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The Roots of SQL

• It can scarcely be said that SQL has a clean and simple design.

• Rather, SQL is based upon the blending of many ideas, and has evolved
over a long period of time.

• Nevertheless, SQL has its roots in two ideal query languages.

Relational Algebra: A procedural language grounded in basic operations
on relations.

• Widely used in algorithms for query optimization.

Relational Calculus: A declarative language grounded in first-order
predicate logic.

• To understand better the capabilities and limitations of SQL, as well as
for other reasons, it is therefore useful to study these two languages.

• They are part of almost all basic courses on database management given
by faculties of science and technology at the university level.
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Overview of the Relational Algebra

• The relational algebra is a procedural query language on relations.

• Its basic operations have one of the following forms:

Relation −→ Relation

Relation× Relation −→ Relation

• It therefore provides a basic computational model of how queries in SQL
may be evaluated by a DBMS.

• It is often used in the internal representation of queries for the query
optimizer in real relational DBMSs.

• A basic knowledge of the relational algebra can thus be very helpful in
understanding why certain query operations are very expensive (in terms
of time and computational resources) relative to others.
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Overview of the Operations of the Relational Algebra

• The relational algebra is defined in terms of three kinds of operations on
relations:

Operations specific to relations:

Projection: Relation→ Relation: Trim some columns from a relation.

Selection: Relation→ Relation: Trim some rows from a relation.

Join: Relation× Relation→ Relation:
Combine two relations by matching values.

The three fundamental set-theoretic operations:
all Relation× Relation→ Relation

Union: X ∪ Y = all elements in either X or Y .

Intersection: X ∩ Y = all elements in both X and Y .

Difference: X \ Y or X − Y = all elements in X which are not in Y .

A special operation of the form Relation→ Relation:

Attribute renaming: Change the names of some attributes of a relation.
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Projection

• The projection operation takes a “vertical” slice of a relation by dropping
some columns while retaining others.

• The projection operator is represented by the lowercase Greek letter π,
with the subscript identifying the columns to be retained.

π{A1,A2,...,Ak}(R)

• The semantics of this expression are exactly those of the following SQL
query.

SELECT DISTINCT A1,A2, . . . ,Ak

FROM R;

• This is a formal operation on sets; duplicates are not part of the model.

• Often, the set brackets are dropped in the subscript.

πA1,A2,...,Ak
(R)

• If the attribute names are single letters, even the commas are sometimes
dropped.

πA1A2...Ak
(R)
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Selection

• The selection operation takes a “horizontal” slice of a relation by
dropping some rows while retaining others.

• The selection operator is represented by the lowercase Greek letter σ,
with the subscript containing an expression which identifies the rows to
be retained.

σϕ(R)

• The semantics of this expression are exactly those of the following SQL
query.

SELECT DISTINCT *

FROM R
WHERE ϕ;

• The expression ϕ is often written in a more formal, logical style than that
used by SQL.

Example:
σ((DNo=5)∧(Salary≥30000))(R)
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Combining Expressions in the Relational Algebra

• The operations in the relational algebra themselves produce relations as
results.

• Therefore, they may be composed.

Example: πA1,A2,...,Ak
(σϕ(R)) has the same meaning as

SELECT DISTINCT A1,A2, . . . ,Ak

FROM R
WHERE ϕ;

• Typing rules must be observed, since it is the composition of two distinct
operations.

Example: While
πLName,SSN(σSalary≥30000(Employee))

makes perfect sense,

σSalary≥30000(πLName,SSN(Employee))

does not.
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Assignment Programs in the Relational Algebra

• Instead of composing operations in functional notation, queries in the
relational algebra may be expressed as a sequence of assignment
statements.

Example: The functional composition

πLName,SSN(σSalary≥30000(Employee))

may also be expressed as the program of assignments

X1 ←−σSalary≥30000(Employee)

X2 ←−πLName,SSN(X1)

with X2 as the final result.

• It is often easier to read and follow such sequence of assignments than to
read and follow a complex functional composition.
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Join

• The join is a binary operation represented by the “bowtie” symbol 1.

• It is basically the inner join of SQL.

• There are, however, a number of variants depending upon the subscript
(or lack thereof).

• The expression
R1 1ϕ R2

has the semantics of the SQL expression

SELECT *

FROM R_1 JOIN R_2 ON (ϕ);

provided ϕ is represented in the correct way.

