
SQL — Part 2
5DV119 — Introduction to Database Management

Ume̊a University
Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

SQL — Part 2 20150128 Slide 1 of 28



Embedded Subqueries

• It is often useful, if not essential, to be able to use subqueries in the
WHERE clause of a query.

Query: Find all employees who work in the same department as Alicia Zeyala
(999887777).

• When a subquery returns a set consisting of just one tuple, the result
may be regarded as a tuple.

SELECT LName , FName , MInit , SSN

FROM Employee

WHERE DNo = (SELECT DNo

FROM Employee

WHERE SSN=’999887777 ’);

• Note the lexical scoping of variables!

• An alternative using IN (set membership ∈):
SELECT LName , FName , MInit , SSN

FROM Employee

WHERE DNo IN (SELECT DNo

FROM Employee

WHERE SSN=’999887777 ’);
SQL — Part 2 20150128 Slide 2 of 28



Queries with Existential Quantification

Query: Find all employees who work on some project which Alicia Zeyala
(999887777) also works on.

SELECT LName , FName , MInit , SSN , PNo

FROM Employee JOIN Works_On ON (SSN=ESSN)

WHERE PNo IN (SELECT PNo

FROM Works_On

WHERE ESSN=’999887777 ’);

• Exclude Alicia from the list.

SELECT LName , FName , MInit , SSN , PNo

FROM Employee JOIN Works_On ON (SSN=ESSN)

WHERE PNo IN (SELECT PNo

FROM Works_On

WHERE ESSN=’999887777 ’)

AND SSN <>’999887777 ’;

SQL — Part 2 20150128 Slide 3 of 28



Realizing INTERSECT Using Subqueries

• As already noted, MySQL does not support the INTERSECT operation.

Query: Find those employees who work on both the ProductX and
ProductY projects.

SELECT LName , FName , MInit , SSN

FROM Employee JOIN Works_On ON (SSN=ESSN) JOIN Project ON (PNo=PNumber)

WHERE PName=’ProductX ’

INTERSECT

SELECT LName , FName , MInit , SSN

FROM Employee JOIN Works_On ON (SSN=ESSN) JOIN Project ON (PNo=PNumber)

WHERE (PName=’ProductY ’);

• Fortunately, this operation can be realized using subqueries.

SELECT LName , FName , MInit , SSN

FROM Employee JOIN Works_On ON (SSN=ESSN) JOIN Project ON (PNo=PNumber)

WHERE (PName=’ProductX ’) AND

(SSN IN

(SELECT SSN

FROM Employee JOIN Works_On ON (SSN=ESSN)

JOIN Project ON (PNo=PNumber)

WHERE (PName=’ProductY ’)));

• Only the key SSN need be used in the subquery.
SQL — Part 2 20150128 Slide 4 of 28



Realizing EXCEPT Using Subqueries

• As already noted, MySQL does not support the EXCEPT operation.

Query: Find those employees who work on the ProductY project but not the
ProductX project.

SELECT LName , FName , MInit , SSN

FROM Employee JOIN Works_On ON (SSN=ESSN) JOIN Project ON (PNo=PNumber)

WHERE PName=’ProductY ’

EXCEPT

SELECT LName , FName , MInit , SSN

FROM Employee JOIN Works_On ON (SSN=ESSN) JOIN Project ON (PNo=PNumber)

WHERE (PName=’ProductX ’);

• Fortunately, this operation can be realized using subqueries.

SELECT LName , FName , MInit , SSN

FROM Employee JOIN Works_On ON (SSN=ESSN) JOIN Project ON (PNo=PNumber)

WHERE (PName=’ProductY ’) AND

(NOT (SSN IN

(SELECT SSN

FROM Employee JOIN Works_On ON (SSN=ESSN)

JOIN Project ON (PNo=PNumber)

WHERE (PName=’ProductX ’))));

• Only the key SSN need be used in the subquery.
SQL — Part 2 20150128 Slide 5 of 28



Queries with Universal Quantification

Query: Find all employees who work on every project which Alicia Zeyala
(999887777) also works on. Exclude Alicia herself.

• At first sight, this appears to be impossible with SQL.

• However, it may be rephrased as a double negation:

• Find all employees E for which there is no project P which Alicia
works on but E does not work on.

• This operation is formally known as division and will be studied more
carefully in connection with the relational algebra.

