
Functional Dependencies and Normalization
5DV119 — Introduction to Database Management

Ume̊a University
Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Functional Dependencies and Normalization 20150218 Slide 1 of 79

The Idea of Normalization

• One might think that the design of a relational schema is as simple as
coming up with the relations and declaring the appropriate dependencies.

• However, things are more complicated.

• If the design is not done properly, essential dependencies may not be
representable directly using the tools which SQL provides.

• As a consequence, such nonrepresentable dependencies are often simply
ignored in defective designs, resulting in:

• fundamental errors in the results of queries, particularly complex
queries which combine several relations;

• redundancy in both information and storage.

• It is therefore essential to have a uniform way of managing basic
dependencies and to ensure that they are represented correctly in the
schema.

• In these slides, only functional dependencies, which are a generalization
of key dependencies, will be considered.

• The presentation is theoretical but a natural one.
Functional Dependencies and Normalization 20150218 Slide 2 of 79

Functional Dependencies

• Key constraints are the most important kind of dependencies in the
relational model.

• Sometimes, key constraints may apply only on a projection of a relation.

• This can occur...

• ... during the design process when the relations are “too big” and
need to be decomposed.

• ... in some situations in which such embedded dependencies are
unavoidable.

• A (super)key dependency on a projection of a relation is called a
functional dependency.

Functional Dependencies and Normalization 20150218 Slide 3 of 79

Examples of Functional Dependencies

SSN Name Dept Bldg
000112222 Alice 3 8
000113333 Bruce 3 8
000114444 Carol 3 8
000115555 David 5 7
000116666 Alice 4 7

Firm

SSN→ {Name,Dept}
Dept→ Bldg

SSN→ {Name,Dept} is the functional dependency which states that SSN is
a (super)key on the projection π{SSN,Name,Dept}(Firm).

• In words, SSN functionally determines Name and Dept.

Dept→ Bldg is the functional dependency which states that Dept is a
(super)key on the projection π{Dept,Bldg}(Firm).

• A simple transitivity argument (to be formalized later) shows that SSN is
a key for the whole relation Firm: SSN→ {Name,Dept,Bldg}.
• However, Dept→ Bldg is not a (super)key dependency on Firm in any

reasonable sense.

• It is not representable in native SQL.

Functional Dependencies and Normalization 20150218 Slide 4 of 79

Examples of Functional Dependencies — 2

ID Name StreetAddr City State PostCode
Employee

ID→ {Name, StreetAddr,City, State,PostCode}
{StreetAddr,City,State} → PostCode

PostCode→ {City,State}

• The above schema illustrates a common situation regarding addresses
with postal codes.

• Here State is län, Bundesland, région, and the like.

• There is a complex overlap of functional dependencies.

• The street address, city, and state determine the postal code.

• The postal code determines the city and state, but not necessarily the
street address.

• Note that set brackets are omitted for singletons (sets with one element).

Functional Dependencies and Normalization 20150218 Slide 5 of 79

Examples of Functional Dependencies — 3

Part Site Distributor
bolt Ume̊a Ola

screw Ume̊a Ola
bolt Tromsø Tone

widget Tromsø Kari
nut Aalborg Anne

{Part, Site} → Distributor

Distributor→ Site

• The previous example is unlikely to pose a problem for a corporation,
since the relationship between addresses and postal codes is fixed by the
postal authority, and so need not be verified.

• A simple example of a similar form of overlapping dependencies in
corporate setting is illustrated above.

• The part and site together determine the distributor for that part.

• Distributors are local; each distributor provides parts to only one site.

Functional Dependencies and Normalization 20150218 Slide 6 of 79

Formalization of Functional Dependency

• Recall the notation from Slides 5–9 of “The Relational Model of Data”.

• Fix a relation scheme R = (A1,A2, . . . ,Ak) = U.

• Let X,Y be subsequences of (A1,A2, . . . ,Ak).

• The functional dependency (FD) X → Y holds on an instance MR of R if
for any two tuples t1, t2 ∈ MR ,

t1[X] = t2[X]⇒ t1[Y] = t2[Y]

• The FD constraint X → Y on the scheme R mandates that all allowed
instances MR satisfy this FD.

• Observe that if X ∪ Y = U = (A1.,A2, . . . ,Ak), then this definition
reduces to requiring that X be a superkey.

• In other words, X → Y holds iff X is a superkey on the projection
πX∪Y(R) of R onto the attributes in X ∪ Y.

Functional Dependencies and Normalization 20150218 Slide 7 of 79

Special Kinds of Functional Dependencies

• The FD X → Y is degenerate if X is empty.

• Degenerate FDs will not be considered in these slides.

• FD will always mean nondegenerate FD.

• The FD X → Y is trivial if Y ⊆ X.

• Trivial FDs are uninteresting in that they always hold, but they may
arise in certain constructions.

• The FD X → Y is fully nontrivial if X ∩ Y = ∅.
• The FD may always be replaced by a fully nontrivial one by

removing from Y all attributes in X.

• A set F of FDs is fully nontrivial if each of its members has that property.

Convention: Unless stated to the contrary, when considering a set F of FDs
on a schema, it will always be assumed that it consists of fully nontrivial
elements.

• This applies to a single FD of the form X → Y as well

Functional Dependencies and Normalization 20150218 Slide 8 of 79

Entailment of Functional Dependencies

• When it is known that certain FDs hold on a relation, it can be deduced
that others hold as well.

Example:

SSN Name Dept Bldg
000112222 Alice 3 8
000113333 Bruce 3 8
000114444 Carol 3 8
000115555 David 5 7
000116666 Alice 4 7

Firm

SSN→ {Name,Dept}
Dept→ Bldg

• FDs are closed under transitivity, and so it is easy to see that
SSN→ Bldg holds.

• Right-hand sides may always be broken up, so SSN→ Name and
SSN→ Dept also hold.

• Right-hand sides may be combined, so SSN→ {Name,Dept,Bldg} also
holds.

Functional Dependencies and Normalization 20150218 Slide 9 of 79

Entailment of Functional Dependencies — 2

• Here is an example of entailment at a more abstract level.

Example: A B C D E F = {A→ B,B → C ,C → D,D → E}.

• FDs are closed under transitivity, and so it is easy to see that each of
A→ BCDE , B → CDE , and C → DE hold.

• Right-hand sides can always be broken up, so B → BCDE implies each of
B → B, B → C , B → D, and B → E .

• Conversely, right-hand sides may be combined for identical left-hand
sides. For example, the set {B → B,B → C ,B → D, B → E} implies
that B → BCDE holds.

Functional Dependencies and Normalization 20150218 Slide 10 of 79

Entailment of Functional Dependencies — 3

�

Caution: Left hand sides of FDs may not be broken up in general.

Examples: A B C F1 = {AB → C}
F2 = {A→ C ,B → C}

• F2 is strictly stronger than F1.

Example instance to illustrate : A B C
a1 b1 c1
a1 b2 c2
a2 b1 c3
a2 b2 c4

• This instance satisfies F1 but not F2.

Concrete example: Think of (the key dependency) {ESSN,PNo} → Hours of
the Works On relation of the Company schema.

