Database Access via Programming Languages

5DV119 — Introduction to Database Management
Umea University
Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se
http://www.cs.umu.se/ "hegner

Database Access via Programming Languages 20150213 Slide 1 of 20

The Limitations of Stand-Alone SQL

e SQL is primarily a language for data definition, retrieval, and update.

e |t is not designed for complex computation.

e Enhancements such as OLAP are useful for certain specific tasks, but still
leave many important tasks difficult or impossible to achieve.

Theoretical shortcoming: Unlike most programming languages, it is not
Turing complete.
e There are computations which cannot be expressed in SQL at all.
Interoperability shortcoming: Stand-alone SQL clients are generally vendor
specific.
e Concurrent access to databases of different vendors is not possible
with a single client.

e Access to multiple databases via the same client is usually awkward,
requiring vendor-specific directives.

Database Access via Programming Languages 20150213 Slide 2 of 20

The Limitations of Stand-Alone SQL: 2

Practical shortcomings: There is also a host of practical reasons why
stand-alone SQL does not suffice:

Accessibility: Most users of databases are not computer scientists.
e They need a custom interface for non-experts.
e Even experts can often work more effectively via custom interfaces.

Simplicity: Real-world database schemata are often very large and complex.
e Users often need to work with custom views which present what
they need to know and are allowed to know.

Security: The correct management of access rights is a very complex task.
e |t is often easier to manage access by admitting access via specific
interfaces.

Concurrency: The correct management of concurrent processes is also very
complex.
e |t is often easier to manage concurrency via properly designed

interfaces.
Database Access via Programming Languages 20150213 Slide 3 of 20

Database Access via Programming Languages: Desiderata

Database access via standard SQL: Ca va sans dire !

Use with: e traditional programming languages: C, C4++, Java, Python.
e languages for Web-based access: PHP, via Apache Tomcat.

Interoperability: Access to several different databases, running the systems
of many different vendors, perhaps on different platforms.

The Major Players in the DBMS arena:

The “big three” commercial systems: e Oracle Database
e |[BM DB2
e Microsoft SQL Server

The major open-source systems: e PostgreSQL
e MySQL/InnoDB

Other significant commercial vendors: Mimer SQL, Sybase

Other products with widespread usage: Microsoft Access

Database Access via Programming Languages 20150213 Slide 4 of 20

Examples of Vendor-Specific Solutions

Oracle PL/SQL: A proprietary PL/1-like imperative programming language
which supports the execution of SQL queries.

Advantages:

e Many Oracle-specific features of SQL and the Oracle Database
systems are supported.

e Performance may be optimized in a manner not achievable with
solutions which are not vendor specific.
Disadvantages:

e Vendor lock-in: applications are tied to a specific DBMS.

e Application development is dependent upon the existence of a
development environment for the language (in this case,
PL/SQL), which may not be available on all platforms.

e Big problems arise if the vendor goes out of business or chooses
to stop supporting a given platform (e.g., Linux).

e VBA + MS Access under Microsoft Windows is an even stronger
vendor-specific example in the desktop environment.

Database Access via Programming Languages 20150213 Slide 5 of 20

Embedded SQL: a Vendor-Independent Solution

e In embedded SQL, calls to SQL statements are embedded in the host
programming language.

e Typically, such statements are tagged by a special marker,
usually EXEC SQL.

e A preprocessor is invoked to convert the source program into a “pure”
program in the host language.

e [The EXEC SQL statements are converted to statements in the host
language via a preprocessor.

e In static embedded SQL, table and attribute names must be declared in
the source program.

e In dynamic embedded SQL, they may be provided at run time.
e Thereis an ISO standard for embedded SQL.

Database Access via Programming Languages 20150213 Slide 6 of 20

Disadvantages of Embedded SQL
Embedded SQL has a number of distinct disadvantages:

Preprocessed: Debugging preprocessed programs is not a pleasant
experience.

Program development environment: Because of the nature of preprocessed
programs, it is not easy to provide support for the preprocessor directives
within a programming environment.

Specificity: The preprocessor must be vendor specific, and at least in part,
platform specific as well.

e Embedded SQL has been superseded in large part by CLI/ODBC.

Database Access via Programming Languages 20150213 Slide 7 of 20

A Closer Look at Interoperability

e A “real-world” situation might involve several DBMS, OSs, and PLs.

e [he scenario might look something like this:

(C) (PHP) (C)_ (Python) (VBA) (C#).
:Zp'pl'l'i o Ay, ! ::\p-pz-l.i 'App2k2: :.-;‘p:)ﬁ-lli coo oy Appgg, !
» = _ - (MacOS) =
Clienty |(Linux) Cllen (M$ Windows Client,

. (Linux)
Se’rve‘rl (Solaris) Se’rve‘rz (Windows Server Se’rve'rn
i[;B‘;l":' .:BE;;[: -'5521": -:532;2': 3 S Tom
(Oracle) (Poét'gFe'S'QL)(lBM DB2) (MySQL) (SQL Server) (MySQL)

e In the ideal case, any application should be able to access any database

using SQL ... subject only to limitations imposed by access rights.
Database Access via Programming Languages 20150213 Slide 8 of 20

The CLI/ODBC Solution to Interoperability

e There are two closely related specifications.

