Functional Dependencies and Normalization

5DV119 — Introduction to Database Management Umeå University Department of Computing Science Stephen J. Hegner hegner@cs.umu.se http://www.cs.umu.se/~hegner

The Idea of Normalization

- One might think that the design of a relational schema is as simple as coming up with the relations and declaring the appropriate dependencies.
- However, things are more complicated.
- If the design is not done properly, essential dependencies may not be representable directly using the tools which SQL provides.
- As a consequence, such nonrepresentable dependencies are often simply ignored in defective designs, resulting in:
 - fundamental errors in the results of queries, particularly complex queries which combine several relations;
 - redundancy in both information and storage.
- It is therefore essential to have a uniform way of managing basic dependencies and to ensure that they are represented correctly in the schema.
- In these slides, only *functional dependencies*, which are a generalization of key dependencies, will be considered.
- The presentation is theoretical but a natural one. Functional Dependencies and Normalization

Functional Dependencies

- Key constraints are the most important kind of dependencies in the relational model.
- Sometimes, key constraints may apply only on a projection of a relation.
- This can occur...
 - ... during the design process when the relations are "too big" and need to be decomposed.
 - ... in some situations in which such embedded dependencies are unavoidable.
- A (super)key dependency on a projection of a relation is called a *functional dependency*.

Examples of Functional Dependencies

Firm

<u>SSN</u>	Name	Dept	Bldg	
000112222	Alice	3	8	
000113333	Bruce	3	8	
000114444	Carol	3	8	
000115555	David	5	7	
000116666	Alice	4	7	

 $\begin{array}{l} \mathsf{SSN} \rightarrow \{\mathsf{Name}, \mathsf{Dept}\} \\ \mathsf{Dept} \rightarrow \mathsf{Bldg} \end{array}$

 $\begin{aligned} \mathsf{SSN} \to \{\mathsf{Name}, \mathsf{Dept}\} \text{ is the functional dependency which states that SSN is} \\ \mathsf{a} \ (\mathsf{super})\mathsf{key} \ \mathsf{on} \ \mathsf{the projection} \ \pi_{\{\mathsf{SSN},\mathsf{Name},\mathsf{Dept}\}}(\mathsf{Firm}). \end{aligned}$

- In words, SSN *functionally determines* Name and Dept.
- Dept \rightarrow Bldg is the functional dependency which states that Dept is a (super)key on the projection $\pi_{\{\text{Dept},\text{Bldg}\}}(\text{Firm})$.
 - A simple transitivity argument (to be formalized later) shows that SSN is a key for the whole relation Firm: SSN \rightarrow {Name, Dept, Bldg}.
 - However, Dept \rightarrow Bldg is not a (super)key dependency on Firm in any reasonable sense.
 - It is not representable in native SQL.

Examples of Functional Dependencies — 2

EmployeeIDNameStreetAddrCityStatePostCode

$$\begin{split} \mathsf{ID} & \rightarrow \{\mathsf{Name},\mathsf{StreetAddr},\mathsf{City},\mathsf{State},\mathsf{PostCode}\}\\ \{\mathsf{StreetAddr},\mathsf{City},\mathsf{State}\} & \rightarrow \mathsf{PostCode}\\ \mathsf{PostCode} & \rightarrow \{\mathsf{City},\mathsf{State}\} \end{split}$$

- The above schema illustrates a common situation regarding addresses with postal codes.
- Here State is *län*, *Bundesland*, *région*, and the like.
- There is a complex overlap of functional dependencies.
- The street address, city, and state determine the postal code.
- The postal code determines the city and state, but not necessarily the street address.
- Note that set brackets are omitted for singletons (sets with one element).

Examples of Functional Dependencies — 3

<u>Part</u>	<u>Site</u>	Distributor
bolt	Umeå	Ola
screw	Umeå	Ola
bolt	Tromsø	Tone
widget	Tromsø	Kari
nut	Aalborg	Anne

 ${Part, Site} \rightarrow Distributor$ Distributor $\rightarrow Site$

- The previous example is unlikely to pose a problem for a corporation, since the relationship between addresses and postal codes is fixed by the postal authority, and so need not be verified.
- A simple example of a similar form of overlapping dependencies in corporate setting is illustrated above.
- The part and site together determine the distributor for that part.
- Distributors are local; each distributor provides parts to only one site.

Formalization of Functional Dependency

- Recall the notation from Slides 5–9 of "The Relational Model of Data".
- Fix a relation scheme $R = (A_1, A_2, \ldots, A_k) = \mathbf{U}$.
- Let \mathbf{X}, \mathbf{Y} be subsequences of (A_1, A_2, \ldots, A_k) .
- The *functional dependency (FD)* $\mathbf{X} \to \mathbf{Y}$ holds on an instance M_R of R if for any two tuples $t_1, t_2 \in M_R$,

$$t_1[\mathbf{X}] = t_2[\mathbf{X}] \Rightarrow t_1[\mathbf{Y}] = t_2[\mathbf{Y}]$$

- The *FD constraint* $\mathbf{X} \to \mathbf{Y}$ on the scheme *R* mandates that all allowed instances M_R satisfy this FD.
- Observe that if X ∪ Y = U = (A₁., A₂,..., A_k), then this definition reduces to requiring that X be a superkey.
- In other words, $\mathbf{X} \to \mathbf{Y}$ holds iff \mathbf{X} is a superkey on the projection $\pi_{\mathbf{X}\cup\mathbf{Y}}(R)$ of R onto the attributes in $\mathbf{X}\cup\mathbf{Y}$.

Functional Dependencies and Normalization

20150218 Slide 7 of 79

Special Kinds of Functional Dependencies

- The FD $X \rightarrow Y$ is *degenerate* if X is empty.
 - Degenerate FDs will not be considered in these slides.
 - *FD* will always mean nondegenerate FD.
- The FD $\mathbf{X} \to \mathbf{Y}$ is *trivial* if $\mathbf{Y} \subseteq \mathbf{X}$.
 - Trivial FDs are uninteresting in that they always hold, but they may arise in certain constructions.
- The FD $\mathbf{X} \to \mathbf{Y}$ is *fully nontrivial* if $\mathbf{X} \cap \mathbf{Y} = \emptyset$.
 - The FD may always be replaced by a fully nontrivial one by removing from **Y** all attributes in **X**.
- A set \mathcal{F} of FDs is *fully nontrivial* if each of its members has that property.
- Convention: Unless stated to the contrary, when considering a set \mathcal{F} of FDs on a schema, it will always be assumed that it consists of fully nontrivial elements.
 - This applies to a single FD of the form $\mathbf{X} \to \mathbf{Y}$ as well

Entailment of Functional Dependencies

• When it is known that certain FDs hold on a relation, it can be deduced that others hold as well.

Example:

Firm					
<u>SSN</u>	Name	Dept	Bldg		
000112222	Alice	3	8		
000113333	Bruce	3	8		
000114444	Carol	3	8		
000115555	David	5	7		
000116666	Alice	4	7		

 $\begin{array}{l} \mathsf{SSN} \to \{\mathsf{Name}, \mathsf{Dept}\} \\ \mathsf{Dept} \to \mathsf{Bldg} \end{array}$

- FDs are closed under transitivity, and so it is easy to see that SSN \rightarrow Bldg holds.
- Right-hand sides may always be broken up, so SSN \rightarrow Name and SSN \rightarrow Dept also hold.
- Right-hand sides may be combined, so SSN \rightarrow {Name, Dept, Bldg} also holds.

Entailment of Functional Dependencies — 2

• Here is an example of entailment at a more abstract level.

Example: <u>A</u> B C D E $\mathcal{F} = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow E\}.$

- FDs are closed under transitivity, and so it is easy to see that each of $A \rightarrow BCDE$, $B \rightarrow CDE$, and $C \rightarrow DE$ hold.
- Right-hand sides can always be broken up, so B → BCDE implies each of B → B, B → C, B → D, and B → E.
- Conversely, right-hand sides may be combined for identical left-hand sides. For example, the set {B → B, B → C, B → D, B → E} implies that B → BCDE holds.