• Neither ESSN nor PNo is a key by itself.
Functional Dependencies and Normalization 20150218 Slide 11 of 79

Formalization and Notation for Entailment

• Entailment of FDs occurs so frequently that it is useful to have a special
notation for it.

Entailment of FDs Let R = (A1,A2, . . . ,Ak) = U be a relation scheme with
FDs F, and let X → Y be an FD. X → Y is entailed by F, written
F |= X → Y, if X → Y holds on every relation on which F holds.

• If G is a set of FDs, then F |= G means that F |= ϕ for every ϕ ∈ G.

Example: A B C D E F = {A→ B,B → C ,C → D,D → E}.

• F |= A→ BCDE , F |= B → CDE , F |= C → DE , and
F |= {A→ BCDE , B → CDE , C → DE}.

• Also may write F |= A→ BCDE , B → CDE , C → DE .

Functional Dependencies and Normalization 20150218 Slide 12 of 79

Further Examples of Entailment of FDs

• There may be “loops” in sets of FDs.

Example: A B C D E F = {A→ B,B → C ,C → D,D → B}.

• Here B, C , and D are all equivalent.

• Write X ↔ Y to mean that both X → Y and Y → X hold.

• Then F |= B ↔ C , B ↔ D, C ↔ D.

• Composition may also be on subsets of attributes.

Example: A B C D E F = {AB → C ,CD → E}.

• F |= ABD → CE ; i.e., ABD is a key.

Observation: It seems that inference for FDs is governed largely by a
transitivity operation.

Question: How can |= be computed systematically?

• ... to be used in algorithms, for example.

Functional Dependencies and Normalization 20150218 Slide 13 of 79

Inference Systems for FDs

• An inference system I is a mathematical proof system for |= .

• It is a way to compute |= via rules.

• Write F `I ϕ if the FD ϕ may be proven from F using I.

• There are three key properties for any proof system I.

Soundness: The inference system I is sound if everything which can be
proven is true: F `I ϕ implies F |= ϕ.

Completeness: The inference system I is complete if everything which is true
can be proven: F |= ϕ implies F `I ϕ.

Decidability: The inference system `I is decidable if there is an algorithm
(which always halts) which can compute `I .

Functional Dependencies and Normalization 20150218 Slide 14 of 79

Armstrong’s Axioms

• The classical inference system A for FDs is defined by Armstrong’s
Axioms, which are as follows.

• In all cases, X, Y, and Z are sequences of attributes over some universe
U.

A1 (triviality): If Y ⊆ X, then `A X → Y.

• This means that X → Y follows from the empty set of FDs.

• This rule is sometimes (incorrectly) called reflexivity.

A2 (augmentation): X → Y `A XZ → YZ
• Here XZ means merge the two sequences of attributes (union of

elements with the proper order).

A3 (transitivity): {X → Y,Y → Z} `A X → Z.

Functional Dependencies and Normalization 20150218 Slide 15 of 79

Properties of Armstrong’s Axioms

• Armstrong’s Axioms cannot be “proven”. It does not make sense to
“prove” inference rules.

• However, there is the following key result.

Theorem: Armstrong’s Axioms are sound and complete for inference on FDs.
2

• This result will not be established here, although it is relatively
straightforward to prove.

• In words, it says that transitivity is the only “nontrivial” way in which
inference occurs with FDs.

Theorem: Armstrong’s Axioms provide a decidable system for inference on
FDs.

Proof: This is immediate because there are only a finite number of FDs
over any given finite universe U of attributes. 2

Functional Dependencies and Normalization 20150218 Slide 16 of 79

Proofs Using Armstrong’s Axioms

• Proofs are written out as a list of assertions, with each assertion either
given or else following from the previous ones by Armstrong’s Axioms.

Example: A B C D E F = {AB → C ,CD → E}.

• Prove that ABD is a key for this system using Armstrong’s Axioms.

(1) AB → C given.

(2) CD → E given.

(3) ABD → ABCD (Augmentation of (1) with Z = ABD).

(4) ABCD → ABCDE (Augmentation of (2) with Z = ABCD).

(5) ABD → ABCDE (Transitivity on (3)+(4)).

• Thus, F `A ABD → ABCDE .

• By the soundness of Armstrong’s Axioms, it follows that
F |= ABD → ABCDE .

Functional Dependencies and Normalization 20150218 Slide 17 of 79

Other Axioms Systems

• Armstrong’s Axioms A form but one possibility for a sound and complete
set of inference rules for FDs.

• Many others have been developed.

• One possibility is to augment A with additional rules.

• These rules do not add power, since A is already complete.

• However, they often allow proofs to be shorter by recapturing as
“macros” steps with occur frequently.

• See the textbook for one such possibility.

Functional Dependencies and Normalization 20150218 Slide 18 of 79

Closure and Covers

• It is often the case that two distinct sets of FDs are equivalent in that
they entail exactly the same FDs.

Example: A B C D E F1 = {A→ BCD,CE → D,CD → E},
F2 = {A→ BCE ,CE → D,CD → E}.

• Exactly the same set of FDs may be derived from each of these two sets.

• Need to show F1 |= A→ E and F2 |= A→ D.

General Context: Let R = (A1,A2, . . . ,Ak) = U be a relation scheme with
with FDs F.

Closure: F+ = {X → Y | F |= X → Y}.
Cover: A cover for F is any set C of FDs with the property that F+ = C+.

Example: F1
+ = F2

+.

• Each Fi is a cover for the other.

Functional Dependencies and Normalization 20150218 Slide 19 of 79

Embedding of Functional Dependencies

• Fix a relation scheme R = (A1,A2, . . . ,Ak) = U, with F a set of FDs on
R.

• Operations on subsequences of U may be written using set-theoretic
notation.

Examples: W ⊆ U, X ∪ Y ⊆W.

• This is a slight abuse of notation mathematically but it is widely
used and this context the intended meaning is always clear.

• The assumption is that the elements in the “sets” always occur in
the order induced by the base set U.

• X ∪ Y is also written XY.

• Say that the FD X → Y ∈ F embeds into W if X ∪ Y ⊆W.

• Let ΠW denote the view of R which is the projection onto W.

• Say that the FD X → Y ∈ F embeds into ΠW if it embeds into W.

Functional Dependencies and Normalization 20150218 Slide 20 of 79

Normalization

Normalization: is the process of “fixing” relational schemata so that they
avoid three closely related kinds of problems.

Storage redundancy: The same information is repeated many times.

Unnecessary information dependency: Information about some x cannot
be represented without having at least corresponding instance of y .

Update anomalies: The way in which data is represented complicates
the support of certain kinds of updates.

Functional Dependencies and Normalization 20150218 Slide 21 of 79

Illustration of Problems of an Unnormalized Schema

SSN Name Dept Bldg
000112222 Alice 3 8
000113333 Bruce 3 8
000114444 Carol 3 8
000115555 David 5 7
000116666 Alice 4 7

Firm

SSN→ {Name,Dept}
Dept→ Bldg

• The FD Dept→ Bldg does not define a key and leads to problems.

Storage redundancy: The information about Department 3 is repeated three
times.

Update anomaly: If the building of Department 3 is to be changed, three
updates are necessary.

Unnecessary information dependency:

• Information about an employee who does not have a department
requires null values.

