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Figure 1: Interconnecting numerous point masses with massless springs gives a
simple model of an elastic membrane.

1 Introduction
The finite-element method (FEM) developed in the 1950’s as a method to calculate
elastic deformations in solids. The idea was to model a continuum by an assemblage
of “finite elements”: as an example, an elastic membrane (such as a drum skin) can
be modeled by numerous point masses interconnected with massless springs, as
illustrated in figure 1. Fifty years later, the point of view is more abstract, which
allows FEM to be used as a general-purpose method, applicable to all kinds of partial
differential equations. FEM is the dominating technique for solving solid-mechanics
problems such as estimating stresses and strains in elastic material under prescribed
loads. Most CAD (Computer Aided Design) systems provide finite-element solvers
in a highly integrated fashion. The engineer can typically with a few clicks on
the computer screen estimate the deformations and stresses of, say, a machine part
during the design. Finite-element methods are also commonly applied to other areas,
such as calculations of electromagnetic fields and fluid flows.
To shortly introduce the ideas, this note concentrates on a standard model problem

for elliptic boundary-value problems, the Poisson problem. Only homogeneous
Dirichlet boundary conditions are covered here.

2 FEM for the Poisson Problem in Two Space Dimensions
We consider the elliptic boundary-value problem

��u D f in �,
u D 0 on @�,

(1)

where � is an open, bounded and connected domain in the plane, and @� is its
boundary. The Laplacian � is the sum of second derivatives

�u D
@2u

@x2
C
@2u

@y2
:

Letting u represent a temperature field, equation (1) models steady heat conduc-
tion in a homogeneous, isotropic material, such as a metal, in which the temperature
is held at zero on the boundary. The function f can be used to model heat sources
such as electric heaters embedded in the material.

2.1 Vector Calculus and Green’s Formula
The finite-element discretization is not applied directly to the Poisson problem in the
differential form (1). Instead, a reformulation, the variational form, is the basis for
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discretization. The basic tool used to obtain the variational form is Green’s formula,
a generalization to higher dimensions of the integration-by-parts formula

v.x/u0.x/j10 D

Z 1

0

v0u0 dxC
Z 1

0

vu00 dx: (2)

To derive Green’s formula, we need some definitions and formulas from vector
calculus. The “vector” in vector calculus can be thought of as an arrow, or a line
segment with a direction. In this section, we will use bold symbols like a to denote
such vectors. The components of a in the Cartesian coordinate directions x1, x2

will be denoted a1; a2. The dot product between two vectors is defined as

a � b D

2X
iD1

aibi :

The differentiation operator r can be thought of as the “vector operator”

r D

�
@

@x1

;
@

@x2

�
: (3)

This operator may be used in different ways. If it operates on a scalar, differentiable
function from R2 to R, it produces the gradient vector

rv D

�
@v

@x1

;
@v

@x2

�
:

The components of the gradient vector simply yields the derivative of the function v
in the directions of the coordinate axes. Linear combinations

a1

@v

@x1

C a2

@v

@x2

can also be formed. If a D .a1; a2/ is a vector of unit length (a2
1 C a

2
2 D 1), we

obtain the directional derivative, that is, the derivative in the direction of the “arrow”
a,

@v

@a
D a1

@v

@x1

C a2

@v

@x2

D a � rv: (4)

Note that we obtain the derivatives in the coordinate-axes directions by choosing
a D .1; 0/ and .0; 1/, respectively.
If w is a differentiable vector-valued function from R2 to R2, one may form the

dot product between the operator r and the function w to define the divergence

r �w D

2X
iD1

@wi

@xi

; (5)

The product rule of differentiation says that

@

@xi

.fg/ D g
@f

@xi

C f
@g

@xi

: (6)

Substituting

f D v; g D
@u

@xi

(7)
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into formula (6) and summing over the coordinate directions i yield that
2X

iD1

@

@xi

�
v
@u

@xi

�
D

2X
iD1

@v

@xi

@u

@xi

C

2X
iD1

v
@2u

@x2
i

; (8)

for differentiable functions v and twice differentiable functions u. Expression (8)
may be written in a “vector form”, using dot products and the r operator defined
in (3):

r � .vru/ D rv � ruC v�u: (9)
The divergence theorem (or Gauss’ theorem) says that the integral of a vector-

field divergence over a domain is equal to the integral of the normal component of
the field along the boundaries,Z

