
SQL — Part 1
5DV119 — Introduction to Database Management

Ume̊a University
Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

SQL — Part 1 20150120 Slide 1 of 46



The SQL “Standard”

• SQL is the “standard” language for access to relational databases.

• There have been many standard versions, beginning with SQL92, and
currently ending with SQL:2011.

• But many of its features have evolved from earlier vendor-specific ones.

• As a result, almost no relational DBMS follows the standard very closely.

• Even the most basic things, such as the datatypes representing dates and
times, differ from system to system and greatly limit code portability.

• Most systems implement a “superset of a subset” of the standard
specification.

• Nevertheless, the basic features of most systems are very similar, even if
not completely compatible.

• In this course, the focus will be upon these basic features.

• The open-source systems PostgreSQL and MySQL will be the main foci.

SQL — Part 1 20150120 Slide 2 of 46



The Nature of SQL

• SQL is a very complex language.

• There are many ways of doing the same thing.

• There are many arcane features known only to gurus.

• Many of these work only with certain systems, and/or work differently
with different systems.

• It takes many years to master the language completely (if that is possible
at all).

• In this course, the emphasis will be on straightforward ways to carry out
common tasks.

• “Tricks” which are intended to show how clever the programmer is will
be avoided if possible.

• Also, the emphasis will be upon using that part of the language which is
most portable across the major dialects.

SQL — Part 1 20150120 Slide 3 of 46



The Parts of SQL

SQL consists of several parts:

DDL: The data-definition language provides commands for defining and
altering database schemata, including integrity constraints and virtual
relations called views.

DML: The data-manipulation language provides commands for both
querying and updating databases.

Transactions: There are basic SQL commands for specifying transactions.

• These are limited in scope and most systems have their own ways of
managing transactions.

Authorization: SQL contains directives for granting and revoking privileges.

Access from a host languages: SQL contains some basic commands for use
when the language is embedded in a host programming language.

• These are limited in scope and many approaches to hosting SQL,
including ODBC, have their own ways of of doing similar things.

SQL — Part 1 20150120 Slide 4 of 46



General Notes on Syntax

Case sensitivity:

• Keywords are case insensitive in both PostgreSQL and MySQL.

• Keywords will be written in all caps in these slides.

PostgreSQL: Identifiers are folded to lower case and so are case insensitive.

MySQL: Case sensitivity of identifiers is dependent upon the configuration.

Linux: Case sensitive by default.

Windows: Case insensitive by default.

SQL — Part 1 20150120 Slide 5 of 46



Clients for Direct Access to SQL via PostgreSQL

• The best way to access PostgreSQL is via the command-line interface:

psql -username <username> -hostname <servername> <dbname>

or
psql -U <username> -h <servername> <dbname>

• <username> and <dbname> are usually the same on the systems of the
department.

• <hostname> is postgres on the systems of the department.

• With ident authentication, no special password is used.

• However, it is necessary to log into a departmental Linux system first and
run these commands from a shell.

• From a Windows machine, use PuTTY or something similar to obtain a
shell on a Linux machine via ssh.

• \? shows a list of system commands.

• Use ctrl-Z and then kill the process if parsing becomes too confused.
SQL — Part 1 20150120 Slide 6 of 46



Clients for Direct Access to SQL via MySQL

• The command-line interface is invoked with:

mysql --user <username> --host <servername> --password <dbname>

or
mysql -u=<username> -h=<hostname> -p <dbname>

• <username> and <dbname> are usually the same on the systems of the
department.

• <hostname> is mysql on the systems of the department.

• A prompt will appear at which the password must be given.

• There is no ident authentication with MySQL.

• \h or help; shows a list of system commands.

• In addition, there are also some usable graphical interfaces.

• The MySQL Query Browser mysql-query-browser is one of the more
common ones.

• It has been superseded by the MySQL Workbench in newer installations.

SQL — Part 1 20150120 Slide 7 of 46



Remarks on MySQL Database Engines
If you decide to install MySQL on your own computer:

• MySQL is a DBMS front end.

• There are a number of storage engines which may be used with it.

• Make sure that you use the InnoDB engine.

• The older MyISAM engine does not support many useful features, such
as foreign-key constraints.

�

It accepts the associated directives but silently ignores them.

• It is the default with some Linux distributions.