Entailment of Functional Dependencies — 3

 $\widehat{\mathbb{C}}$ Caution: Left hand sides of FDs may not be broken up in general.

Examples: A B C

$$\mathcal{F}_1 = \{AB \to C\}$$
$$\mathcal{F}_2 = \{A \to C, B \to C\}$$

• \mathcal{F}_2 is strictly stronger than \mathcal{F}_1 .

Example instance to illustrate :

A	В	C
a_1	b_1	<i>C</i> ₁
a_1	b_2	<i>c</i> ₂
<i>a</i> 2	b_1	C ₃
a ₂	b_2	<i>C</i> ₄

• This instance satisfies \mathcal{F}_1 but not \mathcal{F}_2 .

Concrete example: Think of (the key dependency) $\{ESSN, PNo\} \rightarrow Hours$ of the Works_On relation of the Company schema.

• Neither ESSN nor PNo is a key by itself.

Functional Dependencies and Normalization

20150218 Slide 11 of 79

Formalization and Notation for Entailment

• Entailment of FDs occurs so frequently that it is useful to have a special notation for it.

Entailment of FDs Let $R = (A_1, A_2, ..., A_k) = U$ be a relation scheme with FDs \mathcal{F} , and let $\mathbf{X} \to \mathbf{Y}$ be an FD. $\mathbf{X} \to \mathbf{Y}$ is *entailed by* \mathcal{F} , written $\mathcal{F} \models \mathbf{X} \to \mathbf{Y}$, if $\mathbf{X} \to \mathbf{Y}$ holds on every relation on which \mathcal{F} holds. • If \mathcal{G} is a set of FDs, then $\mathcal{F} \models \mathcal{G}$ means that $\mathcal{F} \models \varphi$ for every $\varphi \in \mathcal{G}$.

Example: <u>A</u> B C D E $\mathcal{F} = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow E\}.$

- $\mathcal{F} \models A \rightarrow BCDE$, $\mathcal{F} \models B \rightarrow CDE$, $\mathcal{F} \models C \rightarrow DE$, and $\mathcal{F} \models \{A \rightarrow BCDE, B \rightarrow CDE, C \rightarrow DE\}$.
- Also may write $\mathcal{F} \models A \rightarrow BCDE, \ B \rightarrow CDE, \ C \rightarrow DE$.

Further Examples of Entailment of FDs

• There may be "loops" in sets of FDs.

Example: <u>A</u> B C D E $\mathcal{F} = \{A \to B, B \to C, C \to D, D \to B\}.$

- Here B, C, and D are all equivalent.
- Write $X \leftrightarrow Y$ to mean that both $X \rightarrow Y$ and $Y \rightarrow X$ hold.
- Then $\mathcal{F} \models B \leftrightarrow C, \ B \leftrightarrow D, \ C \leftrightarrow D$.
- Composition may also be on subsets of attributes.

Example: A B C D E $\mathcal{F} = \{AB \rightarrow C, CD \rightarrow E\}.$

• $\mathcal{F} \models ABD \rightarrow CE$; *i.e.*, ABD is a key.

Observation: It seems that inference for FDs is governed largely by a transitivity operation.

Question: How can \models be computed systematically?

• ... to be used in algorithms, for example.

Inference Systems for FDs

- An *inference system* \Im is a mathematical proof system for \models .
- It is a way to compute \models via rules.
- Write $\mathcal{F} \vdash_{\mathfrak{I}} \varphi$ if the FD φ may be proven from \mathcal{F} using \mathfrak{I} .
- There are three key properties for any proof system \mathfrak{I} .

Soundness: The inference system \Im is *sound* if everything which can be proven is true: $\mathcal{F} \vdash_{\Im} \varphi$ implies $\mathcal{F} \models \varphi$.

Completeness: The inference system \mathfrak{I} is *complete* if everything which is true can be proven: $\mathcal{F} \models \varphi$ implies $\mathcal{F} \vdash_{\mathfrak{I}} \varphi$.

Decidability: The inference system $\vdash_{\mathfrak{I}}$ is *decidable* if there is an algorithm (which always halts) which can compute $\vdash_{\mathfrak{I}}$.

Armstrong's Axioms

- The classical inference system \mathfrak{A} for FDs is defined by *Armstrong's Axioms*, which are as follows.
- In all cases, X, Y, and Z are sequences of attributes over some universe
 U.

A1 (triviality): If $\mathbf{Y} \subseteq \mathbf{X}$, then $\vdash_{\mathfrak{A}} \mathbf{X} \to \mathbf{Y}$.

- This means that $X \to Y$ follows from the empty set of FDs.
- This rule is sometimes (incorrectly) called *reflexivity*.

A2 (augmentation): $\mathbf{X} \rightarrow \mathbf{Y} \vdash_{\mathfrak{A}} \mathbf{XZ} \rightarrow \mathbf{YZ}$

• Here **XZ** means merge the two sequences of attributes (union of elements with the proper order).

A3 (transitivity): $\{\mathbf{X} \to \mathbf{Y}, \mathbf{Y} \to \mathbf{Z}\} \vdash_{\mathfrak{A}} \mathbf{X} \to \mathbf{Z}.$

Properties of Armstrong's Axioms

- Armstrong's Axioms cannot be "proven". It does not make sense to "prove" inference rules.
- However, there is the following key result.

Theorem: Armstrong's Axioms are sound and complete for inference on FDs.

- This result will not be established here, although it is relatively straightforward to prove.
- In words, it says that transitivity is the only "nontrivial" way in which inference occurs with FDs.

Theorem: Armstrong's Axioms provide a decidable system for inference on FDs.

Proof: This is immediate because there are only a finite number of FDs over any given finite universe **U** of attributes. □

Proofs Using Armstrong's Axioms

• Proofs are written out as a list of assertions, with each assertion either given or else following from the previous ones by Armstrong's Axioms.

Example:

BCDE

$$\mathcal{F} = \{AB \to C, CD \to E\}.$$

- Prove that ABD is a key for this system using Armstrong's Axioms.
 - (1) $AB \rightarrow C$ given.
 - (2) $CD \rightarrow E$ given.
 - (3) $ABD \rightarrow ABCD$ (Augmentation of (1) with $\mathbf{Z} = ABD$).
 - (4) $ABCD \rightarrow ABCDE$ (Augmentation of (2) with $\mathbf{Z} = ABCD$).
 - (5) $ABD \rightarrow ABCDE$ (Transitivity on (3)+(4)).
- Thus, $\mathcal{F} \vdash_{\mathfrak{A}} ABD \rightarrow ABCDE$.
- By the soundness of Armstrong's Axioms, it follows that

 $\mathcal{F} \models ABD \rightarrow ABCDE$.

Functional Dependencies and Normalization

20150218 Slide 17 of 79

Other Axioms Systems

- Armstrong's Axioms \mathfrak{A} form but one possibility for a sound and complete set of inference rules for FDs.
- Many others have been developed.
- One possibility is to augment \mathfrak{A} with additional rules.
- These rules do not add power, since \mathfrak{A} is already complete.
- However, they often allow proofs to be shorter by recapturing as "macros" steps with occur frequently.
- See the textbook for one such possibility.

Closure and Covers

• It is often the case that two distinct sets of FDs are equivalent in that they entail exactly the same FDs.

Example:

 $\mathcal{F}_1 = \{A \rightarrow BCD, CE \rightarrow D, CD \rightarrow E\},\ \mathcal{F}_2 = \{A \rightarrow BCE, CE \rightarrow D, CD \rightarrow E\}.$

Exactly the same set of FDs may be derived from each of these two sets.
Need to show *F*₁ ⊨ *A* → *E* and *F*₂ ⊨ *A* → *D*.

General Context: Let $R = (A_1, A_2, ..., A_k) = \mathbf{U}$ be a relation scheme with with FDs \mathcal{F} .

