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Lab 1: Equation-based Modeling in Comsol Multiphysics

1 Introduction

The labs for Case Study 1 will use Comsol Multiphysics, a highly flexible general-purpose finite-
element package: it can be used as an engineering tool for predefined modeling situations,
but also as a numerical solver for partial differential equations, for which the user explicitly
defines the equation or the associated variational form. Comsol can either be run from its own
Graphical User Interface (GUI) or can be set up to interface with Matlab. In this course, we will
only use the GUI.

For engineering use, there are readymade “canned solutions,” such as the stress in a loaded
wrench or the sound field in a muffler. The user may use these as a starting point and modify
the geometry (it is for instance possible to import CAD descriptions), associated parameter
values (Young’s modulus, speed of sound, . . . ), and boundary conditions in order to obtained
something close to what is requested. Using Comsol in this way, the user does not need to know
exactly what equations, what variational form, or what elements that Comsol uses. (All this
information is available under the hood within the GUI, however). In order to see the available
predefined solutions, activate a tab in the Comsol window denoted Model Library. (If there is
no such tab, it can be created by selecting Model Library under the View menu.) Then click
on the ▶ to the left of COMSOL Multiphysics in order to see the predefined models from
Acoustics, Chemical Engineering, etc. Additional “modules” (CFD, Structural Mechanics. . . )
containing even more predefined models are sold separately. Your available version probably
contains theStructural Mechanics Module in addition to the basicCOMSOL Multiphysics
folder.

Within this course, however, we will not use the readymade solutions, but an “expert mode”
which allows precise specifications of the equations, the boundary conditions, and the elements
used. There are three conceptually different ways in the “expert mode” to specify equations and
boundary conditions, namely through the coefficient form, the general form, or the weak form.
In the coefficient form, the problem is specified through the setting of individual coefficients in
a quite general system of partial differential equations and associated boundary conditions. In
the general form, the equation is specified through the definition of a so-called flux function
in a what is known as a “conservation-law” formulation of the equation. The weak form is the
most general and precise way to specify the equations in a finite element context, and it is
this formulation we will use below. In the weak form, the equation is specified by specifying
the integrands that occur when writing the equation in a variational form, as in expression (2)
below.

Remark 1 (regarding terminology). In the lectures of this course, we use the term “variational
form” for equations like (2), whereas Comsol uses the term “weak form” for the same object.
Note also that the use of the term “weak form” does not in any way indicate that this form is
inferior!1 The situation is in fact the opposite; the “weak form” is the most general and precise
way to specify the equation to be used in a finite-element context, since all finite-element
methods operate through approximations of a properly specified weak (or variational) form.

2 Getting familiar with Comsol Muliphysics

This lab constitutes an introduction to the use of Comsol Multiphysics. This lab is useful even if
you have some experience of Comsol from previous courses. The version of the software used

1The reason for the terminology is that the solution to a variational problem constitutes a weak (or generalized)
solution to the partial differential equation; that is, a solution that may contain less smoothness than the form of the
partial differential equation would initially suggest.



in this course (v4.2) is likely different from the one you previously used, and the GUI layout and
the workflow has changed considerably since the introduction of v4.0. Moreover, the way we
will use the software (through specification of the variational form) is probably new to you.

When using Comsol Multiphysics, as well as any other finite-element software, there are
conceptually five consecutive steps that needs to be taken for each problem:

1. geometry definition,

2. meshing,

3. problem specification,

4. solution,

5. post processing and visualization.

2.1 Geometry definition.

In order to learn how to carry out parameterized solid geometry modeling, work through the
printout Creating a 2D Geometry Model from the Comsol Multiphysics Modeling Guide. Once
you have created the 2D geometry as described in the above document, save it to file, since you
will need it for the steps below.

2.2 Meshing

In this course, we will only need to create simple so-called unstructured triangular meshes
(which Comsol calls “Free triangular meshes”). In the Model Builder, click on Mesh 1, and the
Mesh page appears in the Settings tab. On theMesh page, selectUser-controlled mesh under
Sequence type. Then click on the ▶ symbol to the left of Mesh 1 in the Model Builder to
open up more options under Mesh 1. Click on Size, which opens the Size page in the Settings
tab. On the Size page, under Calibrate for, select Fluid dynamics. Then click again on the
Build All button on the Settings tab in order to build the mesh, which then will be shown in
the Graphics window. Play around with the options on the Size page (Maximum element size
e.g.) to see what happens with the mesh. When you have changed any parameters, you need to
press the Build All button again.

