
Database Access via Programming Languages
5DV119 — Introduction to Database Management

Ume̊a University
Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Database Access via Programming Languages 20150213 Slide 1 of 20



The Limitations of Stand-Alone SQL

• SQL is primarily a language for data definition, retrieval, and update.

• It is not designed for complex computation.

• Enhancements such as OLAP are useful for certain specific tasks, but still
leave many important tasks difficult or impossible to achieve.

Theoretical shortcoming: Unlike most programming languages, it is not
Turing complete.

• There are computations which cannot be expressed in SQL at all.

Interoperability shortcoming: Stand-alone SQL clients are generally vendor
specific.

• Concurrent access to databases of different vendors is not possible
with a single client.

• Access to multiple databases via the same client is usually awkward,
requiring vendor-specific directives.

Database Access via Programming Languages 20150213 Slide 2 of 20



The Limitations of Stand-Alone SQL: 2

Practical shortcomings: There is also a host of practical reasons why
stand-alone SQL does not suffice:

Accessibility: Most users of databases are not computer scientists.

• They need a custom interface for non-experts.

• Even experts can often work more effectively via custom interfaces.

Simplicity: Real-world database schemata are often very large and complex.

• Users often need to work with custom views which present what
they need to know and are allowed to know.

Security: The correct management of access rights is a very complex task.

• It is often easier to manage access by admitting access via specific
interfaces.

Concurrency: The correct management of concurrent processes is also very
complex.

• It is often easier to manage concurrency via properly designed
interfaces.

Database Access via Programming Languages 20150213 Slide 3 of 20



Database Access via Programming Languages: Desiderata

Database access via standard SQL: Ça va sans dire !

Use with: • traditional programming languages: C, C++, Java, Python.

• languages for Web-based access: PHP, via Apache Tomcat.

Interoperability: Access to several different databases, running the systems
of many different vendors, perhaps on different platforms.

The Major Players in the DBMS arena:

The “big three” commercial systems: • Oracle Database

• IBM DB2

• Microsoft SQL Server

The major open-source systems: • PostgreSQL

• MySQL/InnoDB

Other significant commercial vendors: Mimer SQL, Sybase

Other products with widespread usage: Microsoft Access

Database Access via Programming Languages 20150213 Slide 4 of 20



Examples of Vendor-Specific Solutions

Oracle PL/SQL: A proprietary PL/1-like imperative programming language
which supports the execution of SQL queries.

Advantages:

• Many Oracle-specific features of SQL and the Oracle Database
systems are supported.

• Performance may be optimized in a manner not achievable with
solutions which are not vendor specific.

Disadvantages:

• Vendor lock-in: applications are tied to a specific DBMS.

• Application development is dependent upon the existence of a
development environment for the language (in this case,
PL/SQL), which may not be available on all platforms.

• Big problems arise if the vendor goes out of business or chooses
to stop supporting a given platform (e.g., Linux).

• VBA + MS Access under Microsoft Windows is an even stronger
vendor-specific example in the desktop environment.

Database Access via Programming Languages 20150213 Slide 5 of 20



Embedded SQL: a Vendor-Independent Solution

• In embedded SQL, calls to SQL statements are embedded in the host
programming language.

• Typically, such statements are tagged by a special marker,
usually EXEC SQL.

• A preprocessor is invoked to convert the source program into a “pure”
program in the host language.

• The EXEC SQL statements are converted to statements in the host
language via a preprocessor.

• In static embedded SQL, table and attribute names must be declared in
the source program.

• In dynamic embedded SQL, they may be provided at run time.

• There is an ISO standard for embedded SQL.

Database Access via Programming Languages 20150213 Slide 6 of 20



Disadvantages of Embedded SQL

Embedded SQL has a number of distinct disadvantages:

Preprocessed: Debugging preprocessed programs is not a pleasant
experience.

Program development environment: Because of the nature of preprocessed
programs, it is not easy to provide support for the preprocessor directives
within a programming environment.

Specificity: The preprocessor must be vendor specific, and at least in part,
platform specific as well.

• Embedded SQL has been superseded in large part by CLI/ODBC.

Database Access via Programming Languages 20150213 Slide 7 of 20



A Closer Look at Interoperability

• A “real-world” situation might involve several DBMS, OSs, and PLs.

• The scenario might look something like this:

Network

Client1

App11 · · · App1k1

(Linux)

(C) (PHP)

Client2

App21 · · · App2k2

(Mac OS)

(C) (Python)

· · · Client`

App`1 · · · App`k`

(M$ Windows)

(VBA) (C#)

Server1

DB11 · · · DB1m1

(Solaris)

(Oracle) (PostgreSQL)

Server2

DB21 · · · DB2m2

(Linux)

(IBM DB2) (MySQL)

· · · Servern

DBn1 · · · DBnmn

(Windows Server)

(SQL Server) (MySQL)

• In the ideal case, any application should be able to access any database
using SQL ... subject only to limitations imposed by access rights.

