forces atfluid–fluid interfaces (multiphase systems).

Thefirst assumption (P1) is obvious since noflow can take place in a discon-
nected void space. The second property (P2) will enable us to replace thefluid
molecules in the void space by a hypothetical continuum (see next chapter). Fi-
nally, property (P3) excludes cases like a network of pipes from the definition
of a porous medium.

1.1.2 CONTINUUM APPROACH

The important feature in modeling porous mediaflow is the consideration of
different length scales. Fig. 1.2 shows a cross section through a porous medium
consisting of different types of sands on three length scales.

In Fig. 1.2a the cross section is on the order of 10 meters wide. This scale is
called themacroscopic scale. There we can identify several types of sand with
different average grain sizes. A larger scale than the macroscopic scale is often
called regional scale but is not considered here, see Helmig (1997).

If we zoom in to a scale of about 10�3m as shown in Fig. 1.2b we arrive at the
microscopic scalewhere individual sand grains and pore channels are visible.

1The average distance a molecule travels between successive collisions with other molecules.
Mean free path of air at standard temperature is about 6� 10�8m.
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(a) macroscopic scale (b) microscopic scale (c) molecular scale
~10-9m~10-3m~10m

Figure 1.2: Different scales in a porous medium.

In thefigure we see the transition zone from afine sand to a coarser sand. The
void space is supposed to befilled with water.

Magnifying further into the water–filled void space one wouldfinally see in-
dividual water molecules as shown in Fig. 1.2c. The larger black circles are
oxygen atoms, the smaller white circles are the hydrogen atoms. This scale of
about 10�9m will be referred to as themolecular scale.

It is important to note that the behavior of theflow is influenced by effects on
all these different length scales. Fluid properties like viscosity, density, binary
diffusion coefficient and miscibility are determined on the molecular scale by
the individual properties of the molecules. On the microscopic scale the con-
figuration of the void space influences theflow behavior through properties like
the tortuosity of theflow channels or the pore size distribution, whereas on the
macroscopic scale the large scale inhomogeneities play a rôle.

In classical continuum mechanics, see e. g. (Chung 1996), the individual
molecules on the molecular scale are replaced by a hypothetical continuum on
the microscopic scale. Quantities like mass (density) or velocity are now con-
sidered to be (piecewise) continuous functions in space and time. The contin-
uum approach is a valid approximation if the mean free path length of thefluid
molecules is much smaller than the physical domain of interest. This is ensured
by property (P2) from the last subsection.

Accordingly, theflow of a single newtonianfluid in the void space of a porous
medium is described on the microscopic level by the Navier–Stokes system of
equations (cf. (Chung 1996)) with appropriate boundary conditions. However,
the void space configuration is usually not known in such detail to make this
description feasible. Moreover, a numerical simulation on that level is beyond
the capabilities of todays computers and methods.

In order to derive a mathematical model on the macroscopic level another
continuum is considered. Each point in the continuum on the macroscopic level
is assigned average values overelementary volumesof quantities on the micro-
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Figure 1.3: Illustration of the averaging volume.

scopic level. This process leads tomacroscopic equationsthat do not need an
exact description of the microscopic configuration. Only measurable statistical
properties of the porous medium and thefluids are required.

1.1.3 REPRESENTATIVEELEMENTARY VOLUME

The averaging process used for passing from the microscopic to the macroscopic
level is illustrated for theporosity, a simple geometric property of the porous
medium.

The porous medium is supposed tofill the domainΩ with volume meas(Ω).
LetΩ0(x0)�Ω be a subdomain ofΩ centered at the pointx0 on the macroscopic
level as shown in Fig. 1.3.
Further we define the void space indicator function on the microscopic level:

γ(x) =
�

1 x 2 void space
0 x 2 solid matrix

8x 2Ω: (1.1)

Then the porosityΦ(x0) at positionx0 with respect to the averaging volume
Ω0(x0) is defined as

Φ(x0) =
1

meas(Ω0(x0))

Z

Ω0(x0)

γ(x)dx : (1.2)

The macroscopic quantity porosity is obtained by averaging over the micro-
scopic void space indicator function. If we plot the value ofΦ(x0) at afixed
positionx0 for different diametersd of the averaging volumeΩ0(x0) we ob-
serve a behavior as shown in Fig. 1.4. For very small averaging volumes the
discontinuity ofγ produces large variations inΦ, then at diameterl the average
stabilizes and for averaging volumes with diameter larger thanL the large scale
inhomogeneities of the porous medium destabilize the average again, cf. (Bear
and Bachmat 1991; Helmig 1997).

The averaging volumeΩ0(x0) is called arepresentative elementary volume
(REV) if such length scalesl andL as in Fig. 1.4 can be identified where the
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Figure 1.4: PorosityΦ for different sizes of averaging volumes.

value of the averaged quantity does not depend on the size of the averaging
volume. In that case we can choose the averaging volume anywhere in the range

l � diam(Ω0(x0))� L : (1.3)

If a REV cannot be identified for the porous medium at hand the macroscopic
theories offluid flow in porous media cannot be applied (Hassanizadeh and Gray
1979a).

