
The Relational Algebra and Relational Calculus
5DV119 — Introduction to Database Management

Ume̊a University
Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

The Relational Algebra and Relational Calculus 20150128 Slide 1 of 30



The Roots of SQL

• It can scarcely be said that SQL has a clean and simple design.

• Rather, SQL is based upon the blending of many ideas, and has evolved
over a long period of time.

• Nevertheless, SQL has its roots in two ideal query languages.

Relational Algebra: A procedural language grounded in basic operations
on relations.

• Widely used in algorithms for query optimization.

Relational Calculus: A declarative language grounded in first-order
predicate logic.

• To understand better the capabilities and limitations of SQL, as well as
for other reasons, it is therefore useful to study these two languages.

• They are part of almost all basic courses on database management given
by faculties of science and technology at the university level.

The Relational Algebra and Relational Calculus 20150128 Slide 2 of 30



Overview of the Relational Algebra

• The relational algebra is a procedural query language on relations.

• Its basic operations have one of the following forms:

Relation −→ Relation

Relation× Relation −→ Relation

• It therefore provides a basic computational model of how queries in SQL
may be evaluated by a DBMS.

• It is often used in the internal representation of queries for the query
optimizer in real relational DBMSs.

• A basic knowledge of the relational algebra can thus be very helpful in
understanding why certain query operations are very expensive (in terms
of time and computational resources) relative to others.

The Relational Algebra and Relational Calculus 20150128 Slide 3 of 30



Overview of the Operations of the Relational Algebra

• The relational algebra is defined in terms of three kinds of operations on
relations:

Operations specific to relations:

Projection: Relation→ Relation: Trim some columns from a relation.

Selection: Relation→ Relation: Trim some rows from a relation.

Join: Relation× Relation→ Relation:
Combine two relations by matching values.

The three fundamental set-theoretic operations:
all Relation× Relation→ Relation

Union: X ∪ Y = all elements in either X or Y .

Intersection: X ∩ Y = all elements in both X and Y .

Difference: X \ Y or X − Y = all elements in X which are not in Y .

A special operation of the form Relation→ Relation:

Attribute renaming: Change the names of some attributes of a relation.

The Relational Algebra and Relational Calculus 20150128 Slide 4 of 30



Projection

• The projection operation takes a “vertical” slice of a relation by dropping
some columns while retaining others.

• The projection operator is represented by the lowercase Greek letter π,
with the subscript identifying the columns to be retained.

π{A1,A2,...,Ak}(R)

• The semantics of this expression are exactly those of the following SQL
query.

SELECT DISTINCT A1,A2, . . . ,Ak

FROM R;

• This is a formal operation on sets; duplicates are not part of the model.

• Often, the set brackets are dropped in the subscript.

πA1,A2,...,Ak
(R)

• If the attribute names are single letters, even the commas are sometimes
dropped.

πA1A2...Ak
(R)

The Relational Algebra and Relational Calculus 20150128 Slide 5 of 30



Selection

• The selection operation takes a “horizontal” slice of a relation by
dropping some rows while retaining others.

• The selection operator is represented by the lowercase Greek letter σ,
with the subscript containing an expression which identifies the rows to
be retained.

σϕ(R)

• The semantics of this expression are exactly those of the following SQL
query.

SELECT DISTINCT *

FROM R
WHERE ϕ;

• The expression ϕ is often written in a more formal, logical style than that
used by SQL.

Example:
σ((DNo=5)∧(Salary≥30000))(R)

The Relational Algebra and Relational Calculus 20150128 Slide 6 of 30



Combining Expressions in the Relational Algebra

• The operations in the relational algebra themselves produce relations as
results.

• Therefore, they may be composed.

Example: πA1,A2,...,Ak
(σϕ(R)) has the same meaning as

SELECT DISTINCT A1,A2, . . . ,Ak

FROM R
WHERE ϕ;

• Typing rules must be observed, since it is the composition of two distinct
operations.

Example: While
πLName,SSN(σSalary≥30000(Employee))

makes perfect sense,

σSalary≥30000(πLName,SSN(Employee))

does not.
The Relational Algebra and Relational Calculus 20150128 Slide 7 of 30



Assignment Programs in the Relational Algebra

• Instead of composing operations in functional notation, queries in the
relational algebra may be expressed as a sequence of assignment
statements.