• To see which engine your MySQL is running,

• Connect to the MySQL server.

• Issue the command show variables;.

• storage engine should be InnoDB.

• If you need help to change this, ask.
�

Remember that final versions of all submissions should be tested for
compatibility on the departmental servers.

SQL — Part 1 20150120 Slide 8 of 46



Remarks on MariaDB
If you decide to install MySQL on your own computer:

• Recently, MySQL was acquired by Oracle corporation.

• Although it is officially open source, there have been and will be
inevitable changes.

• MariaDB is a fork of MySQL which is completely independent of Oracle.

• The force behind it is Monty Widenius, a Finnish computer scientist who
was also an original developer of MySQL.

• My and Maria are the names of his daughters.

• It is designed to be a drop-in replacement for MySQL.

• This means that anything which works with MySQL should work
with MariaDB as well.

• It is also said to have better performance a better bug-reporting and
bug-fixing system.

• If you can use MariaDB instead of MySQL, it should work fine.
�

Remember that final versions of all submissions should be tested for
compatibility on the departmental servers.

SQL — Part 1 20150120 Slide 9 of 46



Comments in SQL
/* Some simple code

to illustrate the use of comment delimiters in SQL

Stephen J. Hegner 23.01.13 */

SELECT LName /* Last Name */, FName /* First Name */

FROM Employee -- Selecting the last and first names of

WHERE Sex=’F’; -- females from the Employee relation.

• There are two standard ways of inserting comments into SQL code:

Block comments: As in the programming language C, /* is an open
marker while */ is a close marker for comments.

• Such comments may span several lines or be inserted within
lines of SQL code.

Line comments: Anything after two consecutive dashes -- is a
comment for the rest of that line.

• Such comments may begin at any point, but always run to the
end of the line and terminate there.

• It is similar to the # comment marker of Python.

SQL — Part 1 20150120 Slide 10 of 46



Defining Tables
CREATE TABLE Employee

(FName VARCHAR (15) NOT NULL ,

MInit CHAR ,

LName VARCHAR (15) NOT NULL ,

SSN CHAR (9) NOT NULL ,

BDate DATE ,

Address VARCHAR (30),

Sex CHAR ,

Salary DECIMAL (10,2),

Super_SSN CHAR(9),

DNo INT NOT NULL ,

PRIMARY KEY (SSN),

FOREIGN KEY (Super_SSN) REFERENCES Employee(SSN),

FOREIGN KEY (DNo) REFERENCES Department(DNumber)

);

• VARCHAR(n) is a type of at most n characters.
• CHAR(n) is a type of exactly n characters.
• DATE is an SQL standard but varies from installation to installation.

PostgreSQL,MySQL: YYYY-MM-DD without timestamp.
• INT is type integer.
• DECIMAL(n,m) fixedpoint, n digits total, m to right of decimal point.
• SSN is not defined as DECIMAL(9) since leading zeros would not be displayed.

SQL — Part 1 20150120 Slide 11 of 46



Defining Tables 2

CREATE TABLE Department

(DName VARCHAR (15) NOT NULL ,

DNumber INT NOT NULL ,

Mgr_SSN CHAR(9),

Mgr_Start_Date DATE ,

PRIMARY KEY (DNumber),

UNIQUE (DName),

FOREIGN KEY (Mgr_SSN) REFERENCES Employee(SSN),

);

CREATE TABLE Dept_Locations

(DNumber INT NOT NULL ,

DLocation VARCHAR (15) NOT NULL ,

PRIMARY KEY (DNumber ,DLocation),

FOREIGN KEY (DNumber) REFERENCES Department(DNumber)

);

• UNIQUE identifies a candidate key which is not the primary key.

• Note how keys with several attributes are written.

• Note that the same name may be used for an attribute of two distinct
relations.

SQL — Part 1 20150120 Slide 12 of 46



Defining Tables – CHECK Constraints

CREATE TABLE Employee

(...

SSN CHAR (9) NOT NULL ,

...

Sex CHAR ,

...

Salary DECIMAL (10,2),

...