Database Access via Programming Languages 20150213 Slide 8 of 20



The CLI/ODBC Solution to Interoperability

• There are two closely related specifications.

CLI (Call-Level Interface): An ISO/IEC standard developed in the early
1990s.

• Defined only for C and COBOL.

ODBC (Open Data Base Connectivity): A specification based upon CLI.

• Defined for many programming languages, including C, Python,
Ruby, and PHP.

• in addition to ...

JDBC: An ODBC-like specification for Java.

• All of these solutions exhibit a large degree of interoperability.

U ODBC is not platform, OS, or DBMS specific.

OS: Unix, Linux, MacOS, MS Windows, IBM

DBMS: You name it.

• Interestingly, the major player which promoted ODBC was ... Microsoft!
Database Access via Programming Languages 20150213 Slide 9 of 20



Other Tools for Database Access via Programming Languages

• Approaches to interoperable DB access via PLs, other than ODBC,
include:

Programming-language specific (so less interoperability): Some PLs have
built-in features for accessing relational databases.

Example: PHP is a comprehensive language for server-side Web
programming.

• It has build-in command for DB access using SQL.
• It also supports access via ODBC.

Programming-paradigm specific: Some approaches are focused upon a
particular programming paradigm.

Example: Active Record Pattern is an approach for accessing relational
databases which is particularly suited to the object-oriented paradigm.

• ColdFusion is an open-source implementation of this idea.
• Many programming languages, including PHP, Ruby, and Java have

implementations available.

• These approaches are not considered in this course because they require
knowledge of programming languages other than C and Python.

Database Access via Programming Languages 20150213 Slide 10 of 20



Use of ODBC

Myth: Nobody uses ODBC any more.

Reality: ODBC is still widely used.

• The other approaches complement it; they do not replace it.

Examples of ODBC usage:

Virtuoso: The Virtuoso Universal Server provides access to a variety of
types of databases, including but not limited to relational.

• ODBC support is an integral part of Virtuoso.

• Virtuoso with ODBC is used to support services in Linux.

Database access for research: It is widely used to for research
applications which involve access to very large relational databases,
particularly statistical databases.

• Even if you will use something else in your future employment, it is
useful to learn the principles of interoperable DB access using
ODBC.

• So, now to look at ODBC in some detail...

Database Access via Programming Languages 20150213 Slide 11 of 20



The Architecture of ODBC for a Single Client

Network

Client
OS

ODBC
Manager

Oracle ODBC Driver

PostgreSQL ODBC Driver

Microsoft ODBC Driver
User

ODBC Mapping

C
Devel. Env.

UnixODBC
Library

Python

Devel. Env.

PyODBC

Library

Server1

DB11 · · · DB1m1

Server2

DB21 · · · DB2m2

· · · Servern

DBn · · · DBnmn

Color code:
Operating system OS-specific utility DBMS-specific module

Development-environment-specific module User configuration file

Database Access via Programming Languages 20150213 Slide 12 of 20



Using ODBC in the Linux Environment

• The main ideas are presented via a set of annotated programs in two
languages:

C: Using the standard gcc compiler.

Python: Using the standard python interpreter.

• These slides provide only supporting information.

• The basic ODBC configuration file is the same for both C and Python.

• However, the details of usage are very different, since C and Python are
very different languages.

C: is a compiled language with explicitly declared data types.

• This requires that there be declared type matching between C
data types and SQL data types.

Python: is an interpreted language with data typing upon assignment.

• This implies that ODBC must also do run-time typing.

Database Access via Programming Languages 20150213 Slide 13 of 20



Data-Source Configuration: Linux + PostgreSQL

• Every data source which is to be reached via ODBC calls must be
declared in the .odbc.ini file in the home directory of the user.

• A minimal example file is shown below for connection to PostgreSQL
databases using ANSI encoding on the postgres server using Linux.

• Some of these parameters may be specified in the calling program as well.
# The ODBC data source names are are not used by PostgreSQL.

[ODBC Data Sources]

mydb1 = database1

# The name in square brackets is the ODBC DB name.

# It may be chosen arbitrarily.

[database1]

Description = PostgreSQL test database for Joe S. User

Driver = /usr/lib/x86 64-linux-gnu/odbc/psqlodbca.so

# The name on the next line is the PostgreSQL DB name.

Database = c5dv119 v14 jsu

# Username is the PostgreSQL user name and may be omitted with ident authentication.

Username = c5dv119 v14 jsu

Servername = postgres

Password = "badidea"

Database Access via Programming Languages 20150213 Slide 14 of 20



Data-Source Configuration: ANSI and Unicode

• Actually, there are two drivers for PostgreSQL:

ANSI: The ANSI driver psqlodbca.so.

Unicode: The Unicode driver psqlodbcw.so.