�

2X
iD1

@wi

@xi

d� D
Z

@�

2X
iD1

niwi ds; (10)

where ni is the components of the outward-directed unit normal vector on @�.
Loosely speaking: the divergence theorem allows the differentiation operator @=@xi

to be replaced by the normal component ni at the same time as the integral over
the domain � is replaced by an integral over the boundary @�. Again, using the r
operator and dot products, expression (10) may be written in the vector formZ

�

r �w d� D
Z

@�

n �w ds; (11)

with n D .n1; n2/. The divergence theorem holds for functions w and boundaries
@� that are sufficiently regular.
Integrating formula (9) and using the divergence theorem (11) yieldsZ

�

r � .vru/ d� D
Z

@�

v n � ru ds D
Z

�

rv � ru d�C
Z

�

v�u d�: (12)

Recalling definition (4) of the directional derivative, expression (12) may be rewritten
to provide Green’s formula in the standard formZ

@�

v
@u

@n
ds D

Z
�

rv � ru d�C
Z

�

v�u d�: (13)

From this, we see that Green’s formula is nothing else than a generalization of the
integration-by-parts formula (2) to higher dimensions.

2.2 The Variational Form
A classical solution to the Poisson problem (1) is a smooth function u satisfying
equation (1). The precise requirements for u to be a classical solution is that it
should be twice continuously differentiable, and its first and second derivatives
should be functions that can be continuously extended up to the boundary. This
assures that Green’s formula (13) can be applied on u. Let v be a smooth function
from � D � [ @� to R such that v.x/ D 0 for each x 2 @�. Multiply both sides
of equation (1) with v, integrate over �, and apply Green’s formula (13) to obtainZ

�

vf d� D �
Z

�

v�u d�

D �

Z
@�

v
@u

@n
dsC

Z
�

rv � ru d� D
Z

�

rv � ru d�;
(14)
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where the fact that v vanishes on the boundary has been used in the last equality.
From expression (14) immediately follows

Theorem 1. If u is a classical solution to the Poisson problem (1), then u satisfiesZ
�

rv � ru d� D
Z

�

vf d�; (15)

for each smooth function v vanishing on the boundary.

Equation (15) is called the variational form of the Poisson equation. Theorem 1
refers to the original problem (1), but the variational form can be used to define
a function u without reference to the differential equation. For this purpose, we
introduce the energy space

V D

�
v j

Z
�

jrvj2 d� < C1 and vj@� D 0

�
; (16)

where

jrvj2 D

�
@v

@x1

�2

C

�
@v

@x2

�2

:

The condition Z
�

jrvj2 d� < C1

corresponds in many applications to demanding that the energy should be bounded,
for instance when the Poisson equation is used to model steady heat conduction.
Note that V is a linear space, that is, if v, w 2 V , then ˛v C ˇw 2 V for each ˛,
ˇ 2 R. The space V is a Sobolev space, that is, a space of functions that contain
integral or pointwise bounds on the derivatives of functions.
The variational problem, now formulated without reference to the differential

equation (1) is the following.

Find u 2 V such thatZ
�

rv � ru d� D
Z

�

vf d� 8v 2 V:
(17)

Solutions to variational problem (17) are called weak solutions of the partial
differential equation (1). From Theorem 1 follows that classical solutions are weak
solutions. The term “weak” refers to the fact that the requirements on functions
contained in the definition of V are weaker than those required of classical solutions.
However, one can show that weak solutions to the Poisson equation are also classical
solutions provided that the function f and the boundary @� are sufficiently smooth.