Example: The functional composition

πLName,SSN(σSalary≥30000(Employee))

may also be expressed as the program of assignments

X1 ←−σSalary≥30000(Employee)

X2 ←−πLName,SSN(X1)

with X2 as the final result.

• It is often easier to read and follow such sequence of assignments than to
read and follow a complex functional composition.

The Relational Algebra and Relational Calculus 20150128 Slide 8 of 30



Join

• The join is a binary operation represented by the “bowtie” symbol 1.

• It is basically the inner join of SQL.

• There are, however, a number of variants depending upon the subscript
(or lack thereof).

• The expression
R1 1ϕ R2

has the semantics of the SQL expression

SELECT *

FROM R_1 JOIN R_2 ON (ϕ);

provided ϕ is represented in the correct way.

Example: Employee 1(DNo=DNumber) Department
has the meaning of

SELECT *

FROM Employee JOIN Department ON (DNo=DNumber );

The Relational Algebra and Relational Calculus 20150128 Slide 9 of 30



Further Join Conventions

• Multiple conditions may be shown in various ways:

Employee 1(DNo=DNumber)∧(Super SSN=Mgr SSN) Department

Employee 1{(DNo=DNumber),(Super SSN=Mgr SSN)} Department

Employee 1(DNo=DNumber),(Super SSN=Mgr SSN) Department

• These all have the meaning of
SELECT *

FROM Employee JOIN Department

ON ((DNo=DNumber) AND (Super_SSN=Mgr_SSN ));

• Other logical connectives:

Employee 1(DNo=DNumber)∨(Super SSN=Mgr SSN)) Department

has the meaning of
SELECT *

FROM Employee JOIN Department

ON ((DNo=DNumber) OR (Super_SSN=Mgr_SSN ));

but is not a construction which occurs often in practice.

The Relational Algebra and Relational Calculus 20150128 Slide 10 of 30



Natural and Cross Joins

• The natural join is indicated by the absence of any subscripts on 1.
�

The textbook uses the symbol ∗ for natural join, although this notation is
rather dated (and was used to denote inner join in early literature).

• Thus, the following two expressions are equivalent.

Department 1 Dept Locations

Department ∗ Dept Locations

with the same meaning as
SELECT *

FROM Department NATURAL JOIN Dept_Locations;

• Note that 1∅ is the cross join, with no matches. (∅ = {} = empty set.)

• Thus, Department 1∅ Dept Locations has the meaning of
SELECT *

FROM Department JOIN Dept_Locations ON (TRUE);

• This cross join (or Cartesian product) is also denoted
Department× Dept Locations.

The Relational Algebra and Relational Calculus 20150128 Slide 11 of 30



Theta Join

• Theta joins may be specified in the relational algebra in the obvious way.

Query: Find those employees who have an older dependent.

Employee 1(SSN=ESSN)∧(Employee.BDate>Dependent.BDate) Dependent

is equivalent to:

SELECT DISTINCT LName , FName , MInit , SSN

FROM Employee JOIN Dependent

ON ((SSN=ESSN)

AND (Employee.BDate > Dependent.BDate ));

• which is equivalent to:

SELECT DISTINCT LName , FName , MInit , SSN

FROM Employee JOIN Dependent ON (SSN=ESSN)

WHERE (Employee.BDate > Dependent.BDate);

The Relational Algebra and Relational Calculus 20150128 Slide 12 of 30



Renaming

• Recall that it is sometimes necessary to have multiple copies of the same
relation.

Query: Find the name of the supervisor of each employee.

SELECT E.LName , E.FName , E.MInit , S.LName , S.FName , S.MInit

FROM Employee AS E JOIN Employee AS S

ON (E.Super_SSN=S.SSN);

• In the relational algebra, there is a rename operation for this.

• There are two main formats:

• ρR′(R) returns a copy of R named R ′, with the same attribute
names.

• ρR′(A′
1,A

′
2,...,A

′
k )

(R) returns a copy of R named R ′, with the the
attributes renamed to A′1,A

′
2, . . . ,A

′
k .

• Name qualifiers are used as in SQL.

• However, the original relation does not require a qualifier.