Closure: $\mathcal{F}^+ = \{ \mathbf{X} \to \mathbf{Y} \mid \mathcal{F} \models \mathbf{X} \to \mathbf{Y} \}.$

Cover: A *cover* for \mathcal{F} is any set \mathcal{C} of FDs with the property that $\mathcal{F}^+ = \mathcal{C}^+$.

Example: $\mathcal{F}_1^+ = \mathcal{F}_2^+$.

• Each \mathcal{F}_i is a cover for the other.

Embedding of Functional Dependencies

- Fix a relation scheme R = (A₁, A₂, ..., A_k) = U, with F a set of FDs on R.
- Operations on subsequences of **U** may be written using set-theoretic notation.

Examples: $W \subseteq U$, $X \cup Y \subseteq W$.

- This is a slight abuse of notation mathematically but it is widely used and this context the intended meaning is always clear.
- The assumption is that the elements in the "sets" always occur in the order induced by the base set **U**.
- $\mathbf{X} \cup \mathbf{Y}$ is also written \mathbf{XY} .
- Say that the FD $X \to Y \in \mathcal{F}$ embeds into W if $X \cup Y \subseteq W$.
- Let $\Pi_{\mathbf{W}}$ denote the view of R which is the projection onto \mathbf{W} .
- Say that the FD $X \to Y \in \mathcal{F}$ embeds into Π_W if it embeds into W.

Normalization

Normalization: is the process of "fixing" relational schemata so that they avoid three closely related kinds of problems.

Storage redundancy: The same information is repeated many times.

Unnecessary information dependency: Information about some x cannot be represented without having at least corresponding instance of y.

Update anomalies: The way in which data is represented complicates the support of certain kinds of updates.

Illustration of Problems of an Unnormalized Schema

Firm					
<u>SSN</u>	Name	Dept	Bldg		
000112222	Alice	3	8		
000113333	Bruce	3	8		
000114444	Carol	3	8		
000115555	David	5	7		
000116666	Alice	4	7		

 $\begin{array}{l} \mathsf{SSN} \rightarrow \{\mathsf{Name}, \mathsf{Dept}\} \\ \mathsf{Dept} \rightarrow \mathsf{Bldg} \end{array}$

 $\bullet~$ The FD Dept \rightarrow Bldg does not define a key and leads to problems.

Storage redundancy: The information about Department 3 is repeated three times.

Update anomaly: If the building of Department 3 is to be changed, three updates are necessary.

Unnecessary information dependency:

- Information about an employee who does not have a department requires null values.
- Information about a department cannot be represented unless at least one employee works in it.

Functional Dependencies and Normalization

Approaches to Normalization

Approaches to normalization: There are two principle approaches to normalization, and each will be considered in these slides.

Decomposition: Break larger relations into smaller ones.

Synthesis: Begin with a set of dependencies (usually FDs), and construct a corresponding relational schema.

The changes forced by normalization: Generally speaking, by forcing FDs to define (super)key dependencies, the problems identified above are minimized or disappear completely... but the devil is in the details.

Normal Forms

Normal forms: In early research on the relational model, a number of so called *normal forms* were developed.

• The principal ones which are based upon FDs were developed in the following order:

 $1 \text{NF} \rightarrow 2 \text{NF} \rightarrow 3 \text{NF} \rightarrow \text{BCNF}$

- There are some others which are based upon other types of dependencies: 4NF, 5NF, DKNF.
- In these slides, only those normal forms based upon FDs will be considered.
- For pedagogical reasons, they will considered in the reverse order of development:

• The main focus will be upon BCNF and 3NF, as 2NF is largely of historical interest and 1NF is just a constraint on domains.

Functional Dependencies and Normalization

20150218 Slide 24 of 79

LDBN — an On-Line Resource for Learning Normalization

Learn DataBase Normalization: LDBN is an online resource for doing examples of normalization.

- It was developed as part of two thesis projects at Umeå University by Nikolay Georgiev.
- It implements several of the algorithms which will be considered in these slides.
- It allows one to test a given solution for various properties.
- It will also find a solution, if possible, which satisfies given properties.
- It has a very nice drag-and-drop interface.
- It can be found here:

http://ldbnonline.com/Ldbn.html

Boyce-Codd Normal Form — BCNF

- The main idea behind BCNF is that all FDs should be (super)key dependencies.
- Such a normalization is highly desirable since then (a cover for) the FDs can be represented within standard SQL.

Idea for a decomposition algorithm: If a relation scheme is constrained by an FD which does not define a superkey, decompose the scheme into subschemes which avoid that problem.

- Unfortunately, such a decomposition is not always possible without introducing other problems.
- Before developing the theory, an example will help illustrate why BCNF is desirable.

An Illustration of BCNF Normalization

• Recall the following unnormalized example.

Firm					
<u>SSN</u>	Name	Dept	Bldg		
000112222	Alice	3	8		
000113333	Bruce	3	8		
000114444	Carol	3	8		
000115555	David	5	7		
000116666	Alice	4	7		

 $\begin{array}{l} \mathsf{SSN} \to \{\mathsf{Name}, \mathsf{Dept}\} \\ \mathsf{Dept} \to \mathsf{Bldg} \end{array}$

• The problems may be fixed by decomposing it into two relations.

Employee				\rightarrow
<u>SSN</u>	Name	Dept	Department	Dep
000112222	Alice	3		3
000113333	Bruce	3		4
000114444	Carol	3		5
000115555	David	5		
000116666	Alice	4		

- Note that each relation now has only a key dependency.
- Note also the added foreign-key dependency.

Lossless Joins

- In decomposing one relation into two, it must be ensured that no information is lost.
- Fix a relation scheme R = (A₁, A₂, ..., A_k) = U, with FDs F a set of FDs on R.
- Let $P = {\mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_k}$ be subsequences of **U**.
- Let Π_{W_i} denote the view which is the projection of R onto the attributes in W_i.
- The decomposition of *R* into the projections {Π_{W1}, Π_{W2},..., Π_{Wk}} satisfies the *lossless join property* (or is *lossless*) if the original schema may be recovered via the natural join operation.

Formal description: R decomposes losslessly into $\{\Pi_{\mathbf{W}_1}, \Pi_{\mathbf{W}_2}, \dots, \Pi_{\mathbf{W}_k}\}$ (or just into P) for \mathcal{F} if for any instance M_R of R which satisfies \mathcal{F} ,

$$M_R = \pi_{\mathbf{W}_1}(M_R) \bowtie \pi_{\mathbf{W}_2}(M_R) \bowtie \ldots \bowtie \pi_{\mathbf{W}_k}(M_R)$$

The textbook uses the term *nonadditive* for *lossless*, but this is not standard terminology.

Functional Dependencies and Normalization

Guaranteeing Lossless Joins

• For a decomposition into two projections, there is a very simple condition which is both necessary and sufficient to ensure lossless recovery.

Theorem: Let $R = (A_1, A_2, ..., A_k) = \mathbf{U}$ be a relation scheme with with FDs \mathcal{F} , and let \mathbf{W}_1 and \mathbf{W}_2 be subsequences of \mathbf{U} . Then R decomposes losslessly into $\{\Pi_{\mathbf{W}_1}, \Pi_{\mathbf{W}_2}\}$ for \mathcal{F} iff (if and only if) the FD $\mathbf{W}_1 \cap \mathbf{W}_2 \to \mathbf{W}_i$ holds for at least one $i \in \{1, 2\}$. \Box

- In words, there is a lossless decomposition iff the attributes common to W_1 and W_2 form a superkey for one of the resulting relations.
- Observe that the decomposition of the Firm example on the previous slides satisfies this condition.