SELECT DISTINCT LName , FName , MInit , SSN

FROM Employee JOIN Works_On ON (SSN=ESSN)

WHERE NOT EXISTS (SELECT PNo

FROM Works_On

WHERE (ESSN=’999887777 ’)

EXCEPT (SELECT PNo

FROM Works_On

WHERE (SSN=ESSN )))

AND (SSN <>’999887777 ’);

SQL — Part 2 20150128 Slide 6 of 28



An Alternative Construction for Division

• As already noted, MySQL does not support the EXCEPT operation.

• Division may also be realized using NOT..IN for negation.

Query: Find all employees who work on every project which Alicia Zeyala
(999887777) also works on. Exclude Alicia herself.

SELECT DISTINCT LName , FName , MInit , SSN

FROM Employee JOIN Works_On ON (SSN=ESSN)

WHERE NOT EXISTS (SELECT PNo

FROM Works_On AS W1

WHERE (W1.ESSN=’999887777 ’)

AND NOT PNo IN

(SELECT PNo

FROM Works_On

WHERE (ESSN=SSN)))

AND SSN <>’999887777 ’;

SQL — Part 2 20150128 Slide 7 of 28



Queries which Count (without Aggregation)

Query: Find all employees who work on at least two distinct projects.

SELECT DISTINCT LName , FName , MInit , SSN

FROM Employee JOIN Works_On AS W1 ON (SSN=W1.ESSN)

JOIN Works_on AS W2 ON (SSN=W2.ESSN)

WHERE (W1.PNo <>W2.PNo);

Query: Find all employees who work on at exactly one project.

SELECT DISTINCT LName , FName , MInit , SSN

FROM Employee

WHERE EXISTS (SELECT *

FROM Works_On

WHERE (SSN=ESSN))

AND

NOT EXISTS

(SELECT *

FROM Works_On AS W1 JOIN Works_on AS W2

ON (W1.ESSN=W2.ESSN)

WHERE (W1.PNo <>W2.PNo) AND (SSN=W1.ESSN ));

Exercise: Find all employees who work on at exactly two projects.

SQL — Part 2 20150128 Slide 8 of 28



ALL and ANY

Query: Find the employee(s) with the highest salary.

SELECT DISTINCT LName , FName , MInit , SSN , Salary

FROM Employee

WHERE Salary >= ALL (SELECT Salary

FROM Employee );

Query: Find the employee(s) with salaries which are not the lowest.

SELECT DISTINCT LName , FName , MInit , SSN , Salary

FROM Employee

WHERE Salary > ANY (SELECT Salary

FROM Employee );

SQL — Part 2 20150128 Slide 9 of 28



Aggregation Operators

Query: For each project find the minimum, maximum, average, and total
hours worked by all employees, as well as the number of such employees.

SELECT PName , MIN(Hours), MAX(Hours),

AVG(Hours), SUM(Hours), COUNT (*)

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName

UNION

SELECT PName , 0, 0, 0, 0, 0

FROM Project as P1

WHERE (NOT EXISTS

(SELECT *

FROM Project JOIN Works_On ON (PNumber=PNo)

WHERE P1.PNumber=PNo));

An important rule: Every attribute which occurs in the SELECT clause and
which is not aggregated must occur in the GROUP BY clause as well.

• Will not work (even though it clearly should):
SELECT PName , PNo , MIN(Hours), MAX(Hours),

AVG(Hours), SUM(Hours), COUNT (*)

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName

UNION

...SQL — Part 2 20150128 Slide 10 of 28



Omission of GROUP BY

• If the GROUP BY clause is omitted, the aggregation is over the entire table.

SELECT MIN(Hours), MAX(Hours),

AVG(Hours), SUM(Hours), COUNT (*)

FROM Project JOIN Works_On ON (PNumber=PNo);

• In this case, there must be no non-aggregated attributes in the SELECT

clause.

• Does not work:

SELECT PNo , MIN(Hours), MAX(Hours),

AVG(Hours), SUM(Hours), COUNT (*)

FROM Project JOIN Works_On ON (PNumber=PNo);

• In the above case, PNo must appear in the GROUP BY clause.

SQL — Part 2 20150128 Slide 11 of 28



The HAVING Clause

Query: For each project with at least three employees working on it, find the
average and total hours worked on it.

• The following does not work:

SELECT PName , AVG(Hours), SUM(Hours)

FROM Project JOIN Works_On ON (PNumber=PNo)

WHERE (Count (*) >= 3)

GROUP BY PName;

• The problem is that the WHERE clause is evaluated before the aggregation.

• The solution is to use a HAVING clause.

SELECT PName , AVG(Hours), SUM(Hours)

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName

HAVING (Count (*) >= 3);

• The HAVING clause must come after the GROUP BY clause.