PRIMARY KEY (SSN),

FOREIGN KEY (Super_SSN) REFERENCES Employee(SSN),

FOREIGN KEY (DNo) REFERENCES Department(DNumber),

CHECK (SSN SIMILAR TO

’[0 -9][0 -9][0 -9][0 -9][0 -9][0 -9][0 -9][0 -9][0 -9]’),

CHECK (Sex IN (’M’,’F’)),

CHECK (Salary < 200000)

);

• More complex constraints may be stated in CHECK clauses.

• These constraint may also be named.
�

MySQL parses such constraints but the InnoDB engine does not enforce
them.

SQL — Part 1 20150120 Slide 13 of 46



Defining Tables – Naming Constraints
CREATE TABLE Department

(DName VARCHAR (15) NOT NULL ,

DNumber INT NOT NULL ,

Mgr_SSN CHAR(9),

Mgr_Start_Date DATE ,

CONSTRAINT Dept_PK PRIMARY KEY (DNumber),

CONSTRAINT Dept_CK1 UNIQUE (DName),

CONSTRAINT Dept_FK1 FOREIGN KEY (Mgr_SSN) REFERENCES Employee(SSN),

);

• Constraints may be named.

• This facilitates enabling and disabling them dynamically using the ALTER

TABLE directive.

• Only named constraints may be enabled and disabled.

• Only named constraints may be added and removed.

• These are useful when populating tables.

• Examples later.

ALTER TABLE Department DROP CONSTRAINT Dept_FK1;
...

ALTER TABLE Department ADD CONSTRAINT Dept_FK1
FOREIGN KEY (Mgr_SSN) REFERENCES Employee(SSN);

SQL — Part 1 20150120 Slide 14 of 46



Forward References in Table Definitions
CREATE TABLE Employee

(SSN CHAR (9) NOT NULL ,

SuperSSN CHAR(9),

...

PRIMARY KEY (SSN),

FOREIGN KEY (DNo) REFERENCES Department(DNumber),

);

CREATE TABLE Department

(DNumber INT NOT NULL ,

Mgr_SSN CHAR(9),

...

PRIMARY KEY (DNumber),

FOREIGN KEY (Mgr_SSN) REFERENCES Employee(SSN),

);

• Note that there is a forward reference to Department in the declaration of
Employee.

• This is not allowed in most dialects of SQL.

• A table must be created before foreign-key references to its key are
possible.

• The solution is to add the constraint after the definition of the second
table.

SQL — Part 1 20150120 Slide 15 of 46



Adding and Dropping Constraints on Tables
CREATE TABLE Employee

(SSN CHAR (9) NOT NULL ,
SuperSSN CHAR(9),
...

-- Foreign key to Department is not declared here.
-- FOREIGN KEY (DNo) REFERENCES Department (DNumber),

);

CREATE TABLE Department
(DNumber INT NOT NULL ,
Mgr_SSN CHAR(9),
...
PRIMARY KEY (DNumber),
FOREIGN KEY (Mgr_SSN) REFERENCES Employee(SSN),

);

ALTER TABLE Employee ADD CONSTRAINT Emp_FK2
FOREIGN KEY (DNo) REFERENCES Department(DNumber );

ALTER TABLE Employee DROP CONSTRAINT Emp_FK2;

-- MySQL does not support the standard syntax for DROP; it wants:
ALTER TABLE Employee DROP FOREIGN KEY Emp_FK2;

• Added and dropped constraints must be named.

• Emp FK2 is the name of the above constraint.

SQL — Part 1 20150120 Slide 16 of 46



The Basic From of a Query

• The basic form of an SQL query is as follows.

SELECT <attributes >

FROM <tables >

WHERE <conditions >

• The WHERE part is optional but most interesting queries require it.

• A very simple query:

SELECT FName , MInit , LName , SSN

FROM Employee;

• Star captures all attributes:

SELECT *

FROM Employee;

• A simple condition:

SELECT FName , MInit , LName , SSN

FROM Employee

WHERE Salary >= 30000;

SQL — Part 1 20150120 Slide 17 of 46



More Complex Conditions
SELECT FName , MInit , LName , SSN

FROM Employee

WHERE (SALARY >= 30000) OR (SEX = ’F’);

SELECT FName , MInit , LName , SSN

FROM Employee

WHERE (SALARY >= 30000) AND (NOT (SEX = ’M’));

SELECT FName , MInit , LName , SSN

FROM Employee

WHERE (SALARY >= 30000) AND (SEX <> ’M’);

• Complex logical and arithmetic conditions are also possible.