Lossless Decomposition of the Example Schema Firm

Firm			
<u>SSN</u>	Name	Dept	Bldg
000112222	Alice	3	8
000113333	Bruce	3	8
000114444	Carol	3	8
000115555	David	5	7
000116666	Alice	4	7

 $\begin{array}{l} \mathsf{SSN} \to \{\mathsf{Name}, \mathsf{Dept}\} \\ \mathsf{Dept} \to \mathsf{Bldg} \end{array}$

•
$$W_1 = \{SSN, Name, Dept\}$$
 $W_2 = \{Dept, Bldg\}$

Employee				\rightarrow	
<u>SSN</u>	Name	Dept	Department	<u>Dept</u>	Bldg
000112222	Alice	3		3	8
000113333	Bruce	3		4	7
000114444	Carol	3		5	7
000115555	David	5			
000116666	Alice	4			

• $W_1 \cap W_2 = \{\text{Dept}\}$ is a key for $W_2 = \{\text{Dept}, \text{Bldg}\}$ since $\text{Dept} \rightarrow \text{Bldg}$.

A Simple Algorithm for Realizing BCNF

- There is a simple way to achieve BCNF.
- Fix a relation scheme R = (A₁, A₂, ..., A_k) = U, with F a set of FDs on R.
- Select a cover C of F. Without loss of generality, take C to consist of fully nontrivial dependencies.
- If R is not in BCNF for C:
 - Pick an FD $\mathbf{X} \to \mathbf{Y} \in \mathcal{C}$ for which \mathbf{X} is not a superkey.
 - Define $W_1 = U \setminus Y$ and $W_2 = X \cup Y$.
 - Decompose R into $\Pi_{\mathbf{W}_1}$ and $\Pi_{\mathbf{W}_2}$.
 - Make **X** in $\Pi_{\mathbf{W}_1}$ a foreign key which references **X** in $\Pi_{\mathbf{W}_2}$.
 - Repeat this process on the resulting schemata until all such schemata are constrained by key dependencies only.
- The resulting decompositions are all lossless.

Question: Does this algorithm have any complications or drawbacks? Functional Dependencies and Normalization 20150218 Slide 31 of 79

BCNF and Alternative Decompositions

Firm Dept | Proj | Bldg SSN Name

- $SSN \rightarrow \{Name, Dept\}$ $\mathsf{Dept} \to \mathsf{Proj} \quad \mathsf{Proj} \to \mathsf{Bldg}$
- There are two choices for an initial step.
- Using $Proj \rightarrow Bldg$:

Dept

- Using Dept \rightarrow Proj on the left relation, each FD embeds into a view: SSN Proj Bldg
- Using Dept \rightarrow Proj first on the original schema, the FD Proj \rightarrow Bldg does not embed into either view:
- Name Dept SSN Bldg Proi Jept • This second decomposition is not very desirable because it introduces
- *inter-relational* FDs, which are not supported by DBMSs.

Name

Dept

Pro

Dependency Preservation

- Fix a relation scheme R = (A₁, A₂, ..., A_k) = U, with FDs F a set of FDs on R, and let W₁ and W₂ be subsequences of U.
- Preliminary definition: The decomposition of R into $\Pi_{\mathbf{W}_1}$ and $\Pi_{\mathbf{W}_2}$ preserves \mathcal{F} if each $\varphi \in \mathcal{F}$ embeds into either $\Pi_{\mathbf{W}_1}$ or else $\Pi_{\mathbf{W}_2}$.
 - Unfortunately, this definition is not very satisfactory.
 - Consider (essentially) the same example as on the previous slide, but with the FD SSN \rightarrow {Dept, Proj, Bldg} added.

- It is easy to see that this new FD may be derived from the others by simple transitivity...
- But the following decomposition is not dependency preserving under this definition.

Dependency Preservation — 2

- It might seem sufficient to require that elements of the set \mathcal{F} which can be derived from others simply be removed.
- This is not satisfactory either!

Example: <u>A</u> B C D $\mathcal{F} = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow B\}.$

- No element of \mathcal{F} is implied by the others.
- Thus, the following is not dependency preserving under this definition. $A \rightarrow B \ B \rightarrow C \ \underline{A} \ \underline{B} \ \underline{C} \ D \rightarrow B \ \underline{C} \ \underline{D} \ C \rightarrow D$
- Note that there is a cycle $B \rightarrow C \rightarrow D \rightarrow B$.
- This cycle may be represented also as $\{B \rightarrow C, C \rightarrow B, C \rightarrow D, D \rightarrow C\}$
 - ...which is preserved by this decomposition.
- Thus, the above decomposition should qualify as dependency preserving.
- It is necessary to work with *covers* of \mathcal{F} .

Dependency Preservation and Covers

Implication of FDs Let $R = (A_1, A_2, ..., A_k) = \mathbf{U}$ be a relation scheme with with FDs \mathcal{F} . Let \mathcal{F} be a set of FDs on R.

Closure: $\mathcal{F}^+ = \{ \mathbf{X} \to \mathbf{Y} \mid \mathcal{F} \models \mathbf{X} \to \mathbf{Y} \}.$

Cover: A *cover* for \mathcal{F} is any set \mathcal{C} of FDs with the property that $\mathcal{F}^+ = \mathcal{C}^+$.

• Finally, the appropriate definition for a dependency-preserving decomposition may be made.

Definition: Let $\mathcal{V} = \{\mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_k\}$ be subsequences of **U**. The decomposition of R into $\{\Pi_{\mathbf{W}_1}, \Pi_{\mathbf{W}_2}, \dots, \Pi_{\mathbf{W}_k}\}$ is *dependency preserving* for \mathcal{F} if there is a cover \mathcal{C} of \mathcal{F} such that each FD in \mathcal{C} embeds into $\Pi_{\mathbf{W}_i}$ for some $i \in \{1, \dots, k\}$.

• Say that \mathcal{V} is *dependency preserving* for \mathcal{F} as well.

Example: $C = \{A \rightarrow B, B \rightarrow C, C \rightarrow B, C \rightarrow D, D \rightarrow C\}$ is a cover of $\mathcal{F} = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow B\}$ which embeds into

Computing Covers

Question: How does one compute a "good" cover?

- This question is somewhat involved, and will be addressed in more detail later in these slides.
- For now, the assumption that a "good" cover has been found will be made.
BCNF So Far

- A good BCNF decomposition should have two properties:
- Lossless: The original schema should be recoverable from the decomposition by knowing only:
 - $(i) \ \mbox{the FDs}$ which are embedded into the component schemes of the decomposition, and
 - (ii) The induced foreign-key dependencies.
 - The simple algorithm which chooses a non-superkey FD and splits the relation into two based upon that FD always delivers a lossless decomposition, as has already been shown.

Dependency preserving: All of the FDs of the original schema should be recaptured in the decomposition.

• The cover formalism provides the correct mathematical concept of "recaptured".

• However, the question remains as to whether this is always possible. Functional Dependencies and Normalization 20150218 Slide 37 of 79

BCNF with Dependency Preservation Is Not Always Possible

Example:

<u>Dept</u> <u>Proj</u> Bldg

 $\{\mathsf{Dept},\mathsf{Proj}\}\to\mathsf{Bldg},\,\mathsf{Bldg}\to\mathsf{Proj}$

- Bldg \rightarrow Proj is not a (super)key dependency.
- $\{\mathsf{Dept},\mathsf{Proj}\} \to \mathsf{Bldg} \text{ involves all three attributes.}$
- There is no "better" cover for these FDs.
- Conclusion: There is no lossless and dependency-preserving decomposition of this schema into BCNF.
 - Even when there is a lossless and dependency-preserving decomposition into BCNF, it need not be unique.

Example:

$$C \quad D \quad E \quad \mathcal{F} = \{A \rightarrow BCDE, CE \rightarrow D, CD \rightarrow E\}.$$

• There are two distinct lossless and dependency-preserving solutions:

• It takes a little thought to see this!