SQL — Part 2 20150128 Slide 12 of 28



Formats on Output Columns

• In the following, PostgreSQL will express AVG(Hours) with 16 places to
the right of the decimal point (there are “only” five for MySQL):

SELECT PName , MIN(Hours), MAX(Hours),

AVG(Hours), SUM(Hours), COUNT (*)

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName;

• To remedy this, casting may be used:
SELECT PName , MIN(Hours), MAX(Hours),

CAST(AVG(Hours) AS DECIMAL (8,2)),

SUM(Hours), COUNT (*)

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName;

• MySQL will use the entire expression CAST(AVG(Hours) AS

DECIMAL(8,2)) as the column header, but this can be fixed easily:
SELECT PName , MIN(Hours), MAX(Hours),

CAST(AVG(Hours) AS DECIMAL (8 ,2)) AS AVG_Hours ,

SUM(Hours), COUNT (*)

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName;

SQL — Part 2 20150128 Slide 13 of 28



Formats on Output Columns — 2

• To obtain a consistent representation, even constants may be cast:

SELECT PName , MIN(Hours), MAX(Hours),

CAST(AVG(Hours) AS DECIMAL (8 ,2)) AS AVG_Hours ,

SUM(Hours), COUNT (*)

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName

UNION

SELECT PName , 0, 0, CAST(0 AS DECIMAL (8,2)), 0, 0

FROM Project as P1

WHERE (NOT EXISTS

(SELECT *

FROM Project JOIN Works_On ON (PNumber=PNo)

WHERE P1.PNumber=PNo));

• Of course, for really “pretty” and consistent output, all of the aggregated
columns should be cast in this query.

SQL — Part 2 20150128 Slide 14 of 28



Embedded Queries in the HAVING Clause

Query: Find the project(s) with the greatest number of hours.
SELECT P1.PName , SUM(W1.Hours)

FROM Project AS P1 JOIN Works_On AS W1 ON (P1.PNumber=W1.PNo)

GROUP BY P1.PName

HAVING NOT EXISTS (SELECT W2.PNo , SUM(W2.Hours)

FROM Works_On AS W2

GROUP BY W2.PNo

HAVING (SUM(W2.Hours) > SUM(W1.Hours)) );

• It is also possible to do this with an embedded subquery in the FROM

clause.
SELECT S1.PName , S1.SHrs

FROM (SELECT PName , Sum(Hours) AS SHrs

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName ) AS S1

WHERE S1.SHrs >= ALL

(SELECT SHrs

FROM (SELECT PName , Sum(Hours) AS SHrs

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName ) AS Pointless );

• Note the alias Pointless which is required by SQL rules.
SQL — Part 2 20150128 Slide 15 of 28



A Schema for a Grading Database
• Shown below are SQL definitions for two of the relations for a grading

database similar to that used for this course.
CREATE TABLE Student (

Name VARCHAR (40) Not Null ,

Personnr CHAR (11) Not Null , -- YYMMDD -XXXX

Ident VARCHAR (10) Not Null , -- @cs.umu.se user ID

PRIMARY KEY (Ident),

UNIQUE (Personnr) );

CREATE TABLE ObligEx (

Ident VARCHAR (10) Not Null ,

Number INTEGER Not Null , -- exercise number (1 or 2)

Grade INTEGER , -- numerical point score

HandedIn DATE , -- date first submitted

Graded DATE , -- date first graded

Approved DATE , -- date approved satisfactory

Status CHAR (1) , -- S or U

PRIMARY KEY (Ident , Number),

CONSTRAINT obligex_ident_fkey FOREIGN KEY (Ident)

REFERENCES Student(Ident) ON UPDATE CASCADE );

Ident PersonNr Name

Student

Ident Number Grade HandedIn Graded Approved Status

ObligEx

SQL — Part 2 20150128 Slide 16 of 28



Outer Joins

Preliminary goal: Define a query with the form of ObligEx, for Exercise 1
only, with an entry for every student and nulls for missing values.

• The (left) outer join operation delivers the desired structure.

• It is similar to an (inner) join, but it fills in missing matches with nulls.

• It is called left because the left table in the construction is the base; the
right table is padded with nulls.
SELECT S.Ident , E1.Grade , E1.HandedIn , E1.Graded ,

E1.Approved , E1.Status

FROM (SELECT Ident FROM Student) AS S LEFT OUTER JOIN

(SELECT * FROM ObligEx WHERE Number =1) AS E1

ON (S.Ident=E1.Ident );

• A right outer join is defined analogously.

• A full outer join is the combination of a left outer join and a right outer
join.