• Information about a department cannot be represented unless at
least one employee works in it.

Functional Dependencies and Normalization 20150218 Slide 22 of 79

Approaches to Normalization

Approaches to normalization: There are two principle approaches to
normalization, and each will be considered in these slides.

Decomposition: Break larger relations into smaller ones.

Synthesis: Begin with a set of dependencies (usually FDs), and
construct a corresponding relational schema.

The changes forced by normalization: Generally speaking, by forcing FDs to
define (super)key dependencies, the problems identified above are
minimized or disappear completely... but the devil is in the details.

Functional Dependencies and Normalization 20150218 Slide 23 of 79

Normal Forms

Normal forms: In early research on the relational model, a number of so
called normal forms were developed.

• The principal ones which are based upon FDs were developed in the
following order:

1NF → 2NF → 3NF → BCNF

• There are some others which are based upon other types of dependencies:
4NF, 5NF, DKNF.

• In these slides, only those normal forms based upon FDs will be
considered.

• For pedagogical reasons, they will considered in the reverse order of
development:

BCNF → 3NF → 2NF → 1NF

• The main focus will be upon BCNF and 3NF, as 2NF is largely of
historical interest and 1NF is just a constraint on domains.

Functional Dependencies and Normalization 20150218 Slide 24 of 79

LDBN — an On-Line Resource for Learning Normalization

Learn DataBase Normalization: LDBN is an online resource for doing
examples of normalization.

• It was developed as part of two thesis projects at Ume̊a University by
Nikolay Georgiev.

• It implements several of the algorithms which will be considered in these
slides.

• It allows one to test a given solution for various properties.

• It will also find a solution, if possible, which satisfies given properties.

• It has a very nice drag-and-drop interface.

• It can be found here:

http://ldbnonline.com/Ldbn.html

Functional Dependencies and Normalization 20150218 Slide 25 of 79

Boyce-Codd Normal Form — BCNF

• The main idea behind BCNF is that all FDs should be (super)key
dependencies.

• Such a normalization is highly desirable since then (a cover for) the FDs
can be represented within standard SQL.

Idea for a decomposition algorithm: If a relation scheme is constrained by an
FD which does not define a superkey, decompose the scheme into
subschemes which avoid that problem.

• Unfortunately, such a decomposition is not always possible without
introducing other problems.

• Before developing the theory, an example will help illustrate why BCNF is
desirable.

Functional Dependencies and Normalization 20150218 Slide 26 of 79

An Illustration of BCNF Normalization

• Recall the following unnormalized example.

SSN Name Dept Bldg
000112222 Alice 3 8
000113333 Bruce 3 8
000114444 Carol 3 8
000115555 David 5 7
000116666 Alice 4 7

Firm

SSN→ {Name,Dept}
Dept→ Bldg

• The problems may be fixed by decomposing it into two relations.

SSN Name Dept
000112222 Alice 3
000113333 Bruce 3
000114444 Carol 3
000115555 David 5
000116666 Alice 4

Employee
Dept Bldg
3 8
4 7
5 7

Department

• Note that each relation now has only a key dependency.

• Note also the added foreign-key dependency.

Functional Dependencies and Normalization 20150218 Slide 27 of 79

Lossless Joins

• In decomposing one relation into two, it must be ensured that no
information is lost.

• Fix a relation scheme R = (A1,A2, . . . ,Ak) = U, with FDs F a set of
FDs on R.

• Let P = {W1,W2, . . . ,Wk} be subsequences of U.

• Let ΠWi
denote the view which is the projection of R onto the attributes

in Wi .

• The decomposition of R into the projections {ΠW1 ,ΠW2 , . . . ,ΠWk
}

satisfies the lossless join property (or is lossless) if the original schema
may be recovered via the natural join operation.

Formal description: R decomposes losslessly into {ΠW1 ,ΠW2 , . . . ,ΠWk
} (or

just into P) for F if for any instance MR of R which satisfies F,

MR = πW1(MR) ./ πW2(MR) .// πWk
(MR)

�

The textbook uses the term nonadditive for lossless, but this is not
standard terminology.

Functional Dependencies and Normalization 20150218 Slide 28 of 79

Guaranteeing Lossless Joins

• For a decomposition into two projections, there is a very simple condition
which is both necessary and sufficient to ensure lossless recovery.

Theorem: Let R = (A1,A2, . . . ,Ak) = U be a relation scheme with with FDs
F, and let W1 and W2 be subsequences of U. Then R decomposes
losslessly into {ΠW1 ,ΠW2} for F iff (if and only if) the FD
W1 ∩W2 →Wi holds for at least one i ∈ {1, 2}. 2

• In words, there is a lossless decomposition iff the attributes common to
W1 and W2 form a superkey for one of the resulting relations.

• Observe that the decomposition of the Firm example on the previous
slides satisfies this condition.

Functional Dependencies and Normalization 20150218 Slide 29 of 79

Lossless Decomposition of the Example Schema Firm

SSN Name Dept Bldg
000112222 Alice 3 8
000113333 Bruce 3 8
000114444 Carol 3 8
000115555 David 5 7
000116666 Alice 4 7

Firm

SSN→ {Name,Dept}
Dept→ Bldg

• W1 = {SSN,Name,Dept} W2 = {Dept,Bldg}

SSN Name Dept
000112222 Alice 3
000113333 Bruce 3
000114444 Carol 3
000115555 David 5
000116666 Alice 4

Employee
Dept Bldg
3 8
4 7
5 7

Department

• W1 ∩W2 = {Dept} is a key for W2 = {Dept,Bldg} since Dept→ Bldg.

Functional Dependencies and Normalization 20150218 Slide 30 of 79

A Simple Algorithm for Realizing BCNF

• There is a simple way to achieve BCNF.

• Fix a relation scheme R = (A1,A2, . . . ,Ak) = U, with F a set of FDs on
R.

• Select a cover C of F. Without loss of generality, take C to consist of
fully nontrivial dependencies.

• If R is not in BCNF for C:

• Pick an FD X → Y ∈ C for which X is not a superkey.

• Define W1 = U \ Y and W2 = X ∪ Y.

• Decompose R into ΠW1 and ΠW2 .

• Make X in ΠW1 a foreign key which references X in ΠW2 .

• Repeat this process on the resulting schemata until all such
schemata are constrained by key dependencies only.

• The resulting decompositions are all lossless.

Question: Does this algorithm have any complications or drawbacks?
Functional Dependencies and Normalization 20150218 Slide 31 of 79

BCNF and Alternative Decompositions

SSN Name Dept Proj Bldg
Firm SSN→ {Name,Dept}

Dept→ Proj Proj→ Bldg

• There are two choices for an initial step.

• Using Proj→ Bldg:

SSN Name Dept Proj Proj Bldg

• Using Dept→ Proj on the left relation, each FD embeds into a view:

SSN Name Dept Dept Proj Proj Bldg

• Using Dept→ Proj first on the original schema, the FD Proj→ Bldg
does not embed into either view:

SSN Name Dept Bldg Dept Proj

• This second decomposition is not very desirable because it introduces
inter-relational FDs, which are not supported by DBMSs.