The Relational Algebra and Relational Calculus 20150128 Slide 13 of 30



Renaming Examples

Query: Find the name of the supervisor of each employee.

• The above query as a sequence of steps in the relational algebra, with X3

the answer, using each of the renaming conventions:

X1 ←−ρE(Employee)

X2 ←−ρS(Employee)

X3 ←−X1 1(E.Super SSN=S.SSN) X2

X4 ←−πE.LName,E.FName,E.MInit,S.LName,S.FName,S.MInit(X3)

X1 ←−ρS(FName′,MInit′.LName′,SSN′,BDate′,Address′,Sex′,Salary′,Super SSN′,DNo′)(Employee)

X2 ←−Employee 1(Super SSN=SSN′) X1

X3 ←−πLName,FName,MInit,LName′,FName′,MInit′(X2)

The Relational Algebra and Relational Calculus 20150128 Slide 14 of 30



Another Renaming Example

Query: Find the Name and SSN of those employees who work on exactly one
project.

• The above query as a sequence of steps in the relational algebra, with X7

the answer:

X1 ←−ρW(Works On) -- Copy of Works On

X2 ←−Works On 1(PNo6=W.PNo)∧(ESSN=W .ESSN) X1

X3 ←−ρXa(SSN)(πESSN(X2)) -- Employees who work on > 1 projects

X4 ←−πSSN(Employee) \ ρXb(SSN)(πESSN(Works On)) -- Employees who work on < 1 projects

X5 ←−πSSN(Employee) \ (X3 ∪ X4) -- Employees who work on = 1 project

X6 ←−X5 1 Employee

X7 ←−πLName,FName,MInit,SSN(X6) -- Add the names

The Relational Algebra and Relational Calculus 20150128 Slide 15 of 30



Set Operations

• The following set operations are considered part of the relational algebra:

Union: X ∪ Y = all elements in either X or Y .

Intersection: X ∩ Y = all elements in both X and Y .

Difference: X \ Y or X − Y = all elements in X which are not in Y .

• They may only be applied when the elements in each set are of the same
type.

• If they are tuples, they have the same number of columns.

• The attributes for matching columns must be of the same type.

The Relational Algebra and Relational Calculus 20150128 Slide 16 of 30



Recall Division in SQL

• The division operation has already been seen in the following SQL
example:

Query: Find all employees who work on every project which Alicia Zeyala
(999887777) also works on. Exclude Alicia herself.

Recall the strategy: Find all employees E for which there is no project P
which Alicia works on but E does not work on.

SELECT DISTINCT LName , FName , MInit , SSN

FROM Employee JOIN Works_On ON (SSN=ESSN)

WHERE NOT EXISTS (SELECT PNo

FROM Works_On

WHERE (ESSN=’999887777 ’)

EXCEPT (SELECT PNo

FROM Works_On

WHERE (SSN=ESSN )))

AND (SSN <>’999887777 ’);

• This operation may be formalized within the relational algebra.

The Relational Algebra and Relational Calculus 20150128 Slide 17 of 30



Formalization of Division via Example

• Consider the schema as shown to the right.
PNo

PList
ESSN PNo

Works On

Query: Find the SSNs of those employees in Works On who work on every
project in PList.

• Here is an assignment program in the relational algebra which provides a
solution:

X1 ←−πESSN(Works On) -- Workers: employees who work on some project

X2 ←−X1 × PList -- Every worker works on every project in PList

X3 ←−X2 \Works On -- The “Does Not Work On” relation

X4 ←−πESSN(X3) -- Workers who do not work on some project in PList

X5 ←−X1 \ X4 -- Employees who work on every project in PList

• As a single expression:

πESSN(Works On) \ (πESSN(πESSN(Works On)× PList) \Works On)

The Relational Algebra and Relational Calculus 20150128 Slide 18 of 30



Formalization of Division

B
S

A B
R

Query: Find the A’s in R which are associated with every B in S .

• Here is an assignment program in the relational algebra which provides a
solution:

X1 ←−πA(R) -- all A’s

X2 ←−X1 1 S -- A× B

X3 ←−X2 \ R -- (A× B) \ R
X4 ←−πA(X3) -- A’s not associated with some B

X5 ←−X1 \ X4 -- A’s associated with every B

• As a single expression:

πA(R) \ (πA(πA(R) 1 S) \ R)

• This division is written R ÷ S .