Remark 2. If you would like to learn more about meshing (or about any other issue in the
following), select Documentation in the Help meny, which brings up a web page with the
available documentation. For instance, there is a Meshing section in the Comsol Multiphysics
User’s Guide (it is Chapter 19 in the pdf version).

2.3 Problem specification

We will work with the following boundary-value problem for Laplace’s equation:

−∆u = 0 inΩ,

u = uD on ΓD

∂u

∂n
= 0 on Γi

∂u

∂n
+αu =αua on Γo

(1)

on the domainΩ that you constructed in § 2.1 (figure 1).
Problem (1) constitute a simple model for steady (that is, thermal equilibrium has been

reached) heat conduction in the metal object occupying domainΩ, where u is the temperature.
We assume that boundary ΓD is connected to a device that holds a fixed, given temperature
uD , that boundary Γi is thermally insulated, and that boundary Γo is facing air at a fixed, given
temperature ua . The value of α is related to the so-called heat transfer coefficient for the
interface between the solid material and air.
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FIGURE 1. The domain associated with boundary value problem (1). The boundary ofΩ comprises
ΓD (thick solid), Γi (thick dashed), and Γo (the rest, thin solid).

Task 1. By applying integration by parts, show that boundary-value problem (1) can be written
in the following variational form:

Find u ∈VuD such that

∫
Ω
∇v ⋅∇u dΩ+α∫

Γ0

vu dΓ =α∫
Γ0

vua dΓ ∀v ∈V0,
(2)

where

VuD = {v ∣∫
Ω
∣∇v ∣2 dΩ ≤∞, v = uD on ΓD } ,

V0 = {v ∣∫
Ω
∣∇v ∣2 dΩ ≤∞, v = 0 on ΓD } .

(3)

When using the weak form in Comsol, the integrands in the variational form (2) are specified
in symbolic form. More precisely, the expression inside the domain integral is written in one
place, and the expression inside the boundary integral over Γ0 is written in another place. For
instance, the integrand inside the integral overΩ can be written in components as

∇v ⋅∇u = vx ux + vy uy , (4)

where the subscripts denote differentiation. In Comsol Multiphysics, expression (4) is written

test(ux)*ux + test(uy)*uy (5)

where test(u) denotes a test function associated with the unknown u (which is denoted v in
variational form (2)), and a trailing x or y denotes differentiation with respect to the coordinate
x or y .

Implementation in Comsol Multiphysics
We assume that the geometry and a mesh has been created as specified in § 2.1 and 2.2. The
steps below guides you through the remaning steps in order to numerically solve variational
problem (2).

1. In the Model Builder (the leftmost tab on the Comsol GUI), right-click on Model 1 and
select Add Physics.
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2. In the Add Physics page that appears under the Model Wizard tab, select Mathematics
> PDE Interfaces > Weak Form PDE and click the' sign under the Add Physics
window. This action associates the default dependent variable name u with a variational
(weak) form. You may change the name of the variable in the box labeled Field name.
(You can also choose more than one field variable here. For the Maxwell equations, for
instance, you would choose 3 variables in two space dimensions and 6 variables in three
space dimensions). Then click the Finish button (marked with a black-and-white flag) on
the Add Physics page, which will add the PDE leaf into the tree in the Model builder.

3. In order to define values for parameters α, uD , and ua , used in the boundary conditions,
in the Model Builder, click on Parameters under Global Definitions. Enter values of
the variables alpha, uD, and ua, in the table on the Parameters page in the Settings tab.
We assume that the device attached to ΓD holds a temperature of 100○, and that the room
temperature is 20○. Moreover, we assume that the heat transfer coefficient is such that α = 1.
Thus,

uD = 100, ua = 20, α = 1. (6)

4. Click on the ▶ to the left of PDE in the Model Builder to open more selections, then select
Weak Form PDE 1.

5. In the Weak Form PDE page that then appear in the Settings tab, replace the default
expression in the field weak with expression (5). This action defines the contribution of the
integrals overΩ to variational form (2).

6. Right-click on PDE in the Model Builder and selectMore > Weak Contribution. (There
are two More appearing when you right-click; select the second one, the one below Periodic
conditions).