• Shown above is just a sample.

Recommendation: Always use parentheses for clear indication of association.

• Do not depend upon default rules of precedence, which may vary
amongst implementations.

• Many other types of more complex conditions will be illustrated later.

SQL — Part 1 20150120 Slide 18 of 46



Renaming the Columns of a Query

• Columns may be given explicit names using the AS directive.
SELECT FName AS First_Name , MInit AS Middle_Initial ,

LName AS Last_Name , SSN AS Soc_Sec_Num

FROM Employee

WHERE (SALARY >= 30000) OR (SEX = ’F’);

• These names will appear as the column headers.

• However, such name changes cannot be used as aliases in the WHERE

clause.

�

Does not work:
SELECT FName AS First_Name , MInit AS Middle_Initial ,

LName AS Last_Name , SSN AS Soc_Sec_Num

FROM Employee

WHERE (First_Name=’Alicia ’);

• The use of AS in the FROM clause has different scoping, as will be
illustrated in examples to follow.

SQL — Part 1 20150120 Slide 19 of 46



Duplicates and Order

SELECT Salary

FROM Employee;

SELECT DISTINCT Salary -- Duplicates removed

FROM Employee;

SELECT SSN , Salary

FROM Employee

ORDER BY Salary DESC; -- DESCending order

SELECT SSN , Salary

FROM Employee

ORDER BY Salary ASC; -- ASCending order

SELECT FName , MInit , LName , SSN

FROM Employee

ORDER BY SSN ASC;

SELECT FName , MInit , LName , SSN

FROM Employee

ORDER BY LName , FName , MInit; -- Major -to -minor order;

-- default collation

SQL — Part 1 20150120 Slide 20 of 46



Queries on Two Relations

Problem: For each employee, find the names of the dependents. Identify the
employee by name.

• This query requires information from both the Employee and the
Dependent relations.

• A first try:
SELECT FName , MInit , LName , Dependent_Name

FROM Employee , Dependent;

• Does this work?

• No, it generates the Cartesian product of the two relations.

• A join condition is required:
SELECT FName , MInit , LName , Dependent_Name

FROM Employee , Dependent

WHERE (SSN=ESSN);

SQL — Part 1 20150120 Slide 21 of 46



Queries on Many Relations

Problem: For each employee, find the names of the projects on which that
employee works. Identify the employee by name.

• This query requires information from the Employee, Project, Works On

relations.

• It requires two join operations:

SELECT FName , MInit , LName , PName

FROM Employee , Project , Works_On

WHERE (SSN=ESSN) AND (PNo=PNumber );

SQL — Part 1 20150120 Slide 22 of 46



The JOIN Operation of SQL
• The join operation is used so often that SQL has a special notation for it.

SELECT FName , MInit , LName , Dependent_Name

FROM Employee INNER JOIN Dependent ON (SSN=ESSN);

is equivalent to
SELECT FName , MInit , LName , Dependent_Name

FROM Employee , Dependent

WHERE (SSN=ESSN);

and
SELECT FName , MInit , LName , PName

FROM Employee INNER JOIN Works_On ON (SSN=ESSN)

INNER JOIN Project ON (PNo=PNumber );
is equivalent to

SELECT FName , MInit , LName , PName

FROM Employee , Project , Works_On

WHERE (SSN=ESSN) AND (PNo=PNumber );

• The keyword INNER may be omitted, as it is the default.

• Such queries may include a WHERE clause as well.
SELECT FName , MInit , LName , Dependent_Name

FROM Employee INNER JOIN Dependent ON (SSN=ESSN)

WHERE (Salary > 30000);
SQL — Part 1 20150120 Slide 23 of 46



Queries with Overloaded Attribute Names

Query: Find the locations of each department; identify departments by name.

• The following will not work:
SELECT DName , DLocation

FROM Department JOIN Dept_Locations ON (DNumber=DNumber );

• SQL cannot resolve DNumber because it is an attribute of both relations.