• This extends easily to R[A], S [B], with sets A, B of attributes satisfying
B ⊆ A.

The Relational Algebra and Relational Calculus 20150128 Slide 19 of 30



Additional Operations of the Relational Algebra

• Many additional operations may be added to the relational algebra to
make it as powerful as SQL, including:

• Aggregation and grouping operators

• Outer join

• Recursive closure operations

• These are relatively straightforward to define, but will not be pursued
further in this course.

The Relational Algebra and Relational Calculus 20150128 Slide 20 of 30



Declarative Query Languages

Procedural: A query language is procedural if it indicates explicitly how to
compute its result.

• The relational algebra is a procedural query language.

Declarative: A query language is declarative if it indicates what to compute
without requiring any indication of how.

• A great advantage of the relational model of data is that it admits a fully
declarative query language.

• This means that the query language may be decoupled completely from
the procedural model of computation.

• This is particularly important for the support of non-technical users.

• For other data models, including object-oriented models, such a
decoupling is difficult, if possible at all.

• The declarative query language for the relational model is called the
relational calculus, and will be examined briefly.

The Relational Algebra and Relational Calculus 20150128 Slide 21 of 30



Propositional Logic

• The relational calculus is based upon first-order mathematical logic,
which in turn is based upon propositional logic.

• Familiarity with propositional logic is assumed, including:

Connectives: ∨, ∧, ¬, ⇒.

• (A⇒ B) is defined to mean ((¬A)∨B).

Well-formed formulas (WFFs): (A∧((¬B)∨C )⇒ (D∨E ))

DeMorgan’s Laws: (¬(A∧B)) = ((¬A)∨(¬B))
(¬(A∨B)) = ((¬A)∧(¬B))

The Relational Algebra and Relational Calculus 20150128 Slide 22 of 30



The Tuple Relational Calculus

• The specific relational calculus presented here is called the tuple
relational calculus.

Tuple variables: The tuple relational calculus works with tuple variables.

• Each tuple variable has a type which is one of the relations in the schema.

• R(t) declares tuple t to be of type R.

Example: Employee(e).

• The value for a specific attribute is retrieved using standard notation.

• t.A retrieves the A-value of tuple variable t.

Example: e.Salary.

• Call an expression such as t.A a tuple-field variable.

• For those familiar with first-order predicate logic, each t.A corresponds
(roughly) to a variable.

The Relational Algebra and Relational Calculus 20150128 Slide 23 of 30



The Tuple Relational Calculus — 2

Quantifiers: Quantifiers are used in expressions in the calculus.

∀: For all.

∃: There exists.

• Queries are of the form

{t1.A1, t2.A2, . . . , tk .Ak | ϕ}

in which:

• Each ti .Ai is a tuple-field variable.

• ϕ is a logical formula in which exactly the elements of
{t1, t2, . . . , tk} are free (not within the scope of any quantifier).

• Rather than present a long formal syntax of well formedness, a number of
examples will be used to illustrate the various constructions and
techniques.

The Relational Algebra and Relational Calculus 20150128 Slide 24 of 30



Examples in the Tuple Relational Calculus
Query: Find the name and SSN of those employees who work on some

project.

{e.LName, e.FName,e.MInit, e.SSN | Employee(e)

∧ (∃w)(Works On(w) ∧ (e.SSN = w .ESSN))}

Query: Find the name and SSN of those employees who work on the
ProductX project.

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ (∃w)(∃p)(Works On(w) ∧ Project(p) ∧ (p.PName = ’ProductX’)

∧ (p.PNumber = w .PNo) ∧ (e.SSN = w .ESSN))}

Query: Find the name and SSN of those employees who work on every
project.

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ (∀p)(Project(p)⇒
(∃w)(Works On(w) ∧ (e.SSN = w .ESSN) ∧ (p.PNumber = w .PNo)))}

• Note how easy and natural division is in the tuple relational calculus!
The Relational Algebra and Relational Calculus 20150128 Slide 25 of 30



Examples in the Tuple Relational Calculus — 2

Query: Find the name and SSN of those employees who work on exactly one
project.