Example: Employee 1(DNo=DNumber) Department
has the meaning of

SELECT *

FROM Employee JOIN Department ON (DNo=DNumber );
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Further Join Conventions

• Multiple conditions may be shown in various ways:

Employee 1(DNo=DNumber)∧(Super SSN=Mgr SSN) Department

Employee 1{(DNo=DNumber),(Super SSN=Mgr SSN)} Department

Employee 1(DNo=DNumber),(Super SSN=Mgr SSN) Department

• These all have the meaning of
SELECT *

FROM Employee JOIN Department

ON ((DNo=DNumber) AND (Super_SSN=Mgr_SSN ));

• Other logical connectives:

Employee 1(DNo=DNumber)∨(Super SSN=Mgr SSN)) Department

has the meaning of
SELECT *

FROM Employee JOIN Department

ON ((DNo=DNumber) OR (Super_SSN=Mgr_SSN ));

but is not a construction which occurs often in practice.
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Natural and Cross Joins

• The natural join is indicated by the absence of any subscripts on 1.
�

The textbook uses the symbol ∗ for natural join, although this notation is
rather dated (and was used to denote inner join in early literature).

• Thus, the following two expressions are equivalent.

Department 1 Dept Locations

Department ∗ Dept Locations

with the same meaning as
SELECT *

FROM Department NATURAL JOIN Dept_Locations;

• Note that 1∅ is the cross join, with no matches. (∅ = {} = empty set.)

• Thus, Department 1∅ Dept Locations has the meaning of
SELECT *

FROM Department JOIN Dept_Locations ON (TRUE);

• This cross join (or Cartesian product) is also denoted
Department× Dept Locations.
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Theta Join

• Theta joins may be specified in the relational algebra in the obvious way.

Query: Find those employees who have an older dependent.

Employee 1(SSN=ESSN)∧(Employee.BDate>Dependent.BDate) Dependent

is equivalent to:

SELECT DISTINCT LName , FName , MInit , SSN

FROM Employee JOIN Dependent

ON ((SSN=ESSN)

AND (Employee.BDate > Dependent.BDate ));

• which is equivalent to:

SELECT DISTINCT LName , FName , MInit , SSN

FROM Employee JOIN Dependent ON (SSN=ESSN)

WHERE (Employee.BDate > Dependent.BDate);
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Renaming

• Recall that it is sometimes necessary to have multiple copies of the same
relation.

Query: Find the name of the supervisor of each employee.

SELECT E.LName , E.FName , E.MInit , S.LName , S.FName , S.MInit

FROM Employee AS E JOIN Employee AS S

ON (E.Super_SSN=S.SSN);

• In the relational algebra, there is a rename operation for this.

• There are two main formats:

• ρR′(R) returns a copy of R named R ′, with the same attribute
names.

• ρR′(A′
1,A

′
2,...,A

′
k )

(R) returns a copy of R named R ′, with the the
attributes renamed to A′1,A

′
2, . . . ,A

′
k .

• Name qualifiers are used as in SQL.

• However, the original relation does not require a qualifier.
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Renaming Examples

Query: Find the name of the supervisor of each employee.

• The above query as a sequence of steps in the relational algebra, with X3

the answer, using each of the renaming conventions:

X1 ←−ρE(Employee)

X2 ←−ρS(Employee)

X3 ←−X1 1(E.Super SSN=S.SSN) X2

X4 ←−πE.LName,E.FName,E.MInit,S.LName,S.FName,S.MInit(X3)

X1 ←−ρS(FName′,MInit′.LName′,SSN′,BDate′,Address′,Sex′,Salary′,Super SSN′,DNo′)(Employee)

X2 ←−Employee 1(Super SSN=SSN′) X1

X3 ←−πLName,FName,MInit,LName′,FName′,MInit′(X2)
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Another Renaming Example

Query: Find the Name and SSN of those employees who work on exactly one
project.

• The above query as a sequence of steps in the relational algebra, with X7

the answer:

X1 ←−ρW(Works On) -- Copy of Works On

X2 ←−Works On 1(PNo6=W.PNo)∧(ESSN=W .ESSN) X1

X3 ←−ρXa(SSN)(πESSN(X2)) -- Employees who work on > 1 projects

X4 ←−πSSN(Employee) \ ρXb(SSN)(πESSN(Works On)) -- Employees who work on < 1 projects

X5 ←−πSSN(Employee) \ (X3 ∪ X4) -- Employees who work on = 1 project

X6 ←−X5 1 Employee

X7 ←−πLName,FName,MInit,SSN(X6) -- Add the names
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Set Operations

• The following set operations are considered part of the relational algebra:

Union: X ∪ Y = all elements in either X or Y .

Intersection: X ∩ Y = all elements in both X and Y .

Difference: X \ Y or X − Y = all elements in X which are not in Y .

• They may only be applied when the elements in each set are of the same
type.

• If they are tuples, they have the same number of columns.