2.3 The Minimization Problem
The variational form above is all that is needed to define a finite-element discretization.
However, a classical solution to the particular problem that we consider, equation (1),
also satisfies a certain minimization problem; that is, the classical solution minimizes
the quadratic form

F.v/ D
1

2

Z
�

jrvj2 d� �
Z

�

f v d�:
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Similarly as was done for the variational problem, we can also consider the problem
of minimizing F within the function space V without reference to classical solutions,
that is, consider the problem:

find u 2 V such that
F.u/ � F.v/ 8v 2 V:

(18)

In fact, the variational problem (17) and theminimization problem (18) are equivalent:

Theorem 2. The element u 2 V minimizes F if and only if it is a solution to the
variational problem (17)

Remark 1. The proof below may appear long, but is essentially no more complicated
than showing, by differentiation, that the parabola F.x/ D 1

2
x2 � xf has its

minimum at x D f .

Proof. For any u, v 2 V , and t 2 R, we have

F.uC tv/ D
1

2

Z
�

jruC trvj2 d� �
Z

�

f .uC tv/ d�

D
1

2

Z
�

�
jruj2 C 2tru � rv C t2jrvj2

�
d� �

Z
�

f .uC tv/ d�

D F.u/C t

�Z
�

rv � ru d� �
Z

�

vf d�
�
C
t2

2

Z
�

jrvj2 d�:

(19)

(i) Assume that t D 1 and that u 2 V is a solution to the variational problem (17).
Then expression (19) reduces to

F.uC v/ D F.u/C
1

2

Z
�

jrvj2 d�„ ƒ‚ …
�0

� F.u/
(20)

for any v 2 V , which shows that u minimizes F .

(ii) Now assume that u 2 V minimizes F . For any t 2 R and v 2 V , we
define the function f .t/ D F.uC tv/, that is, by perturbing F away from its
minimum. Thus, the function f has a minimum for t D 0. Expression (19)
shows that f is a second-order polynomial in t . The leading-term coefficient is
positive for nonzero v, so the polynomial has a minimum when the derivative
vanishes. Setting f 0.0/ D 0, we conclude thatZ

�

rv � ru d� �
Z

�

vf d� D 0; (21)

for any v 2 V , that is, u is a solution to the variational problem (17).

Remark 2. Variational forms in the sense introduced above is a more general
concept than minimization forms: variational forms can be defined for practically
all elliptic boundary-value problems, but a corresponding minimization form does
not always exist, for instance when the differential equation contains first-derivative
(“advection”) terms, or for wave-equation-type of equations.
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Remark 3. In mechanics application the variational form (17) is called the principle
of virtual work, and the minimization problem (18) is called the principle of minimum
potential energy.
Remark 4. The terminology used here, “variational” for (17) and “minimization”
for (18), is convenient for our purpose, but is not the only existing. Quite commonly
the minimization problem is called a variational form. In fact, the notion of
variational forms was first attached to minimizations of “functionals” like F in the
calculus of variations.

2.4 Meshing and Finite-Element Approximation
We introduce a triangulation of the domain �, that is, � will be subdivided into
nonoverlapping triangles as illustrated in figures 2 and 4. The triangular corners
are called the nodes of the triangulation. The boundary nodes are the nodes which
are located on the boundary, and the internal nodes are the nodes which are not
boundary nodes. A valid triangulation should not contain “hanging nodes”, that is,
no node should be located at another triangles side, as in figure 3. The “fineness” of
the triangulation is characterized by a parameter h > 0, the largest length of any of
the triangular sides, for instance.
Now define Vh as the space of all functions that are continuous on �, linear on

each triangle, and vanishing on the boundary @�. The graph of such a function is a
surface composed of triangular-shaped planes, as illustrated in figure 5.
This space is constructed so that Vh � V (the requirement of continuity is needed

for this), and we define the finite-element discretization of the Poisson problem (1) as

Find uh 2 Vh such thatZ
�

rvh � ruh d� D
Z

�

vhf d� 8vh 2 Vh:
(22)

Note that the discretization is obtained simply by replacing V with the subspace Vh in
the variational form (17); this way of discretizing is called a Galerkin approximation.
In general, a finite-element discretization of a boundary-value problems is a

Galerkin approximations, based on piecewise polynomials, applied to a variational
form of the boundary-value problem.

