
Authorization, Security, and Privacy
5DV119 — Introduction to Database Management

Ume̊a University
Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Authorization, Security, and Privacy 20150225 Slide 1 of 40



Basic Notions

• Access to large databases is generally selective:

• Privileges are local to each user or rôle.

• The process of defining and granting these privileges is called
authorization.

• Authorization is a positive action, designed to grant specific users or
rôles specific privileges.

• Large databases must also be protected from those who try to obtain
information which they are not intended to have.

• Intruders may attempt to gain access to the system from the outside.

• Insiders may attempt to circumvent the authorization mechanism
and gain access to information which they are not allowed to have.

• Authorized users may attempt to extract unintended information
from databases via techniques such as statistical tracking.

• Measures taken to to control such access fall under the general
heading of security, which is generally a negative or preventive
measure.

Authorization, Security, and Privacy 20150225 Slide 2 of 40



Users and Rôles

• Rather than assign privileges directly to individual users, a more
contemporary approach is to assign privileges to rôles.

Rôles: A rôle is a classification of users who are to be granted the same
access privilege.

Examples: Supervisor, travel secretary.

• Rôle-based methods for authorization are becoming more widely used,
particularly in large organizations in which many people will have the
same right to a given part of a database.

• In these slides, when the term user is employed, it should be understood
that the user may in fact be a rôle.

• Rôles were called NPDs (named protection domains) in early work
[Baldwin 1990].

Authorization, Security, and Privacy 20150225 Slide 3 of 40



Authorization

• There are two general flavors of authorization:

Discretionary authorization: Individuals (or rôles) are given certain
access privileges on data objects, as well as privileges to propagate
(grant) such privileges to others.

Mandatory authorization: In this mode, each data object has a certain
fixed classification, as does each user or rôle.

• Only users (or rôles) with a qualifying classification may access
a given data object.

Authorization, Security, and Privacy 20150225 Slide 4 of 40



Discretionary Access Control

Authority: An authority is a statement that a certain user or rôle has the
right to perform a given action on the database.

Grant: The action of assigning authority is called granting.

Revoke: The action of relinquishing authority which has previously been
granted is called revocation.

Basic rules governing granting and revocation:

• A user/rôle U has privilege P if and only if some other user/rôle U ′

with the authority to grant privilege P has in fact granted it to U.

• Only a user/rôle U with privilege P and the authority to grant P to
others may in fact grant P to another user/rôle U ′.

• A user/rôle U ′ may revoke a privilege P from user or rôle U if and
only if U ′ had earlier granted that privilege to U.

• However, U retains privilege P as long as at least one other
user has granted that privilege to U, regardless of how many
others have revoked it.

• The database administrator (DBA) grants initial privileges, to avoid
a chicken-and-egg problem.Authorization, Security, and Privacy 20150225 Slide 5 of 40



Authorization and SQL

• The general syntax for the assignment of a privilege is as follows:

GRANT <list of privileges>

ON <list of database objects>

TO <list of users>

[WITH GRANT OPTION];

Notation: [foo] = 0 or 1 occurrences of foo.

• The allowed privileges are:

• SELECT

• INSERT

• DELETE

• UPDATE

• REFERENCES = references in integrity constraints (all integrity
constraints, including by not limited to foreign keys).

Authorization, Security, and Privacy 20150225 Slide 6 of 40



Basic Examples of Authorization in SQL

• The following gives users Smith and Jones the right to issue read-only
(i.e., SELECT) queries on the tables Employee and Department.

GRANT SELECT

ON Employee, Department

TO Smith, Jones;

• The following gives users Smith and Jones not only the SELECT privilege
on the table, but also the right to pass this privilege along to other users.

GRANT SELECT

ON Employee, Department

TO Smith, Jones

WITH GRANT OPTION;

• Both assume that the issuer of the commands has the right to grant the
specified privileges.

• Otherwise, they fail.
Authorization, Security, and Privacy 20150225 Slide 7 of 40



Basic Examples of Authorization in SQL — 2

• The following gives users Smith and Jones the right to issue both SELECT

queries and UPDATE commands on the Employee table.

GRANT SELECT, UPDATE

ON Employee

TO Smith, Jones;

• Note that UPDATE has a specific semantics in SQL — namely to
change the values in fields of a tuple.