В

BCNF with Dependency Preservation is Difficult to Decide

- Suppose a "large" schema with many FDs is given, and it is likely to require many steps to decompose it into BCNF.
- Theorem: The problem of deciding whether or not a given schema constrained by FDs has a lossless and dependency-preserving decomposition into BCNF is NP-complete. □
 - Less formally, this means that no known algorithm is substantially better in the worst case than just trying all possibilities.
 - Finding such a *tractable* solution would entail finding tractable solutions to thousands of other problems with the same characteristics.
 - The major problem in the case of BCNF decomposition is not only to choose FDs in a suitable order from a cover C of the set \mathcal{F} (in order to build the "right" *join tree*), but also that alternate covers of \mathcal{F} need to be considered.

Join Trees for Decompositions

- It is often useful to represent the decomposition process via *join trees*.
- For each interior vertex, the FD under the attribute is that used to define the decomposition.
- For each leaf vertex, the FDs shown are preserved by that projection.
- The leaves represent the final schemes of the decomposition.

Example:

$$\mathsf{D} \models \mathcal{F} = \{A \to B, B \to C, C \to D, D \to E\}$$

• Shown below are three join trees for the same dependency-preserving BCNF decomposition: {*AB*, *BC*, *CD*, *DE*}.

Functional Dependencies and Normalization

В

Join Trees for Decompositions

• Join trees can also illustrate that a strategy cannot succeed.

Example:
$$A B C D E$$
 $\mathcal{F} = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow E\}.$

• The tree below shows that beginning with $A \rightarrow B$ as the non-(super)key FD cannot lead to a dependency preserving decomposition, since $B \rightarrow C$ is not preserved (and cannot be derived from the other FDs).

• This FD is shown in red to emphasize this.

Decomposition and Foreign-Key Dependencies

- Most (all?) treatments of normalization ignore foreign-key dependencies.
- The hidden constraint for normalization by decomposition is that the matching columns must agree.

Example:

• The values for attributes which occur in both relations must be the same to achieve a truly equivalent schema of two relations.

- However, this is relaxed to a foreign-key dependency in order to:
 - (i) Allow expanded modelling and avoid unnecessary information dependencies.
 - (ii) Match traditional SQL (which admits foreign-key constraints but not such equality constraints).

Join Trees and Foreign-Key Dependencies

• When the join tree involves more than one decomposition, it may not be possible to identify true foreign keys.

Example:

 $\mathsf{B} \ \mathsf{C} \ \mathsf{D} \ \mathsf{E} \qquad \mathcal{F} = \{A \to BC, \ AB \to D, \ CD \to E\}.$

- In the tree to the right, the key CD for CDE is split into C and D by the decomposition on the left side of the tree.
- They are thus not true foreign keys since they do not reference a primary key.
- As shown in the diagram below, foreign keys may be parts of primary keys in this construction.

В

D

• The SQL model of foreign key would have to be extended slightly to accommodate this.

Question: Do such partial foreign keys occur in "real-world" examples?

E

A "Trick" for Realizing BCNF with Severe Drawbacks

 $\begin{array}{l} \mathsf{SSN} \to \{\mathsf{Dept},\mathsf{Room}\} \\ \mathsf{Dept} \to \mathsf{Bldg} \quad \mathsf{Room} \to \mathsf{Bldg} \end{array}$

• This schema has two BCNF decompositions, neither of which is dependency preserving.

• It is possible to combine these to obtain a lossless and dependency-preserving BCNF decomposition.

- However, this leads to a cyclic (redundant) decomposition which makes integrity checking of updates difficult.
- It is not possible to ensure that the values for Bldg on the two paths $SSN \rightarrow Dept \rightarrow Bldg$ and $SSN \rightarrow Room \rightarrow Bldg$ agree without recombining relations.
- It is necessary to join on Bldg but it is not a key in either relation. Functional Dependencies and Normalization 20150218 Slide 44 of 79

Decompositions Which Are Too Weak or Too Strong

 $SSN \rightarrow \{Dept, Room\}$ $Dept \rightarrow Bldg \quad Room \rightarrow Bldg$

• The following two decompositions are too *weak*, in that they fail to recapture all of the FDs in the original relation.

- Thus, when an update is performed on the decomposed relations, satisfaction of an FD which spans several relations must be verified.
- The following decomposition is too *strong*, in that embodies certain information more than once, and requires a check to ensure that all is consistent. It is *cyclic*.

- Thus, when an update is performed, it must be verified that the third relation is consistent with the other two.
- The goal is to find decompositions which are neither too weak nor too strong. Functional Dependencies and Normalization 20150218 Slide 45 of 79

Cyclicity as a Property of Hypergraphs

- The term *cyclic*, which characterizes redundancy in decompositions, arises from the properties of the *hypergraph* underlying the multi-relation schema which is the result of the decomposition.
- The topic of schema hypergraphs and their properties is beyond the scope of this course, but it is nevertheless useful to be a aware that such a theory exists.
- A decomposition which is not cyclic is called *acyclic*.
- It is thus *acyclic* decompositions which are desirable, which are not too strong; that is, which do not embody redundancy in the representation.
- Such a decomposition must nevertheless be strong enough to be dependency preserving.
- For this course, it will suffice to characterize the combination of acyclicity and dependency preservation indirectly, primarily via *full independence*.

Comment: Full independence is not standard terminology in the field, but is introduced here as a convenient way to recapture acyclicity without resorting to the explicit use of hypergraphs.

Formalization of Full Independence

Context: $R = (A_1, A_2, ..., A_k)$; FDs \mathcal{F} ; $\{\mathbf{W}_1, \mathbf{W}_2, ..., \mathbf{W}_k\}$ subsequences. Local database: For $i \in \{1, ..., k\}$, the database N_i on attributes \mathbf{W}_i is called a *local database* for \mathbf{W}_i if it is the projection onto \mathbf{W}_i of some M_R for R which satisfies the constraints of \mathcal{F} : $\pi_{\mathbf{W}_i}(M_R) = N_i$. Join compatibility: A sequence $(N_1, N_3, ..., N_k)$ with N_i a local database for \mathbf{W}_i is *join compatible* if any two $\{N_i, N_j\}$ agree on their common columns: for any $i, j \in \{1, ..., k\}$, $\pi_{\mathbf{W}_i \cap \mathbf{W}_j}(N_i) = \pi_{\mathbf{W}_i \cap \mathbf{W}_j}(N_j)$ Fully independent decomposition: $\{\mathbf{W}_1, \mathbf{W}_2, ..., \mathbf{W}_k\}$ is *fully independent* for $\langle R, \mathcal{F} \rangle$ if any join-compatible sequence of local databases joins to a database on R which satisfies \mathcal{F} .

- Join compatibility \Rightarrow each $\Pi_{\mathbf{W}_i}$ may be updated independently of the others... ... provided only that the common columns do not change.
- This is <u>the</u> goal of decomposition.

Example: The "trick" solution on Slides 44-45 is not fully independent.
Fact: A decomposition is fully independent iff it is dependency preserving and (its underlying hypergraph is) acyclic. □

Functional Dependencies and Normalization

Testing for Full Independence

- Theorem: Let $\langle R, \mathcal{F} \rangle$ be a database schema. A lossless decomposition $\mathfrak{D} = \{\mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_k\}$ of $\langle R, \mathcal{F} \rangle$ is fully independent iff there is a dependency-preserving join tree whose leaves are exactly the members of \mathfrak{D} and whose root is R. \Box
- Corollary: Any dependency-preserving decomposition of $\langle R, \mathcal{F} \rangle$ obtained from the BCNF decomposition algorithm is fully independent. \Box
- Example: The decomposition $\{ABC, ABD, CDE\}$ of the schema $\langle ABCDE, \{A \rightarrow BC, AB \rightarrow D, CD \rightarrow E\} \rangle$ is fully independent. (See Slide 43.)
- Fact: Context as in the theorem above, if any proper subset of \mathfrak{D} forms a lossless decomposition, then \mathfrak{D} cannot be fully independent. \Box
- **Example**: The decomposition $\{BD, BR, DRS\}$ of the schema $\langle BDRS, \{S \rightarrow DR, D \rightarrow B, R \rightarrow B\} \rangle$ is not fully independent, since both $\{BD, DRS\}$ and $\{BR, DRS\}$ form lossless decompositions. (See Slides 44-45.) \Box

Evaluation of the BCNF-by-Decomposition Approach

Question: How useful is the BCNF-by-decomposition approach?