SQL — Part 2 20150128 Slide 17 of 28



Outer Joins —2

• Now add on the second exercise as well by using a second outer join.

Ident Gr1 DateH1 DateG1 DateA1 St1 Gr2 DateH2 DateG2 DateA2 St2

ObligExAll

SELECT S.Ident , E1.Grade AS Gr1 , E1.HandedIn AS DateH1 ,

E1.Graded AS DateG1 , E1.Approved AS DateA1 ,

E1.Status St1 ,

E2.Grade AS Gr2 , E2.HandedIn AS DateH2 ,

E2.Graded AS DateG2 , E2.Approved AS DateA2 ,

E2.Status AS St2

FROM (SELECT Ident FROM Student) AS S LEFT OUTER JOIN

(SELECT * FROM ObligEx WHERE Number =1) AS E1

ON (S.Ident=E1.Ident) LEFT OUTER JOIN

(SELECT * FROM ObligEx WHERE Number =2) AS E2

ON (S.Ident=E2.Ident );

SQL — Part 2 20150128 Slide 18 of 28



Outer Joins —3

• Recall the query for computing summary information about projects.

SELECT PName , MIN(Hours), MAX(Hours),

AVG(Hours), SUM(Hours), COUNT (*)

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName

UNION

SELECT PName , 0, 0, 0, 0, 0

FROM Project AS P1

WHERE (NOT EXISTS

(SELECT *

FROM Project JOIN Works_On ON (PNumber=PNo)

WHERE P1.PNumber=PNo));

• A query which is almost the same using outer join is much simpler.

SELECT PName , MIN(Hours), MAX(Hours),

AVG(Hours), SUM(Hours), COUNT (*)

FROM Project LEFT OUTER JOIN Works_On ON (PNumber=PNo)

GROUP BY PName;

• The only difference is that the explicit 0 values of the first query are
replaced with NULL.

SQL — Part 2 20150128 Slide 19 of 28



The COALESCE Operator

• Recall the query of the previous slide.

SELECT PName , Min(Hours), Max(Hours),

Avg(Hours), Sum(Hours), Count (*)

FROM Project LEFT OUTER JOIN Works_On ON (PNumber=PNo)

GROUP BY PName;

• The COALESCE operator selects its first non-null argument, and may be
used to put zeros where they belong.

SELECT PName , COALESCE(Min(Hours),0), COALESCE(Max(Hours),0),

COALESCE(Avg(Hours),0), COALESCE(Sum(Hours),0),

COALESCE(Count (*),0)

FROM Project LEFT OUTER JOIN Works_On ON (PNumber=PNo)

GROUP BY PName;

• Coalesced columns may also be cast and renamed:

SELECT PName , COALESCE(Min(Hours),0), COALESCE(Max(Hours),0),

CAST(COALESCE(Avg(Hours ),0) AS DECIMAL (8,2)) AS AVG_Hours ,

COALESCE(Sum(Hours),0), COALESCE(Count (*),0)

FROM Project LEFT OUTER JOIN Works_On ON (PNumber=PNo)

GROUP BY PName;

SQL — Part 2 20150128 Slide 20 of 28



Views

• A view is a virtual table which is constructed using a query.

• It differs from a query in that:

• It persists in time, just as a true table.

• Its state reflects updates to the true tables.

• It has a name and may be used in large part as would any table of
the database.

Basic syntax: CREATE VIEW <name> AS <query>;

CREATE OR REPLACE VIEW <name> AS <query>;

Example: CREATE VIEW Project_Summary_Info AS

SELECT PName , Min(Hours), Max(Hours),

Avg(Hours), Sum(Hours), Count (*)

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName

UNION

SELECT PName , 0, 0, 0, 0, 0

FROM Project as P1

WHERE (NOT EXISTS

(SELECT *

FROM Project JOIN Works_On ON (PNumber=PNo)

WHERE P1.PNumber=PNo));

SQL — Part 2 20150128 Slide 21 of 28



Naming Columns of Views

• Here is how it is done:

CREATE VIEW Project_Summary_Info

(Project_Name , Min_Hours , Max_Hours , Avg_Hours ,

Total_Hours , Num_Empl)

AS

SELECT PName , Min(Hours), Max(Hours),

Avg(Hours), Sum(Hours), Count (*)

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName

UNION

SELECT PName , 0, 0, 0, 0, 0

FROM Project as P1

WHERE (NOT EXISTS

(SELECT *

FROM Project JOIN Works_On ON (PNumber=PNo)

WHERE P1.PNumber=PNo));

SQL — Part 2 20150128 Slide 22 of 28



Views in Queries

• In (read) queries, views may be used just as ordinary declared relations
(tables).