• It does not include the right to insert new tuples or to delete existing
ones.

Authorization, Security, and Privacy 20150225 Slide 8 of 40



Basic Examples of Authorization in SQL — 3

• The following statement grants all forms of access except REFERENCES.

GRANT SELECT, UPDATE, INSERT, DELETE

ON Employee

TO Smith, Jones;

• In principle, it is possible to grant modification privileges without view
privileges, but this would be problematic in terms of usage.

GRANT UPDATE, INSERT, DELETE

ON Employee

TO Smith, Jones;

• If Smith and Jones did not already have read privileges, they would be
able to write data which they would not be allowed to read again.

Authorization, Security, and Privacy 20150225 Slide 9 of 40



Authorization within Views in SQL

• To grant privileges on only part of a relation or relations, a view must
first be created.

CREATE VIEW Poor Names Only AS

SELECT LastName, FirstName, MiddleInit

FROM Employee

WHERE (Salary < 20000);

GRANT SELECT

ON Poor Names Only

TO Smith;

Authorization, Security, and Privacy 20150225 Slide 10 of 40



Authorization within Views in SQL — 2

• It is even possible to grant privileges which are valid only at certain times:

CREATE VIEW Poor Names 9 to 5 AS

SELECT LastName, FirstName, MiddleInit

FROM Employee

WHERE (Salary < 20000)

AND (Current Time >= ’09:00:00’)

AND (Current Time <= ’17:00:00’);

GRANT SELECT

ON Poor Names 9 to 5

TO Smith;

Authorization, Security, and Privacy 20150225 Slide 11 of 40



The REVOKE Directive of SQL

• The complement of GRANT is REVOKE.

• The general syntax is as follows:

REVOKE [GRANT OPTION FOR ] <list of privileges>

ON <list of database objects>

FROM <list of users>

RESTRICT | CASCADE;

Notation: A | B = A or B.

• Here GRANT OPTION FOR is not just a noise phrase.

• If specified, it indicates the revocation is just for the privilege to
grant the privilege(s), not for the privilege itself.

• If not specified, the command is to revoke the privilege(s)
itself/themselves.

• A privilege or grant option for a privilege may only be revoked by a rôle
which has granted that privilege or option in the first place.

Authorization, Security, and Privacy 20150225 Slide 12 of 40



Examples of REVOKE

• The following statement revokes the privilege of Smith to execute select
operations on the relation Employee, and also revokes (in cascading
fashion) any such privileges which Smith alone has granted.

REVOKE SELECT

ON Employee

FROM Smith

CASCADE;

• The following is similar, except that it does nothing if it would be required
that the privilege be revoked from some other user in cascading fashion.

REVOKE SELECT

ON Employee

FROM Smith

RESTRICT;

Authorization, Security, and Privacy 20150225 Slide 13 of 40



Multiple GRANTs and REVOKE

Example: Suppose that both Washington and Lincoln issue identical
GRANT commands of the following form.

GRANT SELECT

ON Employee, Department

TO Smith;

• Now suppose that Washington issues the following REVOKE.

REVOKE SELECT

ON Employee

FROM Smith

RESTRICT;

• In this case, although the command “succeeds”, Smith retains the
privilege because it was also granted by Lincoln.

• On the other hand, if Lincoln subsequently issues the same REVOKE

command, Smith will lose the privilege.

Authorization, Security, and Privacy 20150225 Slide 14 of 40



Multiple GRANTs and REVOKE with CASCADE

• First, suppose that Washington grants a right to Lincoln:

GRANT SELECT ON Employee, Department TO Lincoln

WITH GRANT OPTION;

• Now suppose that Lincoln passes this right on to Smith:

GRANT SELECT ON Employee, Department TO Smith;

• If Washington now executes the following statement, Smith as well as
Lincoln will lose the associated privileges.

REVOKE SELECT ON Employee FROM Lincoln CASCADE;

• If CASCADE is replaced by RESTRICT, the directive will fail and both
SMITH and Lincoln will retain the privilege.

• It is not clear how this failure is to be reported, since SQL does not have
a standard status-return mechanism.

Authorization, Security, and Privacy 20150225 Slide 15 of 40



REVOKE with CASCADE — Further Issues

• When a privilege is revoked with the CASCADE option, any objects which
require that privilege are also revoked.