- It always delivers lossless decompositions.
- It may not always deliver dependency preservation, but:
 When it does, the result is fully independent (no redundancy).
 Success or failure is always clear from the process.
- Such fully independent decompositions addresses the three normalization issues effectively.
- I'may not provide true foreign keys.
 - ... but this is an issue of lack of support of a relatively simple feature in current SQL, not a fundamental design issue.
- In the worst case, exhaustive search is required to determine whether a lossless and dependency-preserving decomposition exists.

Bottom line: It may not always work, but when it does, it works well, and the quality of the result is known from the process itself.

Constraints Induced by Normalization

- The goal of the normalization process is to obtain designs which may be implemented using SQL.
- A relational schema (in SQL), there are two kinds of constraints:
 - (a) FDs (keys only) are specified on individual relations, never across relations.
 - (b) Foreign-key dependencies connect matching attributes on different relations.
- The decomposition approach satisfies (a) by construction.
- Clearly, the "trick" schema of Slides 44-45 involves other dependencies.
- Fortunately, the decomposition algorithm can never introduce such dependencies; it never embodies redundancy in its representation of the original schema.
- Unfortunately, it can fail to be dependency preserving, and so can underrepresent the original schema.

Question: Is there an alternative which avoids this drawback? Functional Dependencies and Normalization

Third Normal Form — 3NF — a Compromise

- Third Normal Form (3NF) may be viewed as a compromise.
- In contrast to BCNF, a lossless and dependency decomposition into 3NF always exists.
- Fix a relation scheme R = (A₁, A₂, ..., A_k) = U, with FDs F a set of FDs on R.

Prime attributes: An attribute $A_i \in \mathbf{U}$ is *prime* (for $\langle R, \mathcal{F} \rangle$) if it is a member of some candidate key.

- 3NF: \mathcal{F} is in *Third Normal Form* (*3NF*) if for any (by convention, fully nontrivial) $\mathbf{X} \to \mathbf{Y} \in \mathcal{F}$, either
 - (a) **X** is a superkey for \mathcal{F} , or
 - (b) every $A \in \mathbf{Y} \setminus \mathbf{X}$ is a prime attribute.

Finding a 3NF Representation of a Schema

- In contrast to the approach for BCNF, the most common algorithm for realizing 3NF is based upon *synthesis*.
- Rather than decomposing a single relation, smaller relations are built up using properties of the underlying set of constraints.
- For this synthesis approach to work, the set of FDs must be put into a special form, in which the set of FDs is *canonical*.
- Algorithms for accomplishing this task are discussed next.

Canonical Sets of FDs

- General Context: Let $R = (A_1, A_2, ..., A_k) = \mathbf{U}$ be a relation scheme with with FDs \mathcal{F} .
- RHS-simple: The FD $X \rightarrow Y$ is *RHS-simple* if Y consists of just one attribute; *i.e.*, it is of the form $X \rightarrow A$.
- LHS-reduced: The FD $\mathbf{X} \to \mathbf{Y}$ is *LHS-reduced* (or *full*) in \mathcal{F} if for no proper subsequence $\mathbf{X}' \subsetneq \mathbf{X}$ is it the case that $((\mathcal{F} \setminus {\mathbf{X} \to \mathbf{Y}}) \cup {\mathbf{X}' \to \mathbf{Y}})^+ = \mathcal{F}^+.$

Nonredundancy: The set \mathcal{F} of FDs is *nonredundant* if for no proper subset $\mathcal{F}' \subsetneq \mathcal{F}$ is it the case that $\mathcal{F}'^+ = \mathcal{F}^+$.

- Canonicity: The set \mathcal{F} of FDs is *canonical* if each of its members is RHS-simple and LHS-reduced in \mathcal{F} , and in addition, \mathcal{F} is nonredundant.
- Note on terminology: The textbook calls a canonical set of FDs *minimal*, but this terminology is nonstandard and can easily be confused with *minimum*, which has an entirely different meaning.

Computing a Canonical Cover

Canonical cover: A *canonical cover* of \mathcal{F} is a cover \mathcal{C} which is also canonical.

Algorithm for computing a canonical cover:

- (1) Decompose each FD into RHS-simple form.
- (2) LHS-reduce each FD.
- (3) Test each remaining FD for redundancy of the resulting set of FDs, removing the ones which are not needed to preserve the closure.
- Steps (2) and (3) may involve choices.

Example: $\mathcal{F} = \{A \rightarrow BC, B \rightarrow C, AB \rightarrow D, AC \rightarrow D\}$. Step 1: $\{A \rightarrow B, A \rightarrow C, B \rightarrow C, AB \rightarrow D, AC \rightarrow D\}$. Step 2: $\{A \rightarrow B, A \rightarrow C, B \rightarrow C, A \rightarrow D, A \rightarrow D\}$ $= \{A \rightarrow B, A \rightarrow C, B \rightarrow C, A \rightarrow D\}$ reduces to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$ (since $\{A \rightarrow B, B \rightarrow C\} \models A \rightarrow C$).

Example of Computing a Canonical Cover

Example: $\mathcal{F} = \{A \rightarrow B, ABCD \rightarrow E, EF \rightarrow GH, ACDF \rightarrow EG\}.$

Step 1:

 $\{A \rightarrow B, ABCD \rightarrow E, EF \rightarrow G, EF \rightarrow H, ACDF \rightarrow E, ACDF \rightarrow G\}.$

Step 2: { $A \rightarrow B$, $ACD \rightarrow E$, $EF \rightarrow G$, $EF \rightarrow H$, $ACD \rightarrow E$, $ACDF \rightarrow G$ } = { $A \rightarrow B$, $ACD \rightarrow E$, $EF \rightarrow G$, $EF \rightarrow H$, $ACDF \rightarrow G$ }

Step 3: $\{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G, EF \rightarrow H\}$ (since $\{ACD \rightarrow E, EF \rightarrow G\} \models ACDF \rightarrow G$).

- In general, Steps 2 and 3 may be very complex, but they can often be solved by inspection for small examples.
- Implementing them involves using an inference algorithm for FDs.
- In implementation, the use of RHS-simple form may also be avoided ...
 ... but it is perhaps easier for humans to work with that form.

Functional Dependencies and Normalization

The Synthesis Algorithm

Consolidation: Let \mathcal{G} be any set of FDs. The *consolidation* Consol $\langle \mathcal{G} \rangle$ of \mathcal{G} is formed by combining all FDs of \mathcal{G} with the same left-hand side into one. Example: The consolidation of

 $\mathcal{G} = \{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G, EF \rightarrow H\}$ is Consol $\langle \mathcal{G} \rangle = \{A \rightarrow B, ACD \rightarrow E, EF \rightarrow GH\}$

Context: $R = (A_1, A_2, ..., A_k) = \mathbf{U}$ a relation scheme with FDs \mathcal{F} , The 3NF algorithm:

- (1) Construct a canonical cover \mathcal{C} for \mathcal{F} .
- $(\mathrm{ii}) \ \mathsf{Define} \ \mathsf{Schemes}_{\mathsf{3NF}}^\prime \langle \mathcal{C} \rangle = \{ \textbf{X} \cup \textbf{Y} \mid \textbf{X} \to \textbf{Y} \in \mathsf{Consol} \langle \mathcal{C} \rangle \}$
- (iii) Define Schemes_{3NF} $\langle C \rangle$ to be the subset of Schemes'_{3NF} $\langle C \rangle$ obtained by removing any relation which is subsumed by another.
- Theorem: For any canonical cover C of \mathcal{F} , Schemes_{3NF} $\langle C \rangle$ is in 3NF and dependency preserving for \mathcal{F} . \Box

Example: Let $\mathcal{G} = \{A \rightarrow B, ABCD \rightarrow E, EF \rightarrow GH, ACDF \rightarrow EG\}$. Then $\mathcal{G}' = \{A \rightarrow B, ACD \rightarrow E, EF \rightarrow G, EF \rightarrow H\}$ is a canonical cover for \mathcal{G} and Schemes'_{3NF} $\langle \mathcal{G} \rangle =$ Schemes_{3NF} $\langle \mathcal{G} \rangle = \{AB, ACDE, EFGH\}$. Functional Dependencies and Normalization

Subsumption in the Synthesis Algorithm

• It is important to be clear about subsumption.