• The attributes for matching columns must be of the same type.
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Recall Division in SQL

• The division operation has already been seen in the following SQL
example:

Query: Find all employees who work on every project which Alicia Zeyala
(999887777) also works on. Exclude Alicia herself.

Recall the strategy: Find all employees E for which there is no project P
which Alicia works on but E does not work on.

SELECT DISTINCT LName , FName , MInit , SSN

FROM Employee JOIN Works_On ON (SSN=ESSN)

WHERE NOT EXISTS (SELECT PNo

FROM Works_On

WHERE (ESSN=’999887777 ’)

EXCEPT (SELECT PNo

FROM Works_On

WHERE (SSN=ESSN )))

AND (SSN <>’999887777 ’);

• This operation may be formalized within the relational algebra.
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Formalization of Division via Example

• Consider the schema as shown to the right.
PNo

PList
ESSN PNo

Works On

Query: Find the SSNs of those employees in Works On who work on every
project in PList.

• Here is an assignment program in the relational algebra which provides a
solution:

X1 ←−πESSN(Works On) -- Workers: employees who work on some project

X2 ←−X1 × PList -- Every worker works on every project in PList

X3 ←−X2 \Works On -- The “Does Not Work On” relation

X4 ←−πESSN(X3) -- Workers who do not work on some project in PList

X5 ←−X1 \ X4 -- Employees who work on every project in PList

• As a single expression:

πESSN(Works On) \ (πESSN(πESSN(Works On)× PList) \Works On)
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Formalization of Division

B
S

A B
R

Query: Find the A’s in R which are associated with every B in S .

• Here is an assignment program in the relational algebra which provides a
solution:

X1 ←−πA(R) -- all A’s

X2 ←−X1 1 S -- A× B

X3 ←−X2 \ R -- (A× B) \ R
X4 ←−πA(X3) -- A’s not associated with some B

X5 ←−X1 \ X4 -- A’s associated with every B

• As a single expression:

πA(R) \ (πA(πA(R) 1 S) \ R)

• This division is written R ÷ S .

• This extends easily to R[A], S [B], with sets A, B of attributes satisfying
B ⊆ A.
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Additional Operations of the Relational Algebra

• Many additional operations may be added to the relational algebra to
make it as powerful as SQL, including:

• Aggregation and grouping operators

• Outer join

• Recursive closure operations

• These are relatively straightforward to define, but will not be pursued
further in this course.
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Declarative Query Languages

Procedural: A query language is procedural if it indicates explicitly how to
compute its result.

• The relational algebra is a procedural query language.

Declarative: A query language is declarative if it indicates what to compute
without requiring any indication of how.

• A great advantage of the relational model of data is that it admits a fully
declarative query language.

• This means that the query language may be decoupled completely from
the procedural model of computation.

• This is particularly important for the support of non-technical users.

• For other data models, including object-oriented models, such a
decoupling is difficult, if possible at all.

• The declarative query language for the relational model is called the
relational calculus, and will be examined briefly.
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Propositional Logic

• The relational calculus is based upon first-order mathematical logic,
which in turn is based upon propositional logic.

• Familiarity with propositional logic is assumed, including:

Connectives: ∨, ∧, ¬, ⇒.

• (A⇒ B) is defined to mean ((¬A)∨B).

Well-formed formulas (WFFs): (A∧((¬B)∨C )⇒ (D∨E ))

DeMorgan’s Laws: (¬(A∧B)) = ((¬A)∨(¬B))
(¬(A∨B)) = ((¬A)∧(¬B))
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The Tuple Relational Calculus

• The specific relational calculus presented here is called the tuple
relational calculus.

Tuple variables: The tuple relational calculus works with tuple variables.

• Each tuple variable has a type which is one of the relations in the schema.

• R(t) declares tuple t to be of type R.

Example: Employee(e).

• The value for a specific attribute is retrieved using standard notation.

• t.A retrieves the A-value of tuple variable t.

Example: e.Salary.

• Call an expression such as t.A a tuple-field variable.

• For those familiar with first-order predicate logic, each t.A corresponds
(roughly) to a variable.
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The Tuple Relational Calculus — 2

Quantifiers: Quantifiers are used in expressions in the calculus.

∀: For all.

∃: There exists.

• Queries are of the form

{t1.A1, t2.A2, . . . , tk .Ak | ϕ}

in which:

• Each ti .Ai is a tuple-field variable.

• ϕ is a logical formula in which exactly the elements of
{t1, t2, . . . , tk} are free (not within the scope of any quantifier).

• Rather than present a long formal syntax of well formedness, a number of
examples will be used to illustrate the various constructions and
techniques.
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Examples in the Tuple Relational Calculus
Query: Find the name and SSN of those employees who work on some

project.