2.5 The Algebraic Problem
A function in the above defined space Vh is uniquely defined by its values at the
internal nodes (we already know that the function is zero at the boundary nodes). To
see this, it is enough to note that the planar surface of uh on each triangle is uniquely
defined by the values of uh at the triangular corners. LetN be the number of internal
nodes. Using the basis functions

˚
�j .x/

	N

jD1
� Vh, each function uh 2 Vh can be

written

uh.x/ D

NX
jD1

uj�j .x/; (23)

where uj is the value of uh at node j , and �j .x/ is the “tent” function depicted in
figure 6. The function �j is zero everywhere, except that it raises as a “tent” around
node j , that is, �j 2 Vh such that

�j .xk/ D

(
1 if k D j ,
0 otherwise,
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Figure 2: A valid triangulation. In-
ternal nodes are marked by solid dots
and boundary nodes by circles.

Figure 3: Not a valid triangulation:
contains hanging nodes.

Figure 4: A more complicated triangulated domain (note that the domain may
contain holes!)

Figure 5: The functions in Vh are continuous and linear on each triangle. (The
boundary nodes are not included in this picture.)
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Figure 6: The basis function �j .x/ is equal to one at node j and zero at all other
nodes.

where xk is the coordinate of node k.
Substituting expansion (23) into equation (22) yields that

NX
jD1

uj

Z
�

rvh � r�j d� D
Z

�

vhf d� 8vh 2 Vh:

Since equation (2.5) should hold for each vh 2 Vh, it must in particular hold for
vh D �i , i D 1, . . . , N , which means that

NX
jD1

uj

Z
�

r�i � r�j d� D
Z

�

�if d� i D 1, . . . , N . (24)

Problem (24) is i system of linear equation in the coefficients uj , j D 1, . . . , N ,
that is,

Au D b; (25)

where the matrix A has components

Aij D

Z
�

r�i � r�j d�;

and

u D

0B@u1

:::

uN

1CA ; b D

0B@
R

�
�1f d�
:::R

�
�Nf d�

1CA :
With a terminology borrowed from solid mechanics, the matrix A is called the

stiffness matrix and the vector b the load vector. This terminology is used also for
cases, like heat conduction, when the PDE we are discretizing has nothing to do
with mechanics!
We conclude that a numerical approximation of the Poisson problem with a

finite-element method involves setting up and solving the linear system (25).

2.6 An Example
Let the domain � be the unit square, and consider the structured mesh of figure 7.
There are J internal nodes in both directions and the sides of each triangle are
h D 1=.J C 1/. There is a total of J 2 D N internal nodes, assumed to be numbered
in the row-wise direction as indicated in figure 7. The basis functions �i have the
shape indicated in figure 8. The support of each basis function, that is, the nonzero
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Figure 7: A structured meshing of the
unit square.

Figure 8: A basis function associated
with the mesh in figure 7

Figure 9: There is no overlap in the
support for basis functions �i and �iC2.

Figure 10: The nearest neighbors to node
i are the six nodes marked with black
dots. Thus, Aij can be nonzero only
when j corresponds to one of the black
dots.

region of the function, is on the 6 neighboring triangles which surrounds node i .
Note that this means that most of the stiffness matrix elements

Aij D

Z
�

r�i � r�j d�

are zero. For instance, Ai;iC2 D 0 since there is no overlap in the support for the
functions �i and �iC2; see figure 9. In fact, Aij can be nonzero only when i and j
are associated with nearest-neighboring nodes (figure 10).
To calculate the stiffness-matrix elements, we need to know the gradients of the

basis functions,

r�i D

�
@�i

@x
;
@�i

@y

�
:

The gradient is constant at each triangle since �i is composed of planar surfaces.
Letting the x and y directions be oriented in the horizontal and vertical directions,
respectively, the values of the gradient at the support of the basis function are
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Figure 11: The gradient of basis function
�i is piecewise constant on each triangle.
The x- and y-coordinates are given as the
pair .�; �/ at each triangle of the support
of the function.