Subsumption: Schema R_1 subsumes schema R_2 (and R_2 is subsumed by R_1) if the attributes of R_2 are a subset of those of R_1 .

Example: $\mathcal{G} = \{AB \rightarrow C, C \rightarrow A\}.$

- \mathcal{G} is a canonical cover of itself.
- Schemes'_{3NF} $\langle \mathcal{G} \rangle = \{ABC, AC\}.$
- Schemes_{3NF} $\langle \mathcal{G} \rangle = \{ABC\}$, since *ABC* subsumes *AC*.
- It is natural to remove AC in this case, since all of the information which it embodies is also found in ABC.

Further Examples of the Synthesis Algorithm

• Many of the simple examples which were presented for BCNF produce the same result with the 3NF synthesis algorithm.

Example:

Example:

Firm SSN

• In this example, only the dependency-preserving decomposition is obtained, as expected.

Name

Losslessness and the Synthesis Algorithm

- The synthesis algorithm does not necessarily guarantee lossless decompositions.
- Example: <u>A</u> <u>B</u> C $A \rightarrow C B \rightarrow C$
 - The 3NF synthesis algorithm produces the following schema:

- ... which is not lossless since C is not a key for either schema.
- A solution is to add a third relation which contains a key for the original relation:

• This idea applies in general.

Losslessness + Dependency Preservation

• The key to the extension is based upon the following result.

Context:

- Relation scheme R = (A₁, A₂, ..., A_k) = U, with FDs F a set of FDs on R.
- $\mathcal{V} = \{\mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_k\}$ subsequences of **U**.
- Theorem: If \mathcal{V} is dependency preserving, then the decomposition of R into $\{\Pi_{\mathbf{W}_1}, \Pi_{\mathbf{W}_2}, \ldots, \Pi_{\mathbf{W}_k}\}$ is lossless iff \mathbf{W}_i is a superkey (*i.e.*, contains a key) for R for some $i \in \{1, \ldots, k\}$. \Box
- Remark: In the above, the superkey must be for all of R, and not just the attributes which occur in \mathcal{F} .

Example: <u>A</u> <u>B</u> C $B \rightarrow C$

• The key of R is AB, not just B.

Keys Again

• It is very important in this context to understand what is meant by a key when there are attributes which do not occur in any FD.

Context:

- Relation scheme R = (A₁, A₂, ..., A_k) = U, with FDs F a set of FDs on R.
- $P = \{\mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_k\}$ subsequences of **U**.

Superkey again and precisely: Call K a *superkey* for $\langle R, \mathcal{F} \rangle$ if every instance M_R of R which is constrained by \mathcal{F} and every pair $t_1, t_2 \in M_R$, if $t_1[\mathbf{K}] = t_2[\mathbf{K}]$, then $t_1 = t_2$.

• A *key* is a minimal superkey, as usual.

Definition: Attrset(\mathcal{F}) = \bigcup {**X** \cup **Y** | **X** \rightarrow **Y** \in \mathcal{F} }.

Observation: **K** is a superkey for $\langle R, \mathcal{F} \rangle$ iff $\mathbf{K} = \mathbf{K}_1 \cup \mathbf{K}_2$ with: (i) $\mathcal{F} \models \mathbf{K}_1 \rightarrow \text{Attrset}(\mathcal{F})$, and (ii) $\mathbf{K}_2 = \mathbf{U} \setminus \text{Attrset}(\mathcal{F})$. \Box

Extending the Synthesis Algorithm to Achieve Losslessness

Context: Relation scheme $R = (A_1, A_2, ..., A_k) = \mathbf{U}$, with FDs \mathcal{F} a set of FDs on R.

The Lossless 3NF algorithm:

- (1) Construct a canonical cover ${\mathcal C}$ for ${\mathcal F}.$
- $(\mathrm{ii}) \text{ Define Schemes}_{\mathsf{3NF}} \langle \mathcal{C} \rangle = \{ \textbf{X} \cup \textbf{Y} \mid \textbf{X} \rightarrow \textbf{Y} \in \mathsf{Consol} \langle \mathcal{C} \rangle \}$
- (iii) Define Schemes_{3NF} $\langle C \rangle$ to be the subset of Schemes'_{3NF} $\langle C \rangle$ obtained by removing any relation which is subsumed by another.
- (iv) Define Schemes_{3NF} $\langle C \rangle$ to be Schemes_{3NF} $\langle C \rangle$ if Schemes_{3NF} $\langle C \rangle$ if that set already contains a superkey for R, and Schemes_{3NF} $\langle C \rangle \cup \mathbf{K}$ for some key \mathbf{K} of $\langle R, \mathcal{F} \rangle$ otherwise.
- Theorem: For any canonical cover C of \mathcal{F} , Schemes $_{\overline{3NF}}\langle C \rangle$ is a lossless and dependency preserving decomposition of R for \mathcal{F} . \Box

Example of the Synthesis Algorithm and Losslessness

Example: Let $\mathcal{G} = \{A \rightarrow B, ABCD \rightarrow E, EF \rightarrow GH, ACDF \rightarrow EG\}.$

- As shown on Slide 56, G' = {A → B, ACD → E, EF → G, EF → H} is a canonical cover for G and Schemes'_{3NF}⟨G⟩ = Schemes_{3NF}⟨G⟩ = {AB, ACDE, EFGH}.
- However, this decomposition is not lossless, since no member of {*AB*, *ACDE*, *EFGH*} is a superkey for *R*.
- To remedy this, first identify the unique key of *R* as *ACDF*.
 - None of the attributes in ACDF occur on the right-hand side of any FD in G, and so each must be part of any key.
 - All other attributes are derivable from these, so ACDF must be unique as a key.
- Thus, Schemes_{3NF} $\langle \mathcal{G} \rangle$ = Schemes_{3NF} $\langle \mathcal{G} \rangle \cup \{ACDF\}$ = $\{AB, ACDE, EFGH, ACDF\}.$

Properties of Synthesized 3NF Schemata

- The 3NF synthesis algorithm delivers as advertised.
- It is a nice theoretical result.

Questions: Are the schemata which it synthesizes otherwise free of problems? Answer: Not at all.

- This is exactly the 3NF schema which the synthesis algorithm delivers.
 Theorem: The synthesis algorithm need <u>not</u> deliver fully independent decompositions, even when the result is lossless. □
 - In contrast to the decomposition algorithm, the synthesis algorithm provides no flags as to potential problems.

Functional Dependencies and Normalization

Further Examples of Cyclicity in 3NF Synthesis

Example: <u>A</u> B C D $\mathcal{F} = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow B\}.$

- \mathcal{F} is its own canonical cover.
- The 3NF synthesis algorithm delivers the following cyclic result:

Using the cover *F*' = {A → B, B ↔ C, C ↔ D} instead, an acyclic decomposition is obtained:

- \mathbb{R} There is nothing in the 3NF synthesis algorithm which flags cyclicity.
- There is a better acyclic realization which is not the result of applying the algorithm for any canonical cover:

• It is better because $\{AB, BCD\}$ is already in BCNF.