CLI (Call-Level Interface): An ISO/IEC standard developed in the early
1990s.
e Defined only for C and COBOL.

ODBC (Open Data Base Connectivity): A specification based upon CLI.

e Defined for many programming languages, including C, Python,
Ruby, and PHP.

e in addition to ...
JDBC: An ODBC-like specification for Java.

e All of these solutions exhibit a large degree of interoperability.

I’ ODBC is not platform, OS, or DBMS specific.
OS: Unix, Linux, MacOS, MS Windows, IBM
DBMS: You name it.

e Interestingly, the major player which promoted ODBC was ... Microsoft!

Database Access via Programming Languages 20150213 Slide 9 of 20

Other Tools for Database Access via Programming Languages

e Approaches to interoperable DB access via PLs, other than ODBC,
include:
Programming-language specific (so less interoperability): Some PLs have
built-in features for accessing relational databases.
Example: PHP is a comprehensive language for server-side Web
programming.
e |t has build-in command for DB access using SQL.
e It also supports access via ODBC.
Programming-paradigm specific: Some approaches are focused upon a
particular programming paradigm.
Example: Active Record Pattern is an approach for accessing relational
databases which is particularly suited to the object-oriented paradigm.
e ColdFusion is an open-source implementation of this idea.
e Many programming languages, including PHP, Ruby, and Java have
implementations available.
e These approaches are not considered in this course because they require
knowledge of programming languages other than C and Python.

Database Access via Programming Languages 20150213 Slide 10 of 20

Use of ODBC

Myth: Nobody uses ODBC any more.
Reality: ODBC is still widely used.

e T[he other approaches complement it; they do not replace it.
Examples of ODBC usage:

Virtuoso: The Virtuoso Universal Server provides access to a variety of
types of databases, including but not limited to relational.
e ODBC support is an integral part of Virtuoso.
e Virtuoso with ODBC is used to support services in Linux.

Database access for research: It is widely used to for research
applications which involve access to very large relational databases,
particularly statistical databases.

e Even if you will use something else in your future employment, it is

useful to learn the principles of interoperable DB access using
ODBC.

e So, now to look at ODBC in some detail...

Database Access via Programming Languages 20150213 Slide 11 of 20

The Architecture of ODBC for a Single Client

UnLl?b(?a[?}I/BC DeveIC Env Oracle ODBC Driver
: : ODBC
Manager
PyODBC Python ,
Library Devel. Env. PostgreSQL ODBC Driver
User Client - -
ODBC Mapping OS Microsoft ODBC Driver
Network
Server; Servers X Serverp,
_ - r L 3 ~ o _ - r L 3 ~ o - L d T ~
(DB,) DB LBy) DB LOBxt - DBam,
Color code:

Operating system OS-specific utility DBMS-specific module

Development-environment-specific module User configuration file

Database Access via Programming Languages 20150213 Slide 12 of 20

Using ODBC in the Linux Environment

e The main ideas are presented via a set of annotated programs in two
languages:
C: Using the standard gcc compiler.
Python: Using the standard python interpreter.

e These slides provide only supporting information.
e The basic ODBC configuration file is the same for both C and Python.

e However, the details of usage are very different, since C and Python are
very different languages.
C: is a compiled language with explicitly declared data types.
e This requires that there be declared type matching between C
data types and SQL data types.
Python: is an interpreted language with data typing upon assignment.
e This implies that ODBC must also do run-time typing.

Database Access via Programming Languages 20150213 Slide 13 of 20

Data-Source Configuration: Linux + PostgreSQL

e Every data source which is to be reached via ODBC calls must be
declared in the .odbc.ini file in the home directory of the user.

e A minimal example file is shown below for connection to PostgreSQL
databases using ANSI encoding on the postgres server using Linux.

e Some of these parameters may be specified in the calling program as well.

The ODBC data source names are are not used by PostgreSQL.

[ODBC Data Sources]
mydbl = databasel

The name in

square brackets is the ODBC DB name.

It may be chosen arbitrarily.

[databasel]

Description =
Driver =
The name on
Database =
Username is
Username =
Servername =
Password =

PostgreSQL test database for Joe S. User
/usr/1lib/x86_64-1inux-gnu/odbc/psqlodbca. so
the next line is the PostgreSQL DB name.
cbdv119_v14_jsu

the PostgreSQL user name and may be omitted with ident authentication.

cbdv119_vid_jsu
postgres
"badidea"

Database Access via Programming Languages

20150213 Slide 14 of 20

Data-Source Configuration: ANSI and Unicode

e Actually, there are two drivers for PostgreSQL:
ANSI: The ANSI driver psqlodbca. so.
Unicode: The Unicode driver psqlodbcw. so.

e Information on which driver to use is contained in the slides which are
specific to C and Python.

e An example configuration which uses the Unicode driver is shown below.

The ODBC data source names are are not used by PostgreSQL.