Figure 12: The overlap in the support
of basis functions �i and �iC1 are the
triangles T1 and T2.

indicated in figure 11. Note that the basis function is equal to one at the filled dot
and equal to zero at the open dots, which means that the gradient can simply be read
off as the slope of the “tent” function along the sides of the triangles. With the aid
of the gradients given in figure 11, we can compute the diagonal elements in the
stiffness matrix,

Ai i D

Z
�

r�i � r�i d� D
6X

kD1

Z
Tk

r�i � r�i d�

D
1

h2
jT1j C 2

1

h2
jT2j C

1

h2
jT3j C

1

h2
jT4j C 2

1

h2
jT5j C

1

h2
jT6j

D 8
1

h2

h2

2
D 4:

To computeAi;iC1, note that r�i � r�iC1 ¤ 0 only in two triangles (figure 12), thus

on T1 W r�i D

�
�
1

h
;
1

h

�
r�iC1 D

�
1

h
; 0

�
on T2 W r�i D

�
�
1

h
; 0

�
r�iC1 D

�
1

h
;�
1

h

�
and thus

Ai;iC1 D

Z
�

r�i � r�iC1 d� D
2X

kD1

Z
Tk

r�i � r�iC1 d�

D �
1

h2
jT1j �

1

h2
jT2j D �

2

h2

h2

2
D �1:

Similar calculations yield that

Ai;i�1 D Ai;iCJ D Ai;i�J D �1; Ai;iCJC1 D Ai;i�J�1 D 0:
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Also note that the matrix A is symmetric: Aij D Aj i . Altogether, we obtain the
block triangular structure (empty space means zeros!)

A D

0BBBBB@
T �I
�I T �I

: : :
: : :

: : :

�I T �I
�I T

1CCCCCA
where T and I are the J -by-J matrices

T D

0BBBBB@
4 �1

�1 4 �1
: : :

: : :
: : :

�1 4 �1

�1 4

1CCCCCA ; I D

0BBBBB@
1

1
: : :

1

1:

1CCCCCA ;

Thus, the i th row of the matrix-vector product Au will be

4ui � uiC1 � ui�1 � uiCJ � ui�J : (26)

Node i C 1 and i � 1 is located to the right and left, respectively, of node i , whereas
nodes i C J and i � J are above and below node i . Thus, expression (26) is
precisely the classical five-point, finite-difference formula. We reach the remarkable
conclusion that the finite-element discretization of the Laplace operator using
continuous, piecewise-linear functions on the structured mesh of figure 7 reduces
to a standard finite-difference formula for the Laplacian. Note, however, that this
does not hold in general, for instance if another type of mesh is used; finite-element
discretizations are not always easy to interpret as a finite-difference method.

2.7 Properties of the Stiffness Matrix
Consider the stiffness matrix A with components

Aij D

Z
�

r�i � r�j d�;

which was obtained by discretizing the Poisson problem (1). This matrix has some
very particular properties, which will be discussed in this section: it is symmetric,
positive definite, sparse, and ill conditioned. All these properties, except the sparsity,
reflects the nature of the boundary-value problem (1). Some or all of these properties
may change if the equation or the boundary conditions are altered. For instance,
if an additional term containing first derivatives of u is added to equation (1), the
stiffness matrix will no longer be symmetric. The sparsity is a consequence of the
choice of piecewise approximations: the chosen piecewise-linear approximation
allows a representation in a basis, the “tent” functions of figure 6, where different
functions rarely overlap.
The symmetry of the matrix is immediate,

Aij D

Z
�

r�i � r�j d� D
Z

�

r�j � r�i d� D Aj i :

Moreover, the matrix is sparse, since Aij D 0 whenever i and j are not nearest
neighbors. The number of neighbors to each point does not increase when the mesh
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is made finer, as long as the mesh refinements are made in a sensible way, see the
discussion in section 2.8. Thus, the number of nonzero elements on each row does
not increase with the order of the stiffness matrix, that is, the matrix in a sense
becomes sparser and sparser with increasing matrix order.
Recall that a real matrix A is positive definite if vTAv > 0 whenever v ¤ 0.