Functional Dependencies and Normalization 20150218 Slide 32 of 79

Dependency Preservation

• Fix a relation scheme R = (A1,A2, . . . ,Ak) = U, with FDs F a set of
FDs on R, and let W1 and W2 be subsequences of U.

Preliminary definition: The decomposition of R into ΠW1 and ΠW2 preserves
F if each ϕ ∈ F embeds into either ΠW1 or else ΠW2 .

• Unfortunately, this definition is not very satisfactory.

• Consider (essentially) the same example as on the previous slide, but with
the FD SSN→ {Dept,Proj,Bldg} added.

SSN Name Dept Proj Bldg
Firm SSN→ {Name,Dept}

Dept→ Proj Proj→ Bldg
SSN→ {Dept,Proj,Bldg}

• It is easy to see that this new FD may be derived from the others by
simple transitivity...

• But the following decomposition is not dependency preserving under this
definition.

SSN Name Dept Proj Proj Bldg

Functional Dependencies and Normalization 20150218 Slide 33 of 79

Dependency Preservation — 2

• It might seem sufficient to require that elements of the set F which can
be derived from others simply be removed.

• This is not satisfactory either!

Example: A B C D F = {A→ B,B → C ,C → D,D → B}.

• No element of F is implied by the others.

• Thus, the following is not dependency preserving under this definition.

A→ B B → C A B C C D C → DD → B

• Note that there is a cycle B → C → D → B.

• This cycle may be represented also as {B → C ,C → B,C → D,D → C}
• ...which is preserved by this decomposition.

• Thus, the above decomposition should qualify as dependency preserving.

• It is necessary to work with covers of F.

Functional Dependencies and Normalization 20150218 Slide 34 of 79

Dependency Preservation and Covers

Implication of FDs Let R = (A1,A2, . . . ,Ak) = U be a relation scheme with
with FDs F. Let F be a set of FDs on R.

Closure: F+ = {X → Y | F |= X → Y}.
Cover: A cover for F is any set C of FDs with the property that F+ = C+.

• Finally, the appropriate definition for a dependency-preserving
decomposition may be made.

Definition: Let V = {W1,W2, . . . ,Wk} be subsequences of U. The
decomposition of R into {ΠW1 ,ΠW2 , . . . ,ΠWk

} is dependency preserving
for F if there is a cover C of F such that each FD in C embeds into ΠWi

for some i ∈ {1, . . . , k}.
• Say that V is dependency preserving for F as well.

Example: C = {A→ B,B → C ,C → B,C → D,D → C} is a cover of
F = {A→ B,B → C ,C → D,D → B} which embeds into

A B C C D
Functional Dependencies and Normalization 20150218 Slide 35 of 79

Computing Covers

Question: How does one compute a “good” cover?

• This question is somewhat involved, and will be addressed in more detail
later in these slides.

• For now, the assumption that a “good” cover has been found will be
made.

Functional Dependencies and Normalization 20150218 Slide 36 of 79

BCNF So Far

• A good BCNF decomposition should have two properties:

Lossless: The original schema should be recoverable from the decomposition
by knowing only:

(i) the FDs which are embedded into the component schemes of the
decomposition, and

(ii) The induced foreign-key dependencies.

• The simple algorithm which chooses a non-superkey FD and splits
the relation into two based upon that FD always delivers a lossless
decomposition, as has already been shown.

Dependency preserving: All of the FDs of the original schema should be
recaptured in the decomposition.

• The cover formalism provides the correct mathematical concept of
“recaptured”.

• However, the question remains as to whether this is always possible.
Functional Dependencies and Normalization 20150218 Slide 37 of 79

BCNF with Dependency Preservation Is Not Always Possible

Example: Dept Proj Bldg {Dept,Proj} → Bldg, Bldg→ Proj

• Bldg→ Proj is not a (super)key dependency.

• {Dept,Proj} → Bldg involves all three attributes.

• There is no “better” cover for these FDs.

Conclusion: There is no lossless and dependency-preserving decomposition of
this schema into BCNF.

• Even when there is a lossless and dependency-preserving decomposition
into BCNF, it need not be unique.

Example: A B C D E F = {A→ BCDE ,CE → D,CD → E}.
• There are two distinct lossless and dependency-preserving solutions:

C D E A B C D C D E A B C E

• It takes a little thought to see this!

Functional Dependencies and Normalization 20150218 Slide 38 of 79

BCNF with Dependency Preservation is Difficult to Decide

• Suppose a “large” schema with many FDs is given, and it is likely to
require many steps to decompose it into BCNF.

Theorem: The problem of deciding whether or not a given schema
constrained by FDs has a lossless and dependency-preserving
decomposition into BCNF is NP-complete. 2

• Less formally, this means that no known algorithm is substantially better
in the worst case than just trying all possibilities.

• Finding such a tractable solution would entail finding tractable solutions
to thousands of other problems with the same characteristics.

• The major problem in the case of BCNF decomposition is not only to
choose FDs in a suitable order from a cover C of the set F (in order to
build the “right” join tree), but also that alternate covers of F need to
be considered.

Functional Dependencies and Normalization 20150218 Slide 39 of 79

Join Trees for Decompositions

• It is often useful to represent the decomposition process via join trees.

• For each interior vertex, the FD under the attribute is that used to define
the decomposition.

• For each leaf vertex, the FDs shown are preserved by that projection.

• The leaves represent the final schemes of the decomposition.

Example: A B C D E F = {A→ B,B → C ,C → D,D → E}.
• Shown below are three join trees for the same dependency-preserving

BCNF decomposition: {AB,BC ,CD,DE}.

ABCDE
D → E

ABCD
C → D

ABC
B → C

AB
A → B

BC
B → C

CD
C → D

DE
D → E

ABCDE
B → CDE

AB
A → B

BCDE
C → DE

BC
B → C

CDE
D → E

CD
C → D

DE
D → E

ABCDE
C → DE

ABC
B → C

AB
A → B

BC
B → C

CDE
D → E

CD
C → D

DE
D → E

Functional Dependencies and Normalization 20150218 Slide 40 of 79

Join Trees for Decompositions

• Join trees can also illustrate that a strategy cannot succeed.

Example: A B C D E F = {A→ B,B → C ,C → D,D → E}.

• The tree below shows that beginning with A→ B as the non-(super)key
FD cannot lead to a dependency preserving decomposition, since B → C
is not preserved (and cannot be derived from the other FDs).

ABCDE
A→ B

AB
A→ B

ACDE
B → C

• This FD is shown in red to emphasize this.

Functional Dependencies and Normalization 20150218 Slide 41 of 79

Decomposition and Foreign-Key Dependencies

• Most (all?) treatments of normalization ignore foreign-key dependencies.

• The hidden constraint for normalization by decomposition is that the
matching columns must agree.

Example:

SSN Name Dept Bldg SSN→ {Name,Dept} Dept→ Bldg

• The values for attributes which occur in both relations must be the same
to achieve a truly equivalent schema of two relations.

SSN Name Dept Dept Bldg

• However, this is relaxed to a foreign-key dependency in order to:

(i) Allow expanded modelling and avoid unnecessary information
dependencies.

(ii) Match traditional SQL (which admits foreign-key constraints but
not such equality constraints).

