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Case Study I: Groundwater flow modeling using FEM.
Review questions and exercises

1 Modeling

1.1 Review questions

1. In general, the fluid flowing in a porous medium is affected by adhesive, capillary, inertial
(sv. tröghetskrafter ), and gravitational forces.

(a) Explain the causes of adhesive, capillary, and inertial forces.

(b) What forces are usually dominating in a porous medium?

(c) Which force vanishes in a saturated medium? Why?

2. Why would we want to use continuum approximations of porous media?

3. For a porous medium, define the porosity and explain the concept of a Representative
Elementary Volume.

4. Explain the meaning of the terms homogeneous, heterogeneous, isotropic, and anisotropic.

5. What is meant by the apparent velocity (or Darcy velocity) u of a fluid in a porous medium.

6. Derive the law of mass conservation,

∂

∂t
(ρφ)+∇· (ρu) = 0, (1)

or the flow of a fluid with density ρ and apparent velocity u in a saturated porous medium
with porosity φ. Also discuss the case when the density is constant.

7. Does Darcy’s law hold for all porous media?

1.2 Exercises

1. If the apparent velocity field satisfies u = −κ∇h and if the hydraulic conductivity κ is a
constant, show that u is irrotational.

2. The velocity field

u = a

x2 + y2 (x, y) (2)

represents a point source (a > 0) or a point sink (a < 0) located at the origin. In groundwater
flow, a water well (sv. brunn) can be modeled as a point sink.

(a) Write velocity field (2) in polar coordinates.

(b) What is the pressure head associated with velocity field (2)?

(c) Show that ∇·u = 0 everywhere except at the origin.

(d) Calculate the flux (in m2/s) through a circle with radius R > 0 centered at the origin.
How should a be chosen in order for the velocity field to represent a well where 1 m2/s
is pumped out at the origin?

(e) Show that flux of u (in m2/s) through an arbitrary closed surface S that does not include
the origin is zero.

(f) Calculate the flux of u through an arbitrary closed surface that includes the origin.
Interpret the results of (d) and (e) physically.

3. In the labs, you plotted streamlines. The following sequence of problems outlines some
of the mathematics associated with streamlines in two space dimensions, for which the
concept of stream function can be used.
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FIGURE 1. The solid curves markes streamlines Cα and Cβ, where ψ=α and ψ=β, respectively.
The dashed curve, with normal and tangent vectors n and t , starts at xα ∈Cα and ends at xβ ∈Cβ.

(a) A function ψ that satisfies

u = ∂ψ

∂y
, v =−∂ψ

∂x
, (3)

is called a stream function associated with the velocity field u = (u, v). Show that ∇·u = 0
if condition (3) holds.

(b) Derive an equation that should be satisfied for the stream function in order for associ-
ated velocity field to be irrotational.

(c) A level curve of a stream function is a curve for which ψ is constant, that is, the set of
points Cα for which ψ=α. Show that the level curves of a stream functions are parallel
with the velocity field.

Hint: The directional derivative of ψ in the direction of the velocity field is (u ·∇)ψ.

(d) Let Cα and Cβ be two level curves of the stream function. Thus ψ=α and ψ=β at all
points on Cα and Cβ, respectively. Moreover, let γ be an arbitrary curve that starts at a
point xα ∈Cα and ends at a point xβ ∈Cβ (Figure 1). The flux of the velocity u across γ
is

Q =
∫
γ

n ·u ds, (4)

where n is a normal vector field to γ. (That is, Q m2/s of fluid is passing through γ if u
is given in m/s). Show that Q =β−α.

Hints: (i) Parameterize the curve γ with a parameter s such that for s ∈ [0,1], x(s) ∈ γ
and such that x(0) = xα and x(1) = xβ. By the fundamental theorem of integral calculus,

β−α=ψ(xβ)−ψ(xα). =
∫ 1

0

d

d s
ψ(x(s))ds. (5)

(ii) Use the chain rule of differentiation for the integrand in expression (5), and use the
fact that t = (−ny ,nx ) is the tangent vector to γ illustrated in figure (1) (nx and ny are
the x- and y-coordinates of the normal vector n).

2 FEM

2.1 Review questions

1. What is meant by a weak solution to a boundary-value problem for Poisson’s equation?

2. Give two reasons to use integration by parts (Green’s first identity) when deriving the varia-
tional form for the Poisson problem that constitutes the basis for finite-element discretiza-
tion.

3. Explain the difference between essential and natural boundary condition for a variational
problem.
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2.2 Exercises

1. For following boundary-value problems, derive variational forms, define a FE approximation
using continuous, piecewise-linear functions on a uniform mesh, and specify the linear
system associated with the FE approximation.

(a)
−u′′ = f in (0,1),

u(0) = 0,

u′(1) = 0.

(b)
−u′′ = f in (0,1),

u(0) = g ,

u(1) = 0.

Hint: Letting φi (x) denote the standard “hat” basis function centered at point xi = i h,
i = 0, . . . , N , h = 1/N , write the finite element solution as

uh(x) =
N∑

i=0
uiφi (x) = gφ0(x)+

N∑
i=1

uiφi (x)︸ ︷︷ ︸
ûh (x)

= gφ0(x)+ ûh(x),

where the second equality follows from the boundary condition at x = 0. Substitute the
above expression into the variational form and move the term associated with gφ0(x) to
the right hand side (since it is a known “forcing”-type quantity). Then you will obtaine
a linear system for the unknown coefficients in an expansion of ûh(x). Note that the
function is known at the endpoints and unknown only in the mesh nodes in the strict
interior interval. The order of the stiffness matrix should therefore be equal to the
number of strict interior nodes.