Theorem 3. The stiffness matrix is positive definite.

Proof. Let vh 2 Vh. Expanding vh in the “tent” basis functions yields

vh D

NX
iD1

vi�i .x/:

Setting
v D .v1; v2; : : : ; vN /

T

yields that

vTAv D
NX

iD1

NX
jD1

vi

Z
�

r�i � r�j d�vj

D

Z
�

NX
iD1

r .vi�i /„ ƒ‚ …
Drvh

�

NX
jD1

r
�
vj�j

�
„ ƒ‚ …
Drvh

d� D
Z

�

jrvhj
2 d� � 0;

(27)

with equality if and only if rvh D 0, that is, if vh is constant. However, since vh is
zero on the boundary (by definition of Vh), it follows that the constant must be zero.
Thus expression (27) is zero only if vh � 0, that is, when v D 0.

One important consequence of Theorem 3 is that equation (25) has a unique
solution. This follows from the fact that positive-definite matrices are nonsingular:
For a singular matrix A, there would be nonzero vector v so that Av D 0, and thus
vTAv D 0. Thus, singular matrices cannot be positive definite, and positive-definite
matrices must therefore be nonsingular.
The condition number of the stiffness matrix depends strongly on h. In fact, the

growth of the condition number can be estimated to cond.A/ D O.h�2/ when h is
reduced, provided that the the quotient between the size of the largest and smallest
inscribed circle in the triangles of the mesh is kept bounded as the mesh is refined.
The number 2 in O.h�2/ follows from the fact that we are considering the second-
order Laplacian operator, and not from our use of piecewise-linear approximations.
The stiffness matrix is thus ill conditioned for fine meshes. However, in practical
applications is the condition number typically not large enough to cause problematic
amplification of round-off errors. On the other hand, the ill-conditioning is certainly
an issue when applying iterative methods for solving the linear system Au D b.
Iterative techniques will typically converge slowly when applied to linear systems
emanating from discretization of boundary-value problems associated with partial
differential equations of elliptic type (regardless of the method used to discretize
the equations!). In general, particular techniques have to be used to speed up the
convergence rate, so-called “preconditioning”. There is also a strategy known as
multigrid that exploits the fact that the matrix is ill conditioned to speed up the
convergence rate. Using multigrid, large system of equations can be solved in a very
efficient way.
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2.8 Accuracy

We have shown how to define a finite-element approximation of the Poisson
problem (1), and that this yields the linear system (25) having a unique solution.
The question how good the finite-element solution is as an approximation of the
original problem will be discussed in this section.
For finite-difference discretizations, accuracy questions are usually addressed

indirectly through study of the local truncation error of the difference operators. Sta-
bility investigations provides a link between truncation error and error in the solution.
In contrast, truncation errors are seldom studied for finite-element discretizations
since it is is possible to study the error in the discretization directly. The easiest and
most natural way is to work with integral norms of the difference between the weak
solution u of problem (17) and the finite-element solution uh of problem (22). The
L2.�/ norm of a function,

kvkL2.�/ D

�Z
�

v2 d�
�1=2

;

is the analogue for functions of the vector 2-norm. The perhaps most important
norm for solutions of the Poisson problem is the energy norm

kvkV D

�Z
�

jrvj2 d�
�1=2

; (28)

that is, theL2.�/-norm of the first derivatives; recall that weak solutionswere defined
among functions with bounded energy norm (definition (16)). The importance of
the energy norm is that the finite-element solution is optimal in the energy norm.
That is, no other function in Vh yields a smaller error in energy norm:

Theorem 4. Let u be the solution to variational problem (17) and uh the finite-
element solution (22). Then

ku � uhkV � ku � vhkV 8vh 2 Vh; (29)

Proof. By equation (22), the finite-element solution uh satisfiesZ
�

rvh � ruh d� D
Z

�

vhf d� 8vh 2 Vh: (30)