SSN Name Dept Dept Bldg

Functional Dependencies and Normalization 20150218 Slide 42 of 79

Join Trees and Foreign-Key Dependencies

• When the join tree involves more than one decomposition, it may not be
possible to identify true foreign keys.

Example: A B C D E F = {A→ BC , AB → D, CD → E}.

• In the tree to the right, the key CD for
CDE is split into C and D by the
decomposition on the left side of the tree.

• They are thus not true foreign keys since
they do not reference a primary key.

• As shown in the diagram below, foreign
keys may be parts of primary keys in this
construction.

ABCDE
CD → E

ABCD
AB → C

ABC
A→ BC

ABD
AB → D

CDE
CD → E

A B DA B C C D E

• The SQL model of foreign key would have to be extended slightly to
accommodate this.

Question: Do such partial foreign keys occur in “real-world” examples?

Functional Dependencies and Normalization 20150218 Slide 43 of 79

A “Trick” for Realizing BCNF with Severe Drawbacks

SSN Dept Room Bldg
Firm SSN→ {Dept,Room}

Dept→ Bldg Room→ Bldg

• This schema has two BCNF decompositions, neither of which is
dependency preserving.

SSN Dept Room Dept Bldg SSN Dept Room Room Bldg

• It is possible to combine these to obtain a lossless and
dependency-preserving BCNF decomposition.

SSN Dept RoomDept Bldg Room Bldg

�

However, this leads to a cyclic (redundant) decomposition which makes
integrity checking of updates difficult.

�

It is not possible to ensure that the values for Bldg on the two paths
SSN→ Dept→ Bldg and SSN→ Room→ Bldg agree without
recombining relations.

• It is necessary to join on Bldg but it is not a key in either relation.
Functional Dependencies and Normalization 20150218 Slide 44 of 79

Decompositions Which Are Too Weak or Too Strong

SSN Dept Room Bldg
Firm SSN→ {Dept,Room}

Dept→ Bldg Room→ Bldg

• The following two decompositions are too weak, in that they fail to
recapture all of the FDs in the original relation.

SSN Dept Room Dept Bldg SSN Dept Room Room Bldg

• Thus, when an update is performed on the decomposed relations,
satisfaction of an FD which spans several relations must be verified.
• The following decomposition is too strong, in that embodies certain

information more than once, and requires a check to ensure that all is
consistent. It is cyclic.

SSN Dept RoomDept Bldg Room Bldg

• Thus, when an update is performed, it must be verified that the third
relation is consistent with the other two.
• The goal is to find decompositions which are neither too weak nor too

strong.
Functional Dependencies and Normalization 20150218 Slide 45 of 79

Cyclicity as a Property of Hypergraphs

• The term cyclic, which characterizes redundancy in decompositions,
arises from the properties of the hypergraph underlying the multi-relation
schema which is the result of the decomposition.

• The topic of schema hypergraphs and their properties is beyond the
scope of this course, but it is nevertheless useful to be a aware that such
a theory exists.

• A decomposition which is not cyclic is called acyclic.

• It is thus acyclic decompositions which are desirable, which are not too
strong; that is, which do not embody redundancy in the representation.

• Such a decomposition must nevertheless be strong enough to be
dependency preserving.

• For this course, it will suffice to characterize the combination of acyclicity
and dependency preservation indirectly, primarily via full independence.

Comment: Full independence is not standard terminology in the field, but is
introduced here as a convenient way to recapture acyclicity without
resorting to the explicit use of hypergraphs.

Functional Dependencies and Normalization 20150218 Slide 46 of 79

Formalization of Full Independence

Context: R = (A1,A2, . . . ,Ak); FDs F; {W1,W2, . . . ,Wk} subsequences.

Local database: For i ∈ {1, . . . , k}, the database Ni on attributes Wi is
called a local database for Wi if it is the projection onto Wi of some MR

for R which satisfies the constraints of F: πWi
(MR) = Ni .

Join compatibility: A sequence (N1,N3, . . . ,Nk) with Ni a local database for
Wi is join compatible if any two {Ni ,Nj} agree on their common
columns: for any i , j ∈ {1, . . . , k}, πWi∩Wj

(Ni) = πWi∩Wj
(Nj)

Fully independent decomposition: {W1,W2, . . . ,Wk} is fully independent
for 〈R,F〉 if any join-compatible sequence of local databases joins to a
database on R which satisfies F.

• Join compatibility ⇒ each ΠWi
may be updated independently of the

others... ... provided only that the common columns do not change.

• This is the goal of decomposition.

Example: The “trick” solution on Slides 44-45 is not fully independent.

Fact: A decomposition is fully independent iff it is dependency preserving
and (its underlying hypergraph is) acyclic. 2

Functional Dependencies and Normalization 20150218 Slide 47 of 79

Testing for Full Independence

Theorem: Let 〈R,F〉 be a database schema. A lossless decomposition
D = {W1,W2, . . . ,Wk} of 〈R,F〉 is fully independent iff there is a
dependency-preserving join tree whose leaves are exactly the members of
D and whose root is R. 2

Corollary: Any dependency-preserving decomposition of 〈R,F〉 obtained
from the BCNF decomposition algorithm is fully independent. 2

Example: The decomposition {ABC ,ABD,CDE} of the schema
〈ABCDE , {A→ BC , AB → D, CD → E}〉 is fully independent. (See
Slide 43.)

Fact: Context as in the theorem above, if any proper subset of D forms a
lossless decomposition, then D cannot be fully independent. 2

Example: The decomposition {BD,BR,DRS} of the schema
〈BDRS , {S → DR, D → B, R → B}〉 is not fully independent, since
both {BD,DRS} and {BR,DRS} form lossless decompositions. (See
Slides 44-45.) 2

Functional Dependencies and Normalization 20150218 Slide 48 of 79

Evaluation of the BCNF-by-Decomposition Approach

Question: How useful is the BCNF-by-decomposition approach?

U It always delivers lossless decompositions.

D It may not always deliver dependency preservation, but:

U When it does, the result is fully independent (no redundancy).

U Success or failure is always clear from the process.

U Such fully independent decompositions addresses the three
normalization issues effectively.

R It may not provide true foreign keys.
• ... but this is an issue of lack of support of a relatively simple

feature in current SQL, not a fundamental design issue.

D In the worst case, exhaustive search is required to determine whether a
lossless and dependency-preserving decomposition exists.

Bottom line: It may not always work, but when it does, it works well, and
the quality of the result is known from the process itself.

Functional Dependencies and Normalization 20150218 Slide 49 of 79

Constraints Induced by Normalization

• The goal of the normalization process is to obtain designs which may be
implemented using SQL.

• A relational schema (in SQL), there are two kinds of constraints:

(a) FDs (keys only) are specified on individual relations, never across
relations.

(b) Foreign-key dependencies connect matching attributes on different
relations.

• The decomposition approach satisfies (a) by construction.

• Clearly, the “trick” schema of Slides 44-45 involves other dependencies.

• Fortunately, the decomposition algorithm can never introduce such
dependencies; it never embodies redundancy in its representation of the
original schema.

• Unfortunately, it can fail to be dependency preserving, and so can
underrepresent the original schema.