Example: Suppose that Smith is granted read privileges on the Employee

relation.

• Smith then creates a (read-only) view consisting of employees in the
research department.

• If the privilege of reading the Employee relation is subsequently revoked
from Smith with the CASCADE option, the view itself is dropped.

• This process is necessary to avoid abandonment — the existence of an
object with no access.

• This suggests that CASCADE should be used with great care.

Authorization, Security, and Privacy 20150225 Slide 16 of 40



Authorization in PostgreSQL

• Privileges may be granted to any other user, but these privileges are
useful only if that user is allowed to connect to the database on which
the privileges were granted.

• If a user is allowed to connect to a database, then that user always has
the privilege of creating new relations and using them.

• A user is always the owner of a relation created from that user account,
regardless of the ownership of the actual database.

• Thus, if access is granted at all to a database, then the privilege of
creating and owning new relations by those with access is irrevocable.
even by the DBA.

• If you allow a user to connect to your database, then that user will be
able to create and control relations within your database.

• You may not even be able to read them!

• The creator must grant privileges to you!

But... this applies only to access directly via PostgreSQL.

• More useful access control may be achieved via applications using
ODBC or PHP.

Authorization, Security, and Privacy 20150225 Slide 17 of 40



Mandatory Access Control

• Mandatory access control is used in situations in which users (or rôles)
may be assigned security classes.

Assumptions and notation:

• The security classes form a total order.

Example: Top Secret > Secret > Confidential > Unclassified

• Each user or rôle is assigned a security class.

• Write Clearance〈U〉 to denote the clearance of U.

• Each data object is also assigned a security class.

• Write Classification〈P〉 to denote the classification of P.

Simple security property: User or rôle U has read access to object P iff
Clearance〈U〉 ≥ Classification〈P〉.
• No read-up.

Star property: User or rôle U has write access to object P iff
Clearance〈U〉 ≤ Classification〈P〉.
• No write-down.

Authorization, Security, and Privacy 20150225 Slide 18 of 40



Analysis of the Star Property

• The intent of the star property is to prevent information from being
passed down from a higher classification to a lower one.

Problem: Under the star property, a rôle may write data which it is not
allowed to read.

Strong star property: Some sources stipulate the strong star property:
Clearance〈U〉 = Classification〈P〉

Question: Is this better?

Question: Is either star property realistic in practice?

Answer: Probably not without some modification.

• It should be possible to trust people with higher classifications not to
carelessly write this information into documents or databases at lower
classifications.

• Thus, Clearance〈U〉 ≥ Classification〈P〉 seems more reasonable.

• A review process can catch inadvertent errors.

Authorization, Security, and Privacy 20150225 Slide 19 of 40



Authority of the Database Administrator

• The database administrator (DBA) is the database equivalent of a
system administrator.

• Typically, the DBA has sole authority in the following areas of
authorization:

• Create new accounts, and delete existing ones.

• Assign security levels to accounts.

• Assign initial authorization levels.

• Some of these responsibilities may be delegated in the management of
very large systems, but only in very controlled ways.

Authorization, Security, and Privacy 20150225 Slide 20 of 40



Security

• There are at least three key security issues.

1. Prevent attacks from outside intruders.

• The problem of SQL injection and its prevention will be examined in
these slides.

2. Prevent unauthorized access from insiders.

• A key technique is to maintain detailed logs.

3. Take care not to grant privileges unintentionally.

• This aspect of security is called privacy, particularly when the data
include confidential information about people (such as medical
records).

• This problem is particularly relevant in the area of statistical
databases.

• The problem of statistical tracking will be examined in these slides.

Authorization, Security, and Privacy 20150225 Slide 21 of 40



SQL Injection

• One of the most common ways to obtain unauthorized access to a
database is via SQL injection.

• This problem occurs when parameters to an SQL query are included by
pasting in the text received from the user.

Example: Prompt the user for an SSN, and then provide all information
about the associated employee which is in the Employee relation.

• The proper way to implement this query in ODBC is to use argument
parameters:

SELECT * FROM Employee WHERE SSN=?