The following table with typical values of porosity is taken from (Corey
1994):

Consolidated sandstones 0:1–0:3
Uniform spheres with minimal porosity packing 0:26
Uniform spheres with normal packing 0:35
Unconsolidated sands with normal packing 0:39–0:41
Soils with structure 0:45–0:55

1.1.4 HETEROGENEITY ANDANISOTROPY

A porous medium is said to behomogeneouswith respect to a macroscopic
(averaged) quantity if that parameter has the same value throughout the domain.
Otherwise it is calledheterogeneous. For example the porous medium shown in
Fig. 1.5a has a different porosity in the parts with large and small sand grains
and is therefore heterogeneous with respect to porosity.

Macroscopic tensorial quantities can also vary with direction, in that case the
porous medium is calledanisotropicwith respect to that quantity. Otherwise
it is called isotropic. As an example consider Fig. 1.5b. It is obvious that the
porous medium is more resistive tofluid flow in they-direction than in thex-
direction. The corresponding macroscopic quantity calledpermeabilitywill be
anisotropic. Note that a similar effect as in Fig. 1.5b can also be achieved with
the grain distribution shown in Fig. 1.5c.
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(a) (b) (c)

Figure 1.5: Porous media illustrating the concepts of heterogeneity and
anisotropy.

1.2 Single–Phase Fluid Flow and Transport
In this subsection we consider macroscopic equations forflow and transport in
porous media when the void space isfilled with a singlefluid, e. g. water, or
several completely misciblefluids.

1.2.1 FLUID MASS CONSERVATION

Suppose that the porous mediumfills the domainΩ � R
3, then the macroscopic

fluid mass conservation is expressed by the partial differential equation

∂(Φρ)
∂t

+ ∇ � fρug= ρq in Ω: (1.4)

In its integral form this equation states that the rate of change offluid mass in an
arbitrary control volumeV � Ω is equal to the netflow over the surface∂V and
the contribution of sources or sinks withinV. The quantities in Eq. (1.4) have
the following meaning.
Φ(x) Porosity of the porous medium as defined in Eq. (1.2). It is a func-

tion of position in the case of heterogeneous media. In general it
could depend on thefluid pressure (introduced below) or on time
(e. g. swelling of clay) but these effects are not considered here.

ρ(x; t) Densityof the fluid given in [kg=m3℄. In this work density is either
constant when thefluid is incompressibleor we assume an equation
of state for ideal gases where density is connected tofluid pressurep
(see below):

p= ρRT: (1.5)

HereR is the individual gas constant andT the temperature in[K℄,
cf. (Helmig 1997). Note that the time derivative in Eq. 1.4 vanishes
when the density is constant.
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u(x; t) Macroscopic apparent velocityin [m=s℄. This velocity is obtained
by a macroscopic observer. On the microscopic level theflow takes
only place through the pore channels of the porous medium where an
average velocity ofu=Φ is observed.

q(x; t) Specific source/sink term with dimensions[s�1℄.

1.2.2 DARCY’ S LAW

By using local averaging techniques, see e. g. (Whitaker 1986a), or homogeniza-
tion, see (Hornung 1997), it can be shown that under appropriate assumptions
(see below) the momentum conservation of the Navier–Stokes equation reduces
to the Darcy–Law on the macroscopic level which is given by

u =�
K
µ

(∇ p�ρg) : (1.6)

This relation was discovered experimentally for the one–dimensional case by
H. Darcy in 1856. It is basically a consequence of property (P3) of the porous
medium. The new quantities in Eq. (1.6) have the following meaning.
p(x; t) Fluid pressurein [Pa℄ = [N=m2℄. This will be the unknown function

to be determined by theflow model.
g Gravity vector pointing in the direction of gravity with sizeg (grav-

itational acceleration). Dimension is[m=s2℄. When thez–coordinate
points upward we haveg = (0;0;�9:81)T.

K(x) Symmetric tensor ofabsolute permeabilitywith dimensions[m2℄. It
is a parameter of the solid matrix only and may depend on position
in the case of a heterogeneous porous medium. FurthermoreK may
be anisotropic if the porous medium has a preferredflow direction as
explained in subsection 1.1.4.

µ(x; t) Dynamic viscosityof the fluid given in [Pa s℄. In the applications
considered hereµ is either constant or a function of pressure.

Darcy’s Law is valid for the slowflow (inertial effects can be neglected) of
a Newtonianfluid through a porous medium with rigid solid matrix. No slip
boundary conditions are assumed at thefluid–solid boundary on the microscopic
level. For details we refer to (Bear 1972; Whitaker 1986a; Whitaker 1986b;
Hassanizadeh and Gray 1979a; Hassanizadeh and Gray 1979b; Hassanizadeh
and Gray 1980).

Inserting Eq. (1.6) into Eq. (1.4) yields a single equation for thefluid pressure
p,

∂(Φρ)
∂t

� ∇ �
�

ρ
K
µ

(∇ p�ρg)
�

= ρq in Ω (1.7)

with initial and boundary conditions

p(x;0) = p0(x) in Ω; (1.8a)

p(x; t) = pd(x; t) on Γd; ρu �n = φ(x; t) on Γn: (1.8b)
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In the case of a compressible fluid Eq. (1.7) is of parabolic type, in the in-
compressible case it is of elliptic type (then the initial condition (1.8a) is not

necessary).