• Information on which driver to use is contained in the slides which are
specific to C and Python.

• An example configuration which uses the Unicode driver is shown below.

# The ODBC data source names are are not used by PostgreSQL.

[ODBC Data Sources]

mydb1 = database1U

# The name in square brackets is the ODBC DB name.

# It may be chosen arbitrarily.

[database1U]

Description = PostgreSQL test database for Joe S. User

Driver = /usr/lib/x86 64-linux-gnu/odbc/psqlodbcw.so

# The name on the next line is the PostgreSQL DB name.

Database = c5dv119 v14 jsu

# Username is the PostgreSQL user name and may be omitted with ident authentication.

Username = c5dv119 v14 jsu

Servername = postgres

Password = "badidea"

Database Access via Programming Languages 20150213 Slide 15 of 20



Data-Source Configuration: Linux + MySQL

• To use MySQL instead of PostgreSQL, only the driver location and server
name need be changed.

• There is one driver libmyodbc.so for both ANSI and Unicode.

• The keyword Server, not Servername, is used to identify the server.

• The keyword User, not Username, is used to identify the user.

• The Password may be given here as well, but for security reasons it is
better to obtain it via prompting in the calling program.
# The ODBC data source names are are not used by MySQL.

[ODBC Data Sources]

mydb1 = database1M

# The name in square brackets is the ODBC DB name.

# It may be chosen arbitrarily.

[database1M]

Description = MySQL test database for Joe S. User

Driver = /usr/lib/x86 64-linux-gnu/odbc/libmyodbc.so

# The name on the next line is the MySQL DB name.

Database = v119v14jsu

# The name on the next line is the MySQL user name.

User = v119v14jsu

Password = "badidea"

Server = mysql
Database Access via Programming Languages 20150213 Slide 16 of 20



Multiple Data-Source Configuration in One File

• Several data sources may be specified in the .odbc.ini file.

[ODBC Data Sources]

mydb1A = database1PA

mydb1M = database1M

mydb1U = database1PU

[database1PA]

Description = PostgreSQL test database with ANSI driver

Driver = /usr/lib/x86 64-linux-gnu/odbc/psqlodbca.so

Database = c5dv119 vt14 jsu

Username = c5dv119 vt14 jsu

Servername = postgres

[database1PU]

Description = PostgreSQL test database with Unicode driver

Driver = /usr/lib/x86 64-linux-gnu/odbc/psqlodbcw.so

Database = c5dv119 vt14 jsu

Username = c5dv119 vt14 jsu

Servername = postgres

[database1M]

Description = MySQL test database

Driver = /usr/lib/x86 64-linux-gnu/odbc/libmyodbc.so

Database = v119v14jsu

User = v119v14jsu

Server = mysql
Database Access via Programming Languages 20150213 Slide 17 of 20



A More Complete Specification of a Data Source

[ODBC Data Sources]

mydb3 = database3

[database3]

Description = PostgreSQL test database 1

Driver = /usr/lib/x86 64-linux-gnu/odbc/psqlodbca.so

Database = hegner1

Servername = postgres

Port = 5432

ReadOnly = 0

Username = hegner1

Password = "badidea"

Trace = No

TraceFile = /tmp/odbc.log

• The fields not shown on the previous slide are optional.

MySQL: Use User instead of Username and Server instead of Servername.

• Port and ReadOnly need be specified only if they differ from the
defaults.

• Trace and Tracefile need only be specified if tracing is desired.

• Other DB systems may use different keywords for some of these entries,
and support additional entries as well.

Database Access via Programming Languages 20150213 Slide 18 of 20



ODBC Handles

• A handle is a numerical value which is associated with a certain object.

• File handles are familiar in systems programming.

• In ODBC, there are four types of handles.

Environment handles: In order to access a database via ODBC, an
ODBC environment must be established.

• There is normally only one such environment per program.

Connection handles: Just as there must be a file handle for every open
file in an operating system, so too must there be a connection
handle for each connection to an ODBC database.

Statement handles: A statement handle is associated with an SQL
statement which is to be issued to a database for execution.

Descriptor handles: Descriptors are metadata which describe formats
associated with SQL statements.

• Descriptor handles will not be used in this course.

Database Access via Programming Languages 20150213 Slide 19 of 20



Visualization of the Hierarchy of ODBC Handles

EnvironmentHandle

ConnectionHandle1

Stmt.
Handle11

· · · Stmt.
Handle1m1

ConnectionHandle2

Stmt.
Handle21

· · · Stmt.
Handle2m2

· · · ConnectionHandlen

Stmt.
Handlen1

· · · Stmt.
Handlenmn

• There is usually one environment handle per program.

• Distinct connection handles may refer to distinct databases.

• Each statement handle is for the database associated with its
environment handle.

• Multiple statement handles are useful for parallel execution of
queries.

Database Access via Programming Languages 20150213 Slide 20 of 20