7. Click on the Weak Contribution 1 that will appear under PDE in the Model Builder. A
page labeled Weak Contribution will appear in the Settings tab. On the Weak Contribu-
tion page, make sure that Manual is selected among the Selection options. Click on the
boundary segments (there are quite a few) that correspond to boundary Γo and add them
to the box labeled Selection: (can be done by clicking on the + sign e.g.). Enter the text
alpha*test(u)*(u-ua) in the field labeled Weak Contribution. This action defines the
contribution of the integrals over Γo to variational form (2).

8. Right-click on PDE in the Model Builder and select Dirichlet Boundary Condition. A
page Dirichlet Boundary Condition will appear in the Settings tab. On the Dirichlet
Boundary Condition page, make sure that Manual is selected among the Selection op-
tions. Click on the boundary segments that correspond to boundary ΓD and add them to
the box labeled Selection: (can be done by clicking on the + sign e.g.). Add uD in the box
below the text Prescribed value of u.

9. Note that you do not need to do anything to set the boundary condition at Γi . Why?

10. Right-click the root object in the Model Builder (the root object has the same name as the
file in which the model is saved) and choose Add Study. In the Select Study Type page
that appears in the Model Wizard tab, select Stationary, and click on the Finish flag.

11. Right-click on Study 1 in the Model Builder, select Compute, wait for the solution to be
computed. (Alternatively, you can click on the green equal sign at the top of the window).

12. When the solution is computed, a color surface plot will appear in the graphics window, in
which the colors visualizes the temperature distribution in the domain. Check so that the
temperatures appear reasonable with respect to what can be expected from the boundary
conditions on ΓD and Γo .
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13. Select Results > 2D Plot Group 1 > Surface 1. On the Surface page that appears in
the Settings tab, you can see the default settings for surface plots.

Fourier’s law is a constitutive relation for heat conduction that models the heat conduction
in materials, such as metals, in which the heat conducting properties are homogeneous (same
in each point) and isotropic (same in each direction). Fourier’s law is analogous to Darcy’s law
for porous-media flows and states that the heat flux vector q is proportional to the negative
gradient of the temperature,

q =−κ∇u, (7)

where κ > 0 is the material’s thermoconductivity. Expression (7) tells us that the heat energy
will flow in the same direction as negative temperature gradients, that is, heat flows from high
temperature to low temperature.

Task 2.

1. Here we will visualize how the heat flows inΩ. Right-click Results > 2D Plot Group 1 in
the Model Builder and select Arrow Surface.

2. In the Arrow Surface page that appears on the Settings tab, replace the default expres-
sions in the fields labeled x component and y component with the ones obtained from
expression (7). (You may assume that κ = 1). After entering the expressions, click on the
Plot button (it is marked with a small pen on the top of the Arrow Surface page). The small
arrows that then show up in the graphics window indicates the direction and magnitude of
the heat flux vector. Play around with the options for arrow plots, for instance the number
of points for the vectors and the color and size. Make sure that the plot you obtain seems
reasonable in terms of the direction you expect the heat to flow.

3. Another way of visualizing the heat flux field is through streamlines. The streamlines associ-
ated with the q field are curves through the domain that are such that their tangent at each
point coincides with the q vectors and such that the heat flow is always constant between
two consecutive curves. The latter property means that the heat flow is more intense in
regions such that the streamlines lie close together, compared to regions where the distance
between consecutive streamlines is larger.

Plot streamlines of the q field by right-clicking onResults > 2D Plot Group 1 in the Model
Builder and selecting Streamline. In the Streamline page that appears in the Settings tab,
replace the default expressions in fields labeled x component and y component with the
ones obtained from expression (7). (Again, you may assume that κ = 1). When plotting
streamlines, you need to specify the boundaries through which the streamlines should pass.
In this case, heat will flow through all boundaries except the insulated Γi boundary. Press

the symbol to the right of Selection on the Streamline page in order to activate the choice
of boundary segments for streamline intersections. Then, to the Selection box, add all
boundary segments except those that constitute Γi . (In this case, it is possible to choose all
boundaries, including Γi , without seeing to much of a difference. In general, however, it
can happen that the streamlines become clearer if the insulated boundaries are deleted).
Then click on the Plot button in order to see the streamlines. Also here play around with the
options, such as the number of streamlines. (You may want to increase the number from the
default value). It can be easier to see the streamlines by disabling the arrow plots: right-click
on Results > 2D Plot Group 1 > Arrow Surface 1 and choose Disable.

4. Compute solutions for α = 0, 0.2, 0.5, 1, 100. Observe how the solution depends on α. What
happens for a very large value of α?
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