[ODBC Data Sources]
mydbl = databaselU

The name in

square brackets is the ODBC DB name.

It may be chosen arbitrarily.

[databaselU]

Description =
Driver =
The name on
Database =
Username is
Username =
Servername =
Password =

PostgreSQL test database for Joe S. User
/usr/1ib/x86_64-1linux-gnu/odbc/psqlodbcw. so
the next line is the PostgreS(QL DB name.
cbdv119_vi14_jsu

the PostgreSQL user name and may be omitted with ident authentication.

cbdv119_v14_jsu
postgres
"badidea"

Database Access via Programming Languages

20150213 Slide 15 of 20

Data-Source Configuration: Linux + MySQL

e To use MySQL instead of PostgreSQL, only the driver location and server
name need be changed.

There is one driver 1ibmyodbc.so for both ANSI and Unicode.

The keyword Server, not Servername, is used to identify the server.
The keyword User, not Username, is used to identify the user.

The Password may be given here as well, but for security reasons it is

better to obtain it via prompting in the calling program.

The ODBC data source names are are not used by MySQL.
[0ODBC Data Sources]

mydbl = databaselM

The name in square brackets is the 0ODBC DB name.

It may be chosen arbitrarily.

[databaselM]

Description = MySQL test database for Joe S. User

Driver = /usr/1ib/x86_64-1linux-gnu/odbc/libmyodbc.so
The name on the next line is the MySQL DB name.
Database = v119vi14jsu

The name on the next line is the MyS(QL user name.

User = v119vi14jsu

Password = "badidea"

Server = mysql

Database Access via Programming Languages 20150213 Slide 16 of 20

Multiple Data-Source Configuration in One File

e Several data sources may be specified in the .odbc.ini file.

[ODBC Data Sources]
mydblA = databaselPA
mydblM = databaselM
mydblU = databaselPU

[databaselPA]

Description = PostgreSQL test database with ANSI driver
Driver = /usr/1lib/x86_64-1inux-gnu/odbc/psqlodbca.so
Database = cbdv119. vti14d_jsu

Username = ¢cbdv119_vtild_jsu

Servername = postgres

[databaselPU]

Description = PostgreSQL test database with Unicode driver
Driver = /usr/1ib/x86_64-1linux-gnu/odbc/psqlodbcw. so
Database = ¢cbdv119_vtild_jsu

Username = ¢bdv119_vtid_jsu

Servername = postgres

[databaselM]

Description = MySQL test database

Driver = /usr/1ib/x86_64-1linux-gnu/odbc/libmyodbc.so
Database = v119v14jsu

User = v119vi14djsu

Server = mysql

Database Access via Programming Languages 20150213 Slide 17 of 20

A More Complete Specification of a Data Source

[ODBC Data Sources]
mydb3 = database3

[database3]

Description = PostgreSQL test database 1
Driver = /usr/1lib/x86_64-1inux-gnu/odbc/psqlodbca.so
Database = hegnerl

Servername = postgres

Port = 5432

ReadOnly =0

Username = hegnerl

Password = '"badidea"

Trace = No

TraceFile = /tmp/odbc.log

e The fields not shown on the previous slide are optional.
MySQL: Use User instead of Username and Server instead of Servername.
e Port and ReadOnly need be specified only if they differ from the
defaults.
e Trace and Tracefile need only be specified if tracing is desired.

e Other DB systems may use different keywords for some of these entries,

and support additional entries as well.
Database Access via Programming Languages 20150213 Slide 18 of 20

ODBC Handles

e A handle is a numerical value which is associated with a certain object.
e File handles are familiar in systems programming.
e In ODBC, there are four types of handles.

Environment handles: In order to access a database via ODBC, an
ODBC environment must be established.
e There is normally only one such environment per program.

Connection handles: Just as there must be a file handle for every open
file in an operating system, so too must there be a connection
handle for each connection to an ODBC database.

Statement handles: A statement handle is associated with an SQL
statement which is to be issued to a database for execution.

Descriptor handles: Descriptors are metadata which describe formats
associated with SQL statements.
e Descriptor handles will not be used in this course.

Database Access via Programming Languages 20150213 Slide 19 of 20

Visualization of the Hierarchy of ODBC Handles

EnvironmentHandle

ConnectionHandley ConnectionHandle, ce ConnectionHandle,
r g S r g < r g <
o’ ~ o N~ L4 ~
4 ~ 4 ~ 4 ~
Y4 ~ .’ ~ 4 ~
---h’--‘ ---:---1 ---l-,--‘ ---;---1 ---\-,--1 ———z—--q
| Stmt. ' | Stmt. ' | Stmt. 1 ; Stmt. \ Stmt. 1 | Stmt.
1 Handley; v Handleim, , v Handles; ;v Handleyn, :_Handlenl 't Handlenm, ,
ke == - L === ke == - R e |

e There is usually one environment handle per program.
e Distinct connection handles may refer to distinct databases.

e Each statement handle is for the database associated with its
environment handle.

e Multiple statement handles are useful for parallel execution of
queries.

Database Access via Programming Languages 20150213 Slide 20 of 20