From equation (17) follows that the weak solution u satisfiesZ
�

rvh � ru d� D
Z

�

vhf d� 8vh 2 Vh; (31)

since Vh � V . Subtracting equations (30) and (31) yields thatZ
�

rvh � r.u � uh/ d� D 0 8vh 2 Vh: (32)
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Let vh 2 Vh be arbitrary. Then

ku � uhk
2
V D

Z
�

jr.u � uh/j
2 d� D

Z
�

Œr.u � uh/� � Œr.u � uh/� d�

D

Z
�

ru � r.u � uh/ d� �
Z

�

ruh � r.u � uh/ d�„ ƒ‚ …
D 0 by (32)

D

Z
�

ru � r.u � uh/ d� �
Z

�

rvh � r.u � vh/ d�„ ƒ‚ …
D 0 by (32)

D

Z
�

r.u � vh/ � r.u � uh/ d� � ku � vhkV ku � uhkV ;

(33)

where the last inequality follows from the Cauchy–Schwarz inequality. Dividing
through with ku � uhkV yields the conclusion.

Remark 5. Property (32) is called Galerkin orthogonality: the error u � uh is
orthogonal to each function in the finite-element space with respect to the inner
product associated with the energy norm.

The optimality property (29) does not hold for all elliptic boundary-value
problems. For the finite-element solution to be optimal in the sense of Theorem (4),
it is necessary that the variational problem yields a symmetric stiffness matrix.
The next step in an analysis of the error is a pure approximation problem.

Typically, one considers the interpolant, that is, a piecewise-linear function agreeing
with u at the node points; note that the interpolant is an element of Vh. The difference
between the interpolant and u can be estimated by a type of Taylor expansion. From
Theorem 4 it follows that the error in the finite-element solution is smaller or equal
to the error in the interpolant. The precise magnitude of this error depends of course
on how fine the mesh is, but it also depends on the quality of the mesh. Loosely
speaking, one should try to avoid very thin triangles.
Altogether, estimating the interpolation error and utilizing Theorem 4, it can be

shown that the error in the finite-element solution is of second order, that is,

kuh � ukL2.�/ D O.h
2/: (34)

Note that the norm above is not the energy norm; the error is of first order if measured
in the energy norm. For estimate (34) to hold, assumptions have to be made on the
mesh quality and on the smoothness of the solution to the variational problem (17):

(i) (Mesh quality.) The largest angle in any of the triangles should not approach
180ı as the mesh is refined. In practice, this requirement is accomplished by
making sure that the very thin triangles are avoided when generating the mesh.

(ii) (Smoothness.) The solution needs to be smooth, otherwise the convergence
rate will be reduced. Smooth solutions are obtained if f and the boundary �
are smooth. The solution is also smooth if the boundary is polygonal as long
as the domain is convex. (If � is not polygonal to start with, it is typically
approximated with a succession of polygonal domains�h such that�h ! �

as h! 0).
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Figure 13: A strategy to maintain mesh
quality is to subdivide each triangle into
four new triangles by joining the edge
midpoints.

Figure 14: Reentrant corners, for in-
stance polygonal boundaries with an an-
gle � > 180ı will cause a nonsmooth
solution and a convergence rate which is
less than second order.

The mesh quality condition above is maintained if the triangles, as the mesh is
refined, are subdivided into four triangles in the way indicated in figure 13. Refining
each triangle in the mesh in this way reduces all triangular sides with a factor 1=2.
The error will thus be reduced with a factor 1=4 (for problems on convex domains
at least). Nonsmooth boundaries may cause nonsmooth solutions and a reduced
convergence rate. In particular, so-called reentrant corners in the domain, as in
figure 14, will cause the convergence rate to be less than second order.
Higher accuracy can thus be obtained through refinement of the mesh (“h

method”). This should preferably be done adaptively, in the parts of the domain
where it is needed, to prevent the size of the stiffness matrix to become too large.
There are automatic methods for this. Higher accuracy can also be obtained by
keeping the mesh fixed and increasing the order of the polynomials on each triangle
(“p method”).For instance, the error in the sense (34) can be improved to third order
if Vh consists of continuous functions that are quadratic on each element.