Question: Is there an alternative which avoids this drawback?
Functional Dependencies and Normalization 20150218 Slide 50 of 79

Third Normal Form — 3NF — a Compromise

• Third Normal Form (3NF) may be viewed as a compromise.

• In contrast to BCNF, a lossless and dependency decomposition into 3NF
always exists.

• Fix a relation scheme R = (A1,A2, . . . ,Ak) = U, with FDs F a set of
FDs on R.

Prime attributes: An attribute Ai ∈ U is prime (for 〈R,F〉) if it is a member
of some candidate key.

3NF: F is in Third Normal Form (3NF) if for any (by convention, fully
nontrivial) X → Y ∈ F, either

(a) X is a superkey for F, or

(b) every A ∈ Y \ X is a prime attribute.

Example: Dept Proj Bldg {Dept,Proj} → Bldg, Bldg→ Proj

is not in BCNF, but it is in 3NF since Proj is a prime attribute.

Functional Dependencies and Normalization 20150218 Slide 51 of 79

Finding a 3NF Representation of a Schema

• In contrast to the approach for BCNF, the most common algorithm for
realizing 3NF is based upon synthesis.

• Rather than decomposing a single relation, smaller relations are built up
using properties of the underlying set of constraints.

• For this synthesis approach to work, the set of FDs must be put into a
special form, in which the set of FDs is canonical.

• Algorithms for accomplishing this task are discussed next.

Functional Dependencies and Normalization 20150218 Slide 52 of 79

Canonical Sets of FDs

General Context: Let R = (A1,A2, . . . ,Ak) = U be a relation scheme with
with FDs F.

RHS-simple: The FD X → Y is RHS-simple if Y consists of just one
attribute; i.e., it is of the form X → A.

LHS-reduced: The FD X → Y is LHS-reduced (or full) in F if for no proper
subsequence X′ (X is it the case that

((F \ {X → Y}) ∪ {X′ → Y})+ = F+.

Nonredundancy: The set F of FDs is nonredundant if for no proper subset
F ′ (F is it the case that F ′+ = F+.

Canonicity: The set F of FDs is canonical if each of its members is
RHS-simple and LHS-reduced in F, and in addition, F is nonredundant.

Note on terminology: The textbook calls a canonical set of FDs minimal,
but this terminology is nonstandard and can easily be confused with
minimum, which has an entirely different meaning.

Functional Dependencies and Normalization 20150218 Slide 53 of 79

Computing a Canonical Cover

Canonical cover: A canonical cover of F is a cover C which is also canonical.

Algorithm for computing a canonical cover:

(1) Decompose each FD into RHS-simple form.

(2) LHS-reduce each FD.

(3) Test each remaining FD for redundancy of the resulting set of FDs,
removing the ones which are not needed to preserve the closure.

• Steps (2) and (3) may involve choices.

Example: F = {A→ BC , B → C , AB → D, AC → D}.
Step 1: {A→ B, A→ C , B → C , AB → D, AC → D}.
Step 2: {A→ B, A→ C , B → C , A→ D, A→ D}

= {A→ B, A→ C , B → C , A→ D}.
Step 3: {A→ B, A→ C , B → C , A→ D} reduces to
{A→ B, B → C , A→ D} (since {A→ B, B → C} |= A→ C).

Functional Dependencies and Normalization 20150218 Slide 54 of 79

Example of Computing a Canonical Cover

Example: F = {A→ B, ABCD → E , EF → GH, ACDF → EG}.

Step 1:
{A→ B, ABCD → E , EF → G , EF → H, ACDF → E , ACDF → G}.

Step 2: {A→ B, ACD → E , EF → G , EF → H, ACD → E , ACDF → G}
= {A→ B, ACD → E , EF → G , EF → H, ACDF → G}

Step 3: {A→ B, ACD → E , EF → G , EF → H}
(since {ACD → E , EF → G} |= ACDF → G).

• In general, Steps 2 and 3 may be very complex, but they can often be
solved by inspection for small examples.

• Implementing them involves using an inference algorithm for FDs.

• In implementation, the use of RHS-simple form may also be avoided ...

• ... but it is perhaps easier for humans to work with that form.
Functional Dependencies and Normalization 20150218 Slide 55 of 79

The Synthesis Algorithm

Consolidation: Let G be any set of FDs. The consolidation Consol〈G〉 of G is
formed by combining all FDs of G with the same left-hand side into one.

Example: The consolidation of
G = {A→ B, ACD → E , EF → G , EF → H} is
Consol〈G〉 = {A→ B, ACD → E , EF → GH}

Context: R = (A1,A2, . . . ,Ak) = U a relation scheme with FDs F,

The 3NF algorithm:

(1) Construct a canonical cover C for F.

(ii) Define Schemes′3NF〈C〉 = {X ∪ Y | X → Y ∈ Consol〈C〉}
(iii) Define Schemes3NF〈C〉 to be the subset of Schemes′3NF〈C〉 obtained

by removing any relation which is subsumed by another.

Theorem: For any canonical cover C of F, Schemes3NF〈C〉 is in 3NF and
dependency preserving for F. 2

Example: Let G = {A→ B, ABCD → E , EF → GH, ACDF → EG}. Then
G′ = {A→ B, ACD → E , EF → G , EF → H} is a canonical cover for
G and Schemes′3NF〈G〉 = Schemes3NF〈G〉 = {AB,ACDE ,EFGH}.

Functional Dependencies and Normalization 20150218 Slide 56 of 79

Subsumption in the Synthesis Algorithm

• It is important to be clear about subsumption.

Subsumption: Schema R1 subsumes schema R2 (and R2 is subsumed by R1)
if the attributes of R2 are a subset of those of R1.

Example: G = {AB → C , C → A}.
• G is a canonical cover of itself.

• Schemes′3NF〈G〉 = {ABC ,AC}.
• Schemes3NF〈G〉 = {ABC}, since ABC subsumes AC .

• It is natural to remove AC in this case, since all of the information which
it embodies is also found in ABC .

Functional Dependencies and Normalization 20150218 Slide 57 of 79

Further Examples of the Synthesis Algorithm

• Many of the simple examples which were presented for BCNF produce
the same result with the 3NF synthesis algorithm.

Example:

SSN Name Dept Bldg SSN→ {Name,Dept} Dept→ Bldg

• The 3NF synthesis algorithm produces:

SSN Name Dept Dept Bldg

• But the foreign-key dependencies must be identified another way.

Example:

SSN Name Dept Proj Bldg
Firm

SSN → {Name,Dept}
Dept → Proj, Proj → Bldg

• In this example, only the dependency-preserving decomposition is
obtained, as expected.

SSN Name Dept Dept Proj Proj Bldg

Functional Dependencies and Normalization 20150218 Slide 58 of 79

Losslessness and the Synthesis Algorithm

• The synthesis algorithm does not necessarily guarantee lossless
decompositions.

Example: A B C A→ C B → C

• The 3NF synthesis algorithm produces the following schema:

A C B C

• ... which is not lossless since C is not a key for either schema.

• A solution is to add a third relation which contains a key for the original
relation:

A C B CA B

• This idea applies in general.

Functional Dependencies and Normalization 20150218 Slide 59 of 79

Losslessness + Dependency Preservation

• The key to the extension is based upon the following result.