• The following query uses the view definition on the previous slide.
SELECT Project_Name , Total_Hours , DName , Mgr_SSN

FROM Project_Summary_Info NATURAL JOIN Department;

• Here is the view definition from the previous slide, for completeness.
CREATE VIEW Project_Summary_Info

(Project_Name , Min_Hours , Max_Hours , Avg_Hours ,

Total_Hours , Num_Empl)

AS

SELECT PName , Min(Hours), Max(Hours),

Avg(Hours), Sum(Hours), Count (*)

FROM Project JOIN Works_On ON (PNumber=PNo)

GROUP BY PName

UNION

SELECT PName , 0, 0, 0, 0, 0

FROM Project as P1

WHERE (NOT EXISTS

(SELECT *

FROM Project JOIN Works_On ON (PNumber=PNo)

WHERE P1.PNumber=PNo));
SQL — Part 2 20150128 Slide 23 of 28



Updates to Views

• Under limited conditions, updates to views are possible in standard SQL.

• There must be an “obvious” way to reflect the update to the true tables.

• Unfortunately, PostgreSQL does not support updates to views.

• Because the rules are complex in any case, they will not be considered
further in this course.

• If updates to a view are essential, it is often best to realize the view
indirectly, via an application program which interfaces to the database.

SQL — Part 2 20150128 Slide 24 of 28



The Logic of Null Values

• The value of NULL is treated as unknown in truth-valued expressions.

A B (A OR B) (A AND B) (NOT A)

false false false false true
false true true false true
true false true false false
true true true true false

true unknown true unknown false
false unknown unknown false true
unknown true true unknown unknown
unknown false unknown false unknown
unknown unknown unknown unknown unknown

• Conditions of the form (A=B) also evaluate to unknown when at least
one of the arguments evaluates to NULL.

• Expressions which evaluate to unknown are not considered to be true for
the purpose of a query in SQL.

• Recall the queries on the next slide.
SQL — Part 2 20150128 Slide 25 of 28



Illustration of Unknown Values in Logical Expressions

Query: Find the names and departments of those employees whose
supervisor is the same as the manager of the department in which the
employee works.

SELECT LName , FName , MInit , DName

FROM Employee JOIN Department

ON ((DNo=DNumber) AND (Super_SSN=Mgr_SSN ));

Query: Find the names and departments of those employees whose
supervisor is the not the same as the manager of the department in which
the employee works.

SELECT LName , FName , MInit , DName

FROM Employee JOIN Department

ON ((DNo=DNumber) AND (NOT (Super_SSN=Mgr_SSN )));

Observation: An employee with NULL as Super SSN is in the result of neither
query.

• The conditions (Super SSN=Mgr SSN) and
(NOT (Super SSN=Mgr SSN)) evaluate to unknown.

SQL — Part 2 20150128 Slide 26 of 28



BLOBs and TEXTs

• Special data, including multimedia data, have become very commonplace
in recent years.

• There are two types which may be used for such data, defined in the
SQL:2003 standard.

BLOB: Binary Large OBject. TEXT: Text data object.

Example: CREATE TABLE Employee

(...

Photo BLOB ,

CV TEXT ,

...);

MySQL: Supports both with variations for the maximum size.

• SMALLBLOB, BLOB, MEDIUMBLOB, LARGEBLOB

• TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT

PostgreSQL: Supports TEXT and OID (its variant of BLOB).

• Type TEXT has no limit on length

• These types will not be considered further in this course.

• Support is still very nonstandard across dialects.

SQL — Part 2 20150128 Slide 27 of 28



Further Features of SQL

SQL functions: Just as in other programming languages, it is possible to
write functions in SQL and then call them within a query.

Persistent Stored Modules (PSMs) : It is possible to write functions which
are written in another, imperative language, and call them from SQL.

• In ODBC, to be studied later in this course, SQL is called from an
imperative language.

• PSMs are the other way around — an imperative language is called
from SQL.

Triggers: Triggers are special functions, called when an update occurs.

• Triggers are particularly useful in enforcing complex constraints.

Iteration: SQL supports limited iteration ((mis)named recursion), for
computing closures such as the set of all ancestors of a person.

Advanced aggregation and OLAP: SQL supports more advanced aggregation
operators than those covered in this course, including in particular those
associated with OLAP, on-line analytical processing.

• All of these topics are covered in the followup course 5DV120, Database
System Principles.

SQL — Part 2 20150128 Slide 28 of 28