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ (∃w)(Works On(w) ∧ (e.SSN = w .ESSN))

∧ (∀w1)(∀w2)((Works On(w1)∧Works On(w2) ∧ (w1.ESSN = w2.ESSN)

∧ (w1.ESSN = e.SSN))⇒ (w1.PNo = w2.PNo))}

Query: Find the name and SSN of those employees who do not work on any
project.

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ (¬(∃w)(Works On(w) ∧ (e.SSN = w .ESSN)))}
or

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ ((∀w)(Works On(w)⇒ (e.SSN 6= w .ESSN)))}

The Relational Algebra and Relational Calculus 20150128 Slide 26 of 30



Examples in the Tuple Relational Calculus — 3

Query: Find the name and SSN of those employees who work on at least two
distinct projects.

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ (∃w1)(∃w2)((Works On(w1)∧Works On(w2) ∧ (w1.ESSN = w2.ESSN)

∧ (w1.ESSN = e.SSN)) ∧ (w1.PNo 6= w2.PNo))}

Query: Find the name and SSN of those employees who work on exactly two
distinct projects.

{e.Lname, e.FName, e.MInit, e.SSN | Employee(e)

∧ (∃w1)(∃w2)((Works On(w1)∧Works On(w2) ∧ (w1.ESSN = w2.ESSN)

∧ (w1.ESSN = e.SSN)) ∧ (w1.PNo 6= w2.PNo))

∧ (∀w1)(∀w2)(∀w3)(Works On(w1) ∧ Works On(w2) ∧ Works On(w3)

∧ (w1.ESSN = w2.ESSN)∧(w1.ESSN = w3.ESSN) ∧ (w1.ESSN = e.SSN))

⇒ ((w1.PNo = w2.PNo) ∨ (w1.PNo = w3.PNo) ∨ (w2.PNo = w3.PNo))}

The Relational Algebra and Relational Calculus 20150128 Slide 27 of 30



Remarks about Queries in the Relational Calculus
�

(¬∀) and (¬∃) are ambiguous and incorrect, and should never be used.

Question: What does (∀e)(¬∃w) mean?

• Write (∀e)¬(∃w) if that is what is meant.

• Recall that negation “flips” quantifiers.

• ¬((∀x)(ϕ)) is equivalent to (∃x)((¬ϕ)).

• Think about it for simple examples.

• Similarly ¬((∃x)(ϕ)) is equivalent to (∀x)((¬ϕ)).

• Keep in mind that ϕ1 ⇒ ϕ2 is defined to mean (¬ϕ1)∨ϕ2.

• The value of a variable must always be defined in one of two ways.

• By nature of lying within the scope of a quantifier

• (∀e)(∃w)(e and w are bound here.).

• By nature of being in the argument list of a query.

• e and w arguments in
{e.A,w .B | Employee(e)∧Works On(w)∧〈some formula〉}.

• The type of each variable in the argument list must be defined in the
formula of the query.

The Relational Algebra and Relational Calculus 20150128 Slide 28 of 30



The Expressive Power of the Algebra and Calculus

• A major, nontrivial result is the following:

Theorem: The relational algebra and the tuple relational calculus have the
same expressive power. 2

• This means that there is no loss of expressive power in using an entirely
declarative language for querying relational databases.

• There has been substantial debate, with supporting research for both
sides, for the relative merits of declarative query languages versus
procedural query languages.

• In any case, SQL is blend of the two, with choices made for historical
rather than scientific reasons.

• Still, it is very useful to be aware of the distinction between these two
flavors of query expression.

The Relational Algebra and Relational Calculus 20150128 Slide 29 of 30



Safe Queries

Theorem: The relational algebra and the tuple relational calculus have the
same expressive power. 2
• There is one restriction which must be imposed for this result to hold:

the queries must be safe.

• Roughly speaking, a query is safe it can only return answers whose
attribute values occur in the database being queried.

Example of an unsafe query: Give the set of all numbers which are not the
salary of some employee.

• A query in the relational algebra is always safe.

• A query in the tuple relational calculus is guaranteed to be safe if every
tuple variable in the argument list is bound to a type.

• This is guaranteed in the formalism which has been developed here.

• Unsafe queries can arise in an alternative called the domain relational
calculus, which is essentially standard first-order logic.

• The domain calculus will not be considered here.

The Relational Algebra and Relational Calculus 20150128 Slide 30 of 30