Question: Why not be clever and do something like this instead?

query left ← "SELECT * FROM Employee WHERE SSN=’"

query right ← "’"

query total ← query left1 · user input · query right

• So if the user types 999887777, then

query total ← "SELECT * FROM Employee WHERE SSN=’999887777’

Authorization, Security, and Privacy 20150225 Slide 22 of 40



SQL Injection — 2

Question: Why not be clever and do something like this instead?

query left ← "SELECT * FROM Employee WHERE SSN=’"

query right ← "’"

query total ← query left1 · user input · query right

Answer: What if the user types ’ OR 1=1 -- ?

• The query becomes:

query total ← "SELECT * FROM Employee WHERE SSN=’’ OR 1=1 --’

• This query returns all tuples in the Employee relation!

Answer: What if the user types ’; DROP TABLE Employee -- ?

• The query becomes:
query total ← "SELECT * FROM Employee WHERE SSN=’’; DROP TABLE Employee --’

• This query should drop the entire Employee relation!

• Fortunately, most current ODBC implementations will only execute the
first query in a sequence, or flag an error.

Authorization, Security, and Privacy 20150225 Slide 23 of 40



Preventing SQL Injection

• The best protection against SQL injection is to use parameters in ODBC
queries, and not to use string concatenation.

• Concealing error messages from end users also helps, because such
messages can give insight into the nature of the database schema.

• A sample Python program which illustrates SQL injection is available on
the course Web site.

Authorization, Security, and Privacy 20150225 Slide 24 of 40



Privacy-Preserving Data Publishing

• It is common to grant summary access to large databases, without
permitting detailed access.

Example query for a company database: Provide the average salary of all
employees in the research department.

• The idea is to provide information about the general state of things,
without revealing detailed, confidential information about individuals.

• Some databases, particularly those maintained by government agencies,
are explicitly stated to be maintained for purposes of summary
information only, with details about individuals held “strictly
confidential”.

• The buzzphrase is privacy-preserving data publishing.

Question: Can such privacy be maintained, and if so, how?

Authorization, Security, and Privacy 20150225 Slide 25 of 40



Anonymization

• A basic step in privacy-preserving data publishing is anonymization.

• This means that the data have been transformed so that the identity of
individuals may no longer be determined via queries.

Problem: Anonymization is a matter of degree.

• That which seems to be sufficient typically is not.

Example: Suppose that in a large statistical database, the personal ID
numbers of individuals are replaced with distinct, random values.

Question: Does such a measure suffice to protect the anonymity of each
individual?

Answer: Individual trackers may be able to harvest information about
individuals even when such measures are taken.

Authorization, Security, and Privacy 20150225 Slide 26 of 40



Individual Trackers

• An individual tracker is a query or sequence of queries designed to extract
information about an individual in a statistical database.

• The following example is from D. E. Denning and P. J. Denning, Data
Security, ACM Computing Surveys, Vol. 11, No. 3, 1979, pp. 227-249.

Context: An apparently anonymized medical database which allows only
statistical queries.

Query 1: How many patients have these characteristics?
Male Age 45-50 Married
Two children Harvard law degree Bank vice president

• Suppose that the questioner knows that Jones has these characteristics
and the query returns a count of one.

Query 2: How many patients have these characteristics?
Male Age 45-50 Married
Two children Harvard law degree Bank vice president

Took drugs for depression

• The combined answers to these two statistical queries uses background
knowledge to tell whether Jones took drugs for depression.

Authorization, Security, and Privacy 20150225 Slide 27 of 40



Minimum Query-Set Control

• A candidate solution to the problem of individual trackers is minimum
query-set control.

Minimum query-set control: Fix a number 0 ≤ q ≤ 100.

• Every query must retrieve at least q% of the records and no more
than (100− q)%.

• Choose q so that both q% and (100− q)% of the records is a large
set.

• This eliminates the the tracking method illustrated in the example on the
previous slide.

Problem: Even with such controls, security may be compromised.

• The trick is to use a statistical tracker rather than an individual tracker.

Authorization, Security, and Privacy 20150225 Slide 28 of 40



Statistical Tracking

Context: Assume that the Company database has been anonymized so that
the values of the SSN, LName, FName, MInit, Address, BDate, and
Super SSN attributes have been anonymized.

• This includes corresponding attributes, such as ESSN of the
Works On and Dependent relations, and Mgr SSN of the
Department relation.