2.9 Alternative Elements
Quadrilaterals, that is, a geometric figure obtained by connecting four different
points in the plane by straight lines that do not cross, can be used to partition the
domain instead of triangles, see figure 15. In this case will the approximating space
Vh contain globally continuous functions who vary linearly along the edges of each
quadrilateral. However, the functions will no longer be linear within the elements.
In the special case when the quadrilaterals are rectangles oriented in the coordinate
directions, a function vh 2 Vh will be bilinear, that is, of the form

vh.x; y/ D aC bx C cy C dxy

on each element. The nodal values of vh (the values of vh at the four corners of the
rectangle) uniquely determine the four coefficients above.
Quadrilateral and, in particular, rectangular elements yields a regular structure

that may give high solution accuracy and allow efficient solutions of the associated
linear systems. It is, however, harder to generate such meshes automatically on
complicated geometries compared to triangular meshes.
For three space dimensions, triangular and quadrilateral meshes generalize to

tetrahedral and hexahedral meshes (figure 16) with advantages and limitations as
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Figure 15: A quadrilateral mesh.

Figure 16: Meshes in three space dimensions can be composed of nonoverlapping
tetrahedrals (left) or hexahedrals (right).

for corresponding meshes in two space dimensions.
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Exercises
1. For following boundary-value problems, derive weak formulations, define a
FE approximation using continuous, piecewise-linear functions on a uniform
grid, and specify the linear system associated with the FE approximation.

(a)
�u00 D f in .0; 1/,
u.0/ D 0;

u0.1/ D 0:

(b)
�u00 D f in .0; 1/,
u.0/ D g;

u.1/ D 0:

(c)
�u00 C au0 D f in .0; 1/,

u.0/ D u.1/ D 0:

(d)
�u00 C u D f in .0; 1/,

u0.0/ D u0.1/ D 0:
(35)

(e)
�.c.x/u0/0 D f in .0; 1/,

u.0/ D u.1/ D 0;

where c.x/ > 0 on Œ0; 1�.

2. Assume that f in equation (35) is a function in the space of approximations,
that is,

f .x/ D

IX
iD1

fi�i .x/;

where the �i ’s are the standard “hat” functions..

(a) Determine the mass matrix M such that the linear system associated
with the FE approximation of equation (35) can be written

Ku DMf;

where f D .f1; f2; : : : ; fI /
T .

(b) When computing the mass matrix, use the trapezoidal rule to evaluate
the integrals involved and compare with above.

3. Give a reason why the following boundary-value problem is not well posed in
general:

�u00 D f in .0; 1/,
u0.0/ D u0.1/ D 0:

What happens if a FE discretization is applied and one tries to solve the
associated linear system?
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4. Calculate expressions for the element stiffness matrix

Ak
ij D

Z
Tk

r�i � r�j d�

and the element load vector

f k
i D

Z
Tk

f �i d�

associated with a generic triangle Th spanned by the corner points xk , xl , and
xm, as in figure 1. The basis functions are the standard “tent” functions for
continuous, piecewise-linear functions on a triangular mesh. For the element
load vector, use the following quadrature rule:Z

Tk

g d� �
g.xk/C g.xl /C g.xm/

3
area .Tk/ (trapezoidal rule),

Figure 1. A triangle spanned by the points xk , xl , and xm.

5. Consider a finite-element approximation of the boundary-value problem

�u00 D f in .0; 1/,
u.0/ D u.1/ D 0;

using continuous, piecewise-quadratic functions on a uniform grid. A nodal
basis consists of values at the grid points xi together with the midpoints
xiC1=2 D .xi C xiC1/=2.

(a) Specify and sketch the basis functions.
(b) Specify the sparsity pattern of the stiffness matrix.

6. Let � be a open, bounded, and connected domain in the plane with boundary
@�. Consider the boundary-value problem

��u D f in �,

auC
@u

@n
D ag on @�,

where g is a given function defined on @� and a > 0. Derive a weak
formulation of the problem and define a FE approximation. What happens
when a becomes large? Can a D 0 be allowed?
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