Context:

• Relation scheme R = (A1,A2, . . . ,Ak) = U, with FDs F a set of
FDs on R.

• V = {W1,W2, . . . ,Wk} subsequences of U.

Theorem: If V is dependency preserving, then the decomposition of R into
{ΠW1 ,ΠW2 , . . . ,ΠWk

} is lossless iff Wi is a superkey (i.e., contains a
key) for R for some i ∈ {1, . . . , k}. 2

Remark: In the above, the superkey must be for all of R, and not just the
attributes which occur in F.

Example: A B C B → C

• The key of R is AB, not just B.

Functional Dependencies and Normalization 20150218 Slide 60 of 79

Keys Again

• It is very important in this context to understand what is meant by a key
when there are attributes which do not occur in any FD.

Context:

• Relation scheme R = (A1,A2, . . . ,Ak) = U, with FDs F a set of
FDs on R.

• P = {W1,W2, . . . ,Wk} subsequences of U.

Superkey again and precisely: Call K a superkey for 〈R,F〉 if every instance
MR of R which is constrained by F and every pair t1, t2 ∈ MR , if
t1[K] = t2[K], then t1 = t2.

• A key is a minimal superkey, as usual.

Definition: Attrset(F) =
⋃
{X ∪ Y | X → Y ∈ F}.

Observation: K is a superkey for 〈R,F〉 iff K = K1 ∪K2 with:

(i) F |= K1 → Attrset(F), and

(ii) K2 = U \ Attrset(F). 2

Functional Dependencies and Normalization 20150218 Slide 61 of 79

Extending the Synthesis Algorithm to Achieve Losslessness

Context: Relation scheme R = (A1,A2, . . . ,Ak) = U, with FDs F a set of
FDs on R.

The Lossless 3NF algorithm:

(1) Construct a canonical cover C for F.

(ii) Define Schemes′3NF〈C〉 = {X ∪ Y | X → Y ∈ Consol〈C〉}
(iii) Define Schemes3NF〈C〉 to be the subset of Schemes′3NF〈C〉 obtained

by removing any relation which is subsumed by another.

(iv) Define Schemes3NF〈C〉 to be Schemes3NF〈C〉 if Schemes3NF〈C〉 if
that set already contains a superkey for R, and Schemes3NF〈C〉 ∪K
for some key K of 〈R,F〉 otherwise.

Theorem: For any canonical cover C of F, Schemes3NF〈C〉 is a lossless and
dependency preserving decomposition of R for F. 2

Functional Dependencies and Normalization 20150218 Slide 62 of 79

Example of the Synthesis Algorithm and Losslessness

Example: Let G = {A→ B, ABCD → E , EF → GH, ACDF → EG}.

• As shown on Slide 56, G′ = {A→ B, ACD → E , EF → G , EF → H} is
a canonical cover for G and

Schemes′3NF〈G〉 = Schemes3NF〈G〉 = {AB,ACDE ,EFGH}.

• However, this decomposition is not lossless, since no member of
{AB,ACDE ,EFGH} is a superkey for R.

• To remedy this, first identify the unique key of R as ACDF .

• None of the attributes in ACDF occur on the right-hand side of any
FD in G, and so each must be part of any key.

• All other attributes are derivable from these, so ACDF must be
unique as a key.

• Thus, Schemes3NF〈G〉 = Schemes3NF〈G〉 ∪ {ACDF}
= {AB,ACDE ,EFGH,ACDF}.

Functional Dependencies and Normalization 20150218 Slide 63 of 79

Properties of Synthesized 3NF Schemata

• The 3NF synthesis algorithm delivers as advertised.

• It is a nice theoretical result.

Questions: Are the schemata which it synthesizes otherwise free of problems?

Answer: Not at all.

Example: SSN Dept Room Bldg
Firm SSN→ {Dept,Room}

Dept→ Bldg Room→ Bldg
• Recall the following lossless and dependency-preserving but cyclic

decomposition obtained by the BCNF algorithm plus a “trick”.

SSN Dept RoomDept Bldg Room Bldg

• This is exactly the 3NF schema which the synthesis algorithm delivers.

Theorem: The synthesis algorithm need not deliver fully independent
decompositions, even when the result is lossless. 2
• In contrast to the decomposition algorithm, the synthesis algorithm

provides no flags as to potential problems.

Functional Dependencies and Normalization 20150218 Slide 64 of 79

Further Examples of Cyclicity in 3NF Synthesis

Example: A B C D F = {A→ B,B → C ,C → D,D → B}.
• F is its own canonical cover.

• The 3NF synthesis algorithm delivers the following cyclic result:

A B B C C D B D

• Using the cover F ′ = {A→ B,B ↔ C ,C ↔ D} instead, an acyclic
decomposition is obtained:

A B B C C D

D There is nothing in the 3NF synthesis algorithm which flags cyclicity.

• There is a better acyclic realization which is not the result of applying
the algorithm for any canonical cover:

A B B C D

• It is better because {AB,BCD} is already in BCNF.
Functional Dependencies and Normalization 20150218 Slide 65 of 79

Testing a 3NF Decomposition for Acyclicity

• The result on Slide 48 is not limited to BCNF decompositions.

• It may be applied to any decompositions, including 3NF:

Corollary: Let D = {W1,W2, . . . ,Wk} be a dependency-preserving 3NF
synthesis of 〈R,F〉. Then D is lossless and fully independent iff there is a
join tree whose leaves are exactly the members of D and whose root is R.
2

Algorithm: Try to build suitable join trees “bottom up”, starting by
combining losslessly joinable pairs of elements from D.

• If the number k of schemes is relatively small, the testing may be
done by hand.

• Use the property of the theorem on Slide 29 to test for joinabilty.

Functional Dependencies and Normalization 20150218 Slide 66 of 79

Testing for Acyclicity — Example

• Shown below is a join tree for the lossless synthesis of the problem on
Slide 63 with Schemes3NF〈G〉 = Schemes3NF〈G〉 ∪ {ACDF}

= {AB,ACDE ,EFGH,ACDF}.

• Therefore, this synthesis is not only lossless (as already known) but
acyclic (and so fully independent).

ABCDEFGH
A→ B

AB
A→ B

ACDEFGH
EF → GH

EFGH
EF → GH

ACDEF
ACD → E

ACDE
ADC → E ACDF

Functional Dependencies and Normalization 20150218 Slide 67 of 79

Testing for Acyclicity — Example 2

• Suppose that the original example also included the FD H → F :
G′ = {A→ B, ABCD → E , EF → GH, ACDF → EG , H → F}.
• Schemes3NF〈G

′〉 = {AB,ACDE ,EFGH,ACDF} is also a synthesis.

• However, EFGH is no longer in BCNF.

• Nevertheless, the join tree is the same, and so the synthesis is lossless
and acyclic (and so fully independent).

ABCDEFGH
A→ B

AB
A→ B

ACDEFGH
EF → GH

EFGH
EF → GH
H → F

ACDEF
ACD → E

ACDE
ADC → E ACDFFunctional Dependencies and Normalization 20150218 Slide 68 of 79

Decompositions Which Share Dependencies

• A cyclic decomposition is not the only problem which may arise from
3NF synthesis.