Query: Find the salary of Joyce English.
Known: Joyce is the only female who works on the ProductY project.
• The following statistical query is no longer allowed (for q > 1 and q < r ,

with r the total number of employees), since it returns only one tuple.
SELECT AVG(Salary)

FROM Employee JOIN Works_On ON (SSN=ESSN)

JOIN Project ON (PNO=PNumber)

WHERE (PName=’ProductY ’) AND (SEX=’F’);

• While both SSN and ESSN are anonymized, equality is values is preserved
in the anonymization, so SSN=ESSN still provides correct matches.

Authorization, Security, and Privacy 20150225 Slide 29 of 40



General Trackers

• To overcome the limitations imposed by minimum query-set control,
begin by identifying a general tracker.

General tracker (of degree q, 0 ≤ q ≤ 100): The idea is that such a tracker
must return at least q% of the possible tuples, and at most (100-q)%,

• with the additional condition that retrieving one more or one less
tuple will not violate this condition.

• It satisfies minimum query-set control with a little room to spare.

More precisely: Suppose that the total number of tuples of the form which a
query Q can possibly return return is nQ .

• If Q retrieves tuples of a single relation, then nQ is the total number
of tuples in the relation.

• In general, think of creating a view first and then computing nQ for
the relation of that view.

• If n is the number of tuples which Q actually returns, then:

(n − 1)/nQ ≥ q/100 (n + 1)/nQ ≤ (100− q)/100
Authorization, Security, and Privacy 20150225 Slide 30 of 40



General Trackers — Counters

Example: Suppose that the query T below is a general tracker.

SELECT SUM(Salary)

FROM Employee JOIN Department ON (DNO=DNumber)

WHERE (DName=’Administration ’) ;

Counter: The counter T0 of T counts the number of tuples returned.

SELECT Count (*), SUM(Salary)

FROM Employee JOIN Department ON (DNO=DNumber)

WHERE (DName=’Administration ’) ;

• This query is identical to T save that it also counts the number of
employees in the sum.

Authorization, Security, and Privacy 20150225 Slide 31 of 40



General Trackers — Classifiers

The classifier: This query Q0 determines whether Joyce is in the result set of
T0.

SELECT Count (*), SUM(Salary)

FROM Employee JOIN Department ON (DNO=DNumber)

WHERE (DName=’Administration ’) OR

(SSN IN (SELECT E.SSN

FROM Employee E JOIN Works_On ON (E.SSN=ESSN)

JOIN Project ON (PNO=PNumber)

WHERE (PName=’ProductY ’) AND (Sex=’F’))) ;

• If the count returned by T0 is one larger than that returned by Q0, then
Joyce does not work in the Administration department.

• In that case, it is easy to compute the salary of Joyce as the difference in
total salaries of the two queries.

Authorization, Security, and Privacy 20150225 Slide 32 of 40



General Trackers — Complementary Counters / Classifiers

• If the count returned by Q0 is the same as the count returned by T0,
then use the complementary counter.

Complementary counter: The complementary counter T1 of T counts the
number of tuples not returned by T0.

SELECT Count (*), SUM(Salary)

FROM Employee JOIN Department ON (DNO=DNumber)

WHERE (DName <>’Administration ’) ;

The complementary classifier: Q1

SELECT Count (*), SUM(Salary)

FROM Employee JOIN Department ON (DNO=DNumber)

WHERE (DName <>’Administration ’) OR

(SSN IN (SELECT E.SSN

FROM Employee E JOIN Works_On ON (E.SSN=ESSN)

JOIN Project ON (PNO=PNumber)

WHERE (PName=’ProductY ’) AND (Sex=’F’))) ;

• The salary of Joyce may be obtained as the difference of the salary sum
returned by T1 and that returned by Q1.

Authorization, Security, and Privacy 20150225 Slide 33 of 40



Quasi-Identifiers

Anon ID Sex BirthDate PostCode Illness Duration Treatment

• Consider the medical-record relation shown above.

• Anon ID is an anonymized ID; e.g., an encrypted personnummer.

• It may or may not be included, depending upon whether or not full
association between illness instances is to be retained.

Quasi-identifier A quasi-identifier (or quasi-ID) is a set of attributes from
which the ID can be recovered or nearly recovered (i.e., up to a small set
of possibilities) in a large percentage of cases.

Example: {Sex,BirthDate,PostCode} is a likely candidate for a quasi-ID in
the above case.