Functional Dependencies and Normalization

Testing a 3NF Decomposition for Acyclicity

- The result on Slide 48 is not limited to BCNF decompositions.
- It may be applied to any decompositions, including 3NF:

Corollary: Let $\mathfrak{D} = {\mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_k}$ be a dependency-preserving 3NF synthesis of $\langle R, \mathcal{F} \rangle$. Then \mathfrak{D} is lossless and fully independent iff there is a join tree whose leaves are exactly the members of \mathfrak{D} and whose root is R.

- Algorithm: Try to build suitable join trees "bottom up", starting by combining losslessly joinable pairs of elements from \mathfrak{D} .
 - If the number k of schemes is relatively small, the testing may be done by hand.
 - Use the property of the theorem on Slide 29 to test for joinabilty.

Testing for Acyclicity — Example

- Shown below is a join tree for the lossless synthesis of the problem on Slide 63 with Schemes_{3NF}⟨𝔅⟩ = Schemes_{3NF}⟨𝔅⟩ ∪ {ACDF} = {AB, ACDE, EFGH, ACDF}.
- Therefore, this synthesis is not only lossless (as already known) but acyclic (and so fully independent).

20150218 Slide 67 of 79

Testing for Acyclicity — Example 2

- Suppose that the original example also included the FD $H \rightarrow F$: $\mathcal{G}' = \{A \rightarrow B, ABCD \rightarrow E, EF \rightarrow GH, ACDF \rightarrow EG, H \rightarrow F\}.$
- Schemes_{3NF} $\langle \mathcal{G}' \rangle = \{AB, ACDE, EFGH, ACDF\}$ is also a synthesis.
- However, *EFGH* is no longer in BCNF.
- Nevertheless, the join tree is the same, and so the synthesis is lossless and acyclic (and so fully independent).

Functional Dependencies and Normalization

Decompositions Which Share Dependencies

• A cyclic decomposition is not the only problem which may arise from 3NF synthesis.

Example: Part Site Distributor Address

 ${Part, Site} \rightarrow Distributor$ Distributor $\rightarrow {Site, Address}$

• The 3NF synthesis algorithm yields

- The two relations have the *shared dependency* Distributor \rightarrow Site.
- The common attributes {Distributor, Site} form a superkey, but not a candidate key, of the relation on the right.
- This is highly undesirable; the connection does not define a foreign-key dependency; an FD must be maintained within the common attributes!
- A better realization, without these problems, but not found by the basic synthesis algorithm, is:

Improving the 3NF Synthesis Algorithm

- There is an improved 3NF synthesis algorithm which is substantially more complex than the original one given here.
 - Tok-Wang Wing, Frank W. Tompa, and Tiko Kameda, An Improved Third. Normal Form for Relational Databases, ACM Transactions on Database Systems 6(2), 1981, pp. 329-346.
- It removes *superfluous* attributes and so can fix the decomposition on the previous slide, as well as the decomposition

Repairing Cyclic Solutions

- Some cyclic solutions (*i.e.*, dependency preserving but not fully independent) may be repaired by removing superfluous attributes or relations, while others are unrepairable, as illustrated on Slide 70.
- Here is another example of a cyclic decomposition which cannot be repaired in this way to achieve full independence.

• In such cases, the design must be altered in more complex ways order to achieve acyclicity.

A Comment on Testing for Losslessness

- A general algorithm for testing a decomposition for losslessness is given in the textbook.
- This is a very general algorithm, and useful for computer implementation.
- However, it works too well, in a sense.
 - It does not detect cyclicity, as illustrated in several examples.
- For small examples which are done by hand, it is better to work with join trees.
 - If a dependency-preserving join tree is constructed for a 3NF synthesis, and there are schemata which were not used in the join tree, then the synthesis is cyclic.
Comparison: Decomposition and Synthesis Approach

Decomposition into BCNF:

- Involves many choices, with a possibly different solution for each choice.
 - Choose a cover for the FDs.
 - Choose an FD upon which to base a decomposition step.
- \square Does not always yield a dependency-preserving solution.
- When it produces a dependency-preserving solution, that solution is also guaranteed to be fully independent.
- The solution never contains shared depdendencies.
- Provides direct information about foreign-keys and partial foreign keys.
- Provides clear information about what has succeeded and what has failed.

Comparison: Decomposition and Synthesis Approach — 2

Synthesis for 3NF:

- Only involves a choice of cover, with a possibly different solution for each choice.
 - But the quality of the solution is highly dependent upon this choice.
- Always yields a dependency-preserving solution.
- May produce a solution which is cyclic and/or which involves shared dependencies, even when solutions which avoid these problems are possible, with absolutely no indication whatsoever that this is the case.
 - The improved algorithm of Wing *et al* provides a fix in some cases, but is far more complex.
- May not find the "best" solution (see Slide 65).
- Foreign keys and partial foreign keys not identified by the algorithm.

Functional Dependencies and Normalization Functional Dependencies and Normalization

The Bottom Line for the 3NF Synthesis Algorithm

- It is a nice theoretical result, but it may produce a normalization, which while 3NF, dependency preserving, and lossless, nevertheless embodies many highly undesirable features including:
 - cyclicity (not fully independent);
 - dependency sharing.
- If 3NF synthesis is to be used, it is mandatory to go to something more complex, such as the improved algorithm of Ling *et al*.
- Even then, it is necessary to examine the result for other types of cyclicity.
 - This examination may be very complex and identifying a suitable repair may be equally complex.
- There is far more to 3NF synthesis than is found in textbooks on database management.
- Used alone, it is not a suitable design tool.

Enforcing Non-Key FD and Non-FK Inclusion Constraints

- Sometimes, the normalization process is not completely satisfactory, and constraints not representable in SQL must be enforced.
- There are two main ways to do this.
- Scout's-honor programming: Require the application programs to enforce the constraints in any updates they make.
 - \mathbb{R} Such a distributed, trusting approach is likely to fail sooner or later, and is best avoided.
 - \square One bad apple spoils the barrel.
- Triggers: Implement enforcement of the constraints in special SQL directives.
 - A *trigger* is an imperative procedure which is executed in conjunction with an SQL update.
 - In principle, almost any constraint may be enforced via triggers.
 - \checkmark Triggers provide a single, centralized solution.
 - Triggers can be extremely inefficient and impact performance unless the database systems is configured properly for them.

I(∋ Trigger code is often far from transparent with understanding of

the associated constraint often difficult. Functional Dependencies and Normalization

20150218 Slide 76 of 79

Second Normal Form — 2NF

• This form is largely of historical interest.

Context: $R = (A_1, A_2, ..., A_k) = \mathbf{U}$ a relation scheme with FDs \mathcal{F} ,

Full dependency: Let $W \subseteq U$ and $A \in U$. Say that A is *fully dependent* upon W if the following two conditions are met:

- $\mathcal{F}^+ \models \mathbf{W} \to A$.
- For no proper subsequence $\mathbf{W}' \subsetneq \mathbf{W}$ is it the case that $\mathcal{F}^+ \models \mathbf{W}' \rightarrow A$.
- 2NF: *R* is in *second normal form (2NF)* for \mathcal{F} if every nonprime attribute is fully dependent upon every candidate key.

Example: <u>A</u> <u>B</u> C D $\mathcal{F} = \{AB \rightarrow C, B \rightarrow D\}.$

• *D* is a nonprime attribute which is not fully dependent upon the key *AB*. Theorem: Every schema which is in 3NF is also in 2NF. \Box

First Normal Form — 1NF

- First normal form simply states that all domains are atomic.
- It has already been discussed in in the introductory slides on the the relational model.
- This slide is reproduced next.

First Normal Form

- It would be desirable to be able to decompose attributes such as address into tuples of subattributes, as illustrated below.
- With the classical relational model, this is not possible.
- In so-called *first normal form (1NF)*, all domains are atomic.
- In the Employee relation, the attribute Address could be replaced by the three attributes Street, City, and State, but the ability to refer to Address as their composite would be lost.
- A representation as illustrated below is available in some relational systems as an *object-relational* extension.
- It has even become part of the latest SQL standard.
- However, support is still far from universal or uniform.
- Object-relational extensions will not be considered in this course.