(c)
−u′′+au′ = f in (0,1),

u(0) = u(1) = 0.

(d)
−u′′+u = f in (0,1),

u′(0) = u′(1) = 0.
(6)

(e)
−(c(x)u′)′ = f in (0,1),

u(0) = u(1) = 0,

where c(x) > 0 on [0,1]. When computing the stiffness matrix, assume that c(x) is
piecewise constant in each element, so that ci+1/2 is the value in interval (xi , xi+1).

2. Boundary-value problem
−∆u = f inΩ,

u = 0 on ∂Ω,
(7)

whereΩ is the domain marked gray in figure 2 and ∂Ω its boundary, is numerically solved
with the FEM using continuous, piecewise-linear functions on the triangulation marked in
the figure. The discretization yields a system of equations for the unknown node values.

(a) What order has the matrix of this linear system (the stiffness matrix)?

(b) Sketch the sparsity pattern of the stiffness matrix by marking with 0 the elements that
are necessarily zero and with × the rest of he elements.
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FIGURE 2. The domain for problem (7) and the triangulation.

3. Consider the following boundary-value problem for the Helmholtz equation

−∆p +k2p = 0 inΩ,

∂p

∂n
= 0 on Γw .

ikp + ∂p

∂n
= 2ikg on Γs ,

(8)

where k > 0 and where i =p−1. Derive a variational form for problem (8).

Remark 1. Problem (8) models the complex pressure amplitude p associated with single-
frequency acoustic wave propagation in a roomΩ. The pressure as a function of time will be
the real part of P (x , t) = p(x)eiωt , where ω is the angular frequency of the wave. The wave
number is k =ω/c, where c is the speed of sound. The walls of the room (the boundary of
Ω) are sound hard (solid) at Γw . The boundary condition at Γs models an opening towards
a ventilation duct, through which a wave with amplitude g enters the room, and through
which sound also can escape.

4. Small transversal1 displacements u(x) of a transversally loaded elastic cantilever2 beam of
unit length can be modelled by the classic Euler–Bernoulli beam equation

(D(x)u′′)′′ = f in (0,1),

u(0) = 0,

u′(0) = 0,

u′′(1) = 0,

(D(1)u′′(1))′ = 0

, (9)

where D(x) ≥α> 0, for each x ∈ [0,1]; the function D specifies the material and geometric
properties of the beam (the product of Young’s modulus for the material and the moment of
inertia for the cross section of the beam).

Derive a variational form of equation (9) with equal number of derivatives for the trial and
test functions. Also specify a suitable energy space to define weak solutions. Suggest a
suitable space of finite-element functions. (Continuous, piecewise-linear functions is not a
good choice. Why?)

5. Besides Green’s first identity,∫
∂Ω

∂u

∂n
dS =

∫
Ω
∇v ·∇u dV +

∫
Ω

v∆u dV . (10)

there are other integration-by-parts formulas that are useful when deriving variational forms
associated with boundary-value problems. Show the following ones.

1perpendicular to the beam’s extension
2clamped in one end, free in the other
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(a) ∫
∂Ω

n ·U vu dS =
∫
Ω

v∇· (U u)dV +
∫
Ω

(U ·∇v)u dV , (11)

where v,u are scalar-valued functions, and U = (U1, . . . ,Ud ) is vector valued.

Hint: Start with the product rule for ∇· (U vu).

(b) ∫
∂Ω

n ·v ∇·u dS =
∫
Ω

(∇·v )(∇·u)dV +
∫
Ω

(v ·∇)∇·u dV (12)

where u, v are vector-valued functions.

6. We will derive variational formulations for steady so-called advection–diffusion problems,

−ν∆u +∇· (U u) = 0, (13)

with various boundary conditions. Integration by parts should always be used for the first
term in equation (13). However, the second term involves only first derivatives, so integration
by parts is not always needed. Whether or not integration by parts on the second term should
be used will depend on the boundary conditions.

Remark 2. The two terms in equation (13) signifies processes of diffusion and advection
(that is, transport), respectively. For instance, if U is the apparent velocity field in a saturated
porous medium, equation (13) is a model for for the diffusion and transport of a pollutant.
The variable u is then the concentration of the pollutant, and parameter ν the molecular
diffusion constant.

(a) Derive a variational formulation of the following boundary-value problem:

−ν∆u +∇· (U u) = 0 inΩ,

u = g on ∂Ω.
(14)

Here, integrate by part only the first term in the PDE.

(b) Derive a variational formulation of the following boundary-value problem:

−ν∆u +∇· (U u) = 0 inΩ,

u = g on ∂Ωwhenever n ·U < 0,

ν
∂u

∂n
= 0 on ∂Ωwhenever n ·U = 0,

ν
∂u

∂n
−n ·U u = 0 on ∂Ωwhenever n ·U > 0,

(15)

Here, use integration-by-parts formula (11) on the second term.

Remark 3. Since n is the outward-directed unit normal, condition n ·U < 0 signifies
inflow, n ·U > 0 outflow, and n ·U = 0 an impervious boundary. Thus, in problem (15), a
concentration g is specified at the inflow boundary, the concentration does not change
across an impervious boundary. The condition on the outflow boundary models the
situation when the pollutant is transported out of the domain.

7. Use integration-by-parts formula (12) to derive a variational form for the following boundary-
value problem:

u −∇∇·u = f inΩ,

n ·u = 0 on ∂Ω.
(16)

(Equations of the above type appears for instance in acoustics).
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