• In contrast to the example of statistical tracking, a quasi-ID is not
customized for a given individual; it should work for most individuals.

Question: How can privacy be preserved in the presence of quasi-identifiers?

Authorization, Security, and Privacy 20150225 Slide 34 of 40



Classification of Attributes

Anon ID Sex BirthDate PostCode Illness Duration Treatment

• Attributes may be classified into two groups.

Identifier attributes: Used to identify the individual

• Typically part of a quasi-ID.

• Not viewed as highly sensitive information.

Example: {Sex,BirthDate,PostCode} are likely candidates for identifier
attributes in the above case.

Sensitive attributes: Attributes containing information about individuals
which must be protected

Example: {Illness,Duration,Treatment} are likely candidates for sensitive
attributes in the above case.

Authorization, Security, and Privacy 20150225 Slide 35 of 40



Aggregation Techniques for Privacy Preservation

Anon ID Sex BirthDate PostCode Illness Duration Treatment

Suppression (total aggregation): In suppression, an entire attribute is
removed (or all entries replaced with the same value).

• Often but not necessarily an identifier attribute.

Example: Replace Sex (or BirthDate, or both) with the same value
unspecified in all tuples.

Generalization (partial aggregation): Replace values with an equivalence
class.

Example: Replace BirthDate with just the year of birth, or replace it with its
five-year block (e.g., 1960-1964, 1965-1969, etc).

Assessment: Aggregation is effective in reducing loss of privacy, but it also
collapses attribute values which may be useful in statistical analysis.

Authorization, Security, and Privacy 20150225 Slide 36 of 40



Anatomization Techniques for Privacy Preservation

Anon ID Sex BirthDate PostCode Grp ID
Ident

Grp ID Illness Duration Treatment Count
Sensitive

Anatomization: Decompose the relation into two parts, one containing the
identifier attributes and the other containing the sensitive attributes.

• Also called bucketization.

Grouping: The tuples in the Ident relation are grouped, with each group
having a unique group ID.

• Tuples in the same group have the same group ID.

• Group ID is also an attribute of the Sensitive relation.

• If some tuple in the Ident relation matches the data in a row of the
Sensitive relation, the associated group ID is included in that row.

• A count of the number of matches for a given group ID may also be
included.

• The join of these two relations will provide too many associations, thus
enhancing privacy.

Authorization, Security, and Privacy 20150225 Slide 37 of 40



Comparison of Aggregation and Anatomization

Anon ID Sex BirthDate PostCode Illness Duration Treatment

Anon ID Sex BirthDate PostCode Grp ID
Ident

Grp ID Illness Duration Treatment Count
Sensitive

Aggregation: In aggregation, it is the values themselves which are made less
specific to enhance privacy.

• The table is not broken, so there is no loss of association between
what is left of the identifier and what is left of the sensitive values
after aggregation.

Anatomization: In anatomization, values are preserved; it is the association
between identifiers and values which is made less specific in order to
preserve privacy.

Assessment: Which of these two approaches is most appropriate depends
upon what the application needs in terms of data.

• They mangle the data in different ways.
Authorization, Security, and Privacy 20150225 Slide 38 of 40



Other Ways of Preserving Privacy

Grouping and Breaking: Aggregation and anatomization fall under the
general heading of grouping and breaking.

• Other approaches to preserving privacy include:

Adding noise:

• Introduce “noise” into the result of a query, so that numerical
answers are not exact.

• This must be done in certain ways, so that the noise cannot be
filtered out by integrating the results of a large number of queries.

Random samples:

• Instead of providing a database with all individuals, include only a
random sample.

• This technique is useful for very large statistical-only databases, such
as census databases.

• Users do not know who is in the sample.
Authorization, Security, and Privacy 20150225 Slide 39 of 40



For More Information on Privacy-Preserving Data Publishing

• A good survey which is easy to find:

• Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu,
Privacy-Preserving Data Publishing: A Survey of Recent
Developments, ACM Computing Surveys, Vol 42, No. 4, Article 14,
June 2010.

• A comprehensive survey, but not publicly available:

• Raymond Chi-Wing Wong and Ada Wai-Chee Fu, Privacy-Preserving
Data Publishing: An Overview, Synthesis Lectures on Data
Management, Morgan and Claypool, 2010.

Authorization, Security, and Privacy 20150225 Slide 40 of 40