Example: Part Site Distributor Address
{Part,Site} → Distributor

Distributor→ {Site,Address}
• The 3NF synthesis algorithm yields

Part Site Distributor Site Distributor Address

• The two relations have the shared dependency Distributor→ Site.
• The common attributes {Distributor, Site} form a superkey, but not a

candidate key, of the relation on the right.
• This is highly undesirable; the connection does not define a foreign-key

dependency; an FD must be maintained within the common attributes!
• A better realization, without these problems, but not found by the basic

synthesis algorithm, is:

Part Site Distributor Distributor Address

• This problem cannot occur with the BCNF decomposition algorithm.
Functional Dependencies and Normalization 20150218 Slide 69 of 79

Improving the 3NF Synthesis Algorithm

• There is an improved 3NF synthesis algorithm which is substantially more
complex than the original one given here.

• Tok-Wang Wing, Frank W. Tompa, and Tiko Kameda, An Improved Third
Normal Form for Relational Databases, ACM Transactions on Database
Systems 6(2), 1981, pp. 329-346.

• It removes superfluous attributes and so can fix the decomposition on the
previous slide, as well as the decomposition

A B B C C D B D

of A B C D F = {A→ B,B → C ,C → D,D → B}
by removing the entire redundant scheme BD, for example.

• However, it cannot fix the decomposition

SSN Dept RoomDept Bldg Room Bldg

of
SSN Dept Room Bldg

Firm SSN→ {Dept,Room}
Dept→ Bldg Room→ Bldg

since there are no superfluous attributes.
Functional Dependencies and Normalization 20150218 Slide 70 of 79

Repairing Cyclic Solutions

• Some cyclic solutions (i.e., dependency preserving but not fully
independent) may be repaired by removing superfluous attributes or
relations, while others are unrepairable, as illustrated on Slide 70.

• Here is another example of a cyclic decomposition which cannot be
repaired in this way to achieve full independence.

Example: A B C D F = {AB → C , BC → D,D → A}.

A B C B C D D A

• In such cases, the design must be altered in more complex ways order to
achieve acyclicity.

Functional Dependencies and Normalization 20150218 Slide 71 of 79

A Comment on Testing for Losslessness

• A general algorithm for testing a decomposition for losslessness is given
in the textbook.

• This is a very general algorithm, and useful for computer implementation.

• However, it works too well, in a sense.

• It does not detect cyclicity, as illustrated in several examples.

• For small examples which are done by hand, it is better to work with join
trees.

• If a dependency-preserving join tree is constructed for a 3NF
synthesis, and there are schemata which were not used in the join
tree, then the synthesis is cyclic.

Functional Dependencies and Normalization 20150218 Slide 72 of 79

Comparison: Decomposition and Synthesis Approach

Decomposition into BCNF:

D Involves many choices, with a possibly different solution for each
choice.

• Choose a cover for the FDs.

• Choose an FD upon which to base a decomposition step.

D Does not always yield a dependency-preserving solution.

U When it produces a dependency-preserving solution, that solution
is also guaranteed to be fully independent.

U The solution never contains shared depdendencies.

U Provides direct information about foreign-keys and partial foreign
keys.

U Provides clear information about what has succeeded and what has
failed.

Functional Dependencies and Normalization 20150218 Slide 73 of 79

Comparison: Decomposition and Synthesis Approach — 2

Synthesis for 3NF:

R Only involves a choice of cover, with a possibly different solution
for each choice.

D But the quality of the solution is highly dependent upon this
choice.

U Always yields a dependency-preserving solution.

D May produce a solution which is cyclic and/or which involves
shared dependencies, even when solutions which avoid these
problems are possible, with absolutely no indication whatsoever that
this is the case.

• The improved algorithm of Wing et al provides a fix in some
cases, but is far more complex.

D May not find the “best” solution (see Slide 65).

D Foreign keys and partial foreign keys not identified by the
algorithm.

D Provides no information about the quality of the solution.
Functional Dependencies and Normalization 20150218 Slide 74 of 79

The Bottom Line for the 3NF Synthesis Algorithm

• It is a nice theoretical result, but it may produce a normalization, which
while 3NF, dependency preserving, and lossless, nevertheless embodies
many highly undesirable features including:

• cyclicity (not fully independent);

• dependency sharing.

• If 3NF synthesis is to be used, it is mandatory to go to something more
complex, such as the improved algorithm of Ling et al.

• Even then, it is necessary to examine the result for other types of cyclicity.

• This examination may be very complex and identifying a suitable
repair may be equally complex.

• There is far more to 3NF synthesis than is found in textbooks on
database management.

• Used alone, it is not a suitable design tool.

Functional Dependencies and Normalization 20150218 Slide 75 of 79

Enforcing Non-Key FD and Non-FK Inclusion Constraints

• Sometimes, the normalization process is not completely satisfactory, and
constraints not representable in SQL must be enforced.

• There are two main ways to do this.

Scout’s-honor programming: Require the application programs to enforce the
constraints in any updates they make.
D Such a distributed, trusting approach is likely to fail sooner or

later, and is best avoided.
D One bad apple spoils the barrel.

Triggers: Implement enforcement of the constraints in special SQL directives.
• A trigger is an imperative procedure which is executed in

conjunction with an SQL update.
U In principle, almost any constraint may be enforced via triggers.
U Triggers provide a single, centralized solution.
D Triggers can be extremely inefficient and impact performance

unless the database systems is configured properly for them.
D Trigger code is often far from transparent with understanding of

the associated constraint often difficult.
Functional Dependencies and Normalization 20150218 Slide 76 of 79

Second Normal Form — 2NF

• This form is largely of historical interest.

Context: R = (A1,A2, . . . ,Ak) = U a relation scheme with FDs F,

Full dependency: Let W ⊆ U and A ∈ U. Say that A is fully dependent
upon W if the following two conditions are met:

• F+ |= W → A.

• For no proper subsequence W′ (W is it the case that
F+ |= W′ → A.

2NF: R is in second normal form (2NF) for F if every nonprime attribute is
fully dependent upon every candidate key.

Example: A B C D F = {AB → C ,B → D}.

• D is a nonprime attribute which is not fully dependent upon the key AB.

Theorem: Every schema which is in 3NF is also in 2NF. 2

Functional Dependencies and Normalization 20150218 Slide 77 of 79

First Normal Form — 1NF

• First normal form simply states that all domains are atomic.

• It has already been discussed in in the introductory slides on the the
relational model.

• This slide is reproduced next.

Functional Dependencies and Normalization 20150218 Slide 78 of 79

First Normal Form

• It would be desirable to be able to decompose attributes such as address
into tuples of subattributes, as illustrated below.

• With the classical relational model, this is not possible.

• In so-called first normal form (1NF), all domains are atomic.

• In the Employee relation, the attribute Address could be replaced by the
three attributes Street, City, and State, but the ability to refer to Address
as their composite would be lost.

• A representation as illustrated below is available in some relational
systems as an object-relational extension.

• It has even become part of the latest SQL standard.

• However, support is still far from universal or uniform.

• Object-relational extensions will not be considered in this course.

FName MInit LName SSN BDate Address Sex Salary Super SSN DNo
Employee

Street City State
Address

Functional Dependencies and Normalization 20150218 Slide 79 of 79