{e.LName, e.FName,e.MInit, e.SSN | Employee(e)

∧ (∃w)(Works On(w) ∧ (e.SSN = w .ESSN))}

Query: Find the name and SSN of those employees who work on the
ProductX project.

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ (∃w)(∃p)(Works On(w) ∧ Project(p) ∧ (p.PName = ’ProductX’)

∧ (p.PNumber = w .PNo) ∧ (e.SSN = w .ESSN))}

Query: Find the name and SSN of those employees who work on every
project.

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ (∀p)(Project(p)⇒
(∃w)(Works On(w) ∧ (e.SSN = w .ESSN) ∧ (p.PNumber = w .PNo)))}

• Note how easy and natural division is in the tuple relational calculus!
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Examples in the Tuple Relational Calculus — 2

Query: Find the name and SSN of those employees who work on exactly one
project.

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ (∃w)(Works On(w) ∧ (e.SSN = w .ESSN))

∧ (∀w1)(∀w2)((Works On(w1)∧Works On(w2) ∧ (w1.ESSN = w2.ESSN)

∧ (w1.ESSN = e.SSN))⇒ (w1.PNo = w2.PNo))}

Query: Find the name and SSN of those employees who do not work on any
project.

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ (¬(∃w)(Works On(w) ∧ (e.SSN = w .ESSN)))}
or

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ ((∀w)(Works On(w)⇒ (e.SSN 6= w .ESSN)))}
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Examples in the Tuple Relational Calculus — 3

Query: Find the name and SSN of those employees who work on at least two
distinct projects.

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ (∃w1)(∃w2)((Works On(w1)∧Works On(w2) ∧ (w1.ESSN = w2.ESSN)

∧ (w1.ESSN = e.SSN)) ∧ (w1.PNo 6= w2.PNo))}

Query: Find the name and SSN of those employees who work on exactly two
distinct projects.

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ (∃w1)(∃w2)((Works On(w1)∧Works On(w2) ∧ (w1.ESSN = w2.ESSN)

∧ (w1.ESSN = e.SSN)) ∧ (w1.PNo 6= w2.PNo))

∧ (∀w1)(∀w2)(∀w3)(Works On(w1) ∧ Works On(w2) ∧ Works On(w3)

∧ (w1.ESSN = w2.ESSN)∧(w1.ESSN = w3.ESSN) ∧ (w1.ESSN = e.SSN))

⇒ ((w1.PNo = w2.PNo) ∨ (w1.PNo = w3.PNo) ∨ (w2.PNo = w3.PNo))}
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Remarks about Queries in the Relational Calculus
�

(¬∀) and (¬∃) are ambiguous and incorrect, and should never be used.

Question: What does (∀e)(¬∃w) mean?

• Write (∀e)¬(∃w) if that is what is meant.

• Recall that negation “flips” quantifiers.

• ¬((∀x)(ϕ)) is equivalent to (∃x)((¬ϕ)).

• Think about it for simple examples.

• Similarly ¬((∃x)(ϕ)) is equivalent to (∀x)((¬ϕ)).

• Keep in mind that ϕ1 ⇒ ϕ2 is defined to mean (¬ϕ1)∨ϕ2.

• The value of a variable must always be defined in one of two ways.

• By nature of lying within the scope of a quantifier

• (∀e)(∃w)(e and w are bound here.).

• By nature of being in the argument list of a query.

• e and w arguments in
{e.A,w .B | Employee(e)∧Works On(w)∧〈some formula〉}.

• The type of each variable in the argument list must be defined in the
formula of the query.
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The Expressive Power of the Algebra and Calculus

• A major, nontrivial result is the following:

Theorem: The relational algebra and the tuple relational calculus have the
same expressive power. 2

• This means that there is no loss of expressive power in using an entirely
declarative language for querying relational databases.

• There has been substantial debate, with supporting research for both
sides, for the relative merits of declarative query languages versus
procedural query languages.

• In any case, SQL is blend of the two, with choices made for historical
rather than scientific reasons.

• Still, it is very useful to be aware of the distinction between these two
flavors of query expression.
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Safe Queries

Theorem: The relational algebra and the tuple relational calculus have the
same expressive power. 2
• There is one restriction which must be imposed for this result to hold:

the queries must be safe.

• Roughly speaking, a query is safe it can only return answers whose
attribute values occur in the database being queried.

Example of an unsafe query: Give the set of all numbers which are not the
salary of some employee.

• A query in the relational algebra is always safe.

• A query in the tuple relational calculus is guaranteed to be safe if every
tuple variable in the argument list is bound to a type.

• This is guaranteed in the formalism which has been developed here.

• Unsafe queries can arise in an alternative called the domain relational
calculus, which is essentially standard first-order logic.

• The domain calculus will not be considered here.
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