• Name resolution follows a familiar notation from programming languages:
SELECT DName , DLocation

FROM Department JOIN Dept_Locations

ON (Department.DNumber=Dept_Locations.DNumber );

• Another possibility is to use aliases:
SELECT DName , DLocation

FROM Department AS D JOIN Dept_Locations AS DL

ON (D.DNumber=DL.DNumber );

or
SELECT DName , DLocation

FROM Department AS D, Dept_Locations AS DL

WHERE (D.DNumber=DL.DNumber );
SQL — Part 1 20150120 Slide 24 of 46



The Natural Join of SQL

• When the names of the columns to be joined are the same in both
relations, instead of using qualifiers or aliases, the natural join operation
may be used.

Query: Find the locations of each department.

SELECT DName , DLocation

FROM Department NATURAL JOIN Dept_Locations;

• Here the match is on all columns with matching names in the relations.

• In this case, DNumber.

• The matching columns are not repeated.

• If there are no matching columns, the Cartesian product is the result
(which is almost never what is intended).

Try the following query to see this effect:

SELECT LName , PNo , Hours

FROM Employee NATURAL JOIN Works_On;

SQL — Part 1 20150120 Slide 25 of 46



Joins on Several Columns and Compound Join Conditions

• It is possible to join on several columns.

Query: Find the names and departments of those employees whose
supervisor is the same as the manager of the department in which the
employee works.

SELECT LName , FName , MInit , DName

FROM Employee JOIN Department

ON ((DNo=DNumber) AND (Super_SSN=Mgr_SSN ));

• Compound join conditions including operations other than conjunction
are also possible.

Query: Find the names and departments of those employees whose
supervisor is the not the same as the manager of the department in which
the employee works.

SELECT LName , FName , MInit , DName

FROM Employee JOIN Department

ON ((DNo=DNumber) AND (NOT (Super_SSN=Mgr_SSN )));

Observation: An employee with NULL as Super SSN is in the result of neither
query.

• More on this later.
SQL — Part 1 20150120 Slide 26 of 46



Theta Joins

• Join conditions need not be based only upon equality.

• Joins based upon other comparison operators are often called theta joins.

Query: Find those employees who have a dependent who is older.

SELECT DISTINCT LName , FName , MInit , SSN

FROM Employee JOIN Dependent

ON ((SSN=ESSN) AND

(Employee.BDate > Dependent.BDate ));

SQL — Part 1 20150120 Slide 27 of 46



Queries Which Use the Same Relation More Than Once

Query: Find the name of the supervisor of each employee.

• Here it is necessary to use aliases:

SELECT E.LName , E.FName , E.MInit , S.LName , S.FName , S.MInit

FROM Employee as E JOIN Employee as S

ON (E.Super_SSN=S.SSN);

or

SELECT E.LName , E.FName , E.MInit , S.LName , S.FName , S.MInit

FROM Employee as E, Employee as S

WHERE (E.Super_SSN=S.SSN);

• With this query, if an employee has no supervisor, no entry is produced.

• To address this issue properly requires the use of the UNION operation.

SQL — Part 1 20150120 Slide 28 of 46



Set and Multiset Operations in SQL

• Queries return multisets of tuples.

Multiset: A “set” in which elements may occur more than once.

• The usual set operations apply to multisets in SQL.

Name Symbol SQL

union ∪ UNION

intersection ∩ INTERSECT

difference \ or − EXCEPT

�

Some implementations of SQL do not support INTERSECT and EXCEPT.

Example: Mostly, these are small single-user systems such as MS
Access.

Example: MySQL is alone amongst “major” systems which do not
support these set operations. /
• Later, it will be shown how to achieve the same results using

embedded subqueries.

SQL — Part 1 20150120 Slide 29 of 46



A Simple Application of the UNION Operation

Query: Find the name of the supervisor of each employee, with blank entries
if the employee has no manager.

• This can be accomplished with the aid of the UNION operation.
SELECT E.LName , E.FName , E.MInit , S.LName , S.FName , S.MInit

FROM Employee as E JOIN Employee as S ON (E.Super_SSN=S.SSN)

UNION

SELECT LName , FName , MInit , ’’, ’’, ’ ’

FROM Employee

WHERE Super_SSN IS NULL;

• The same query with custom column headers:
SELECT E.LName AS Emp_LNAME , E.FName AS EMP_FName ,

E.MInit AS EMP_MInit ,

S.LName AS Super_LName , S.FName AS Super_FName ,

S.MInit AS Super_MInit

FROM Employee as E JOIN Employee as S ON (E.Super_SSN=S.SSN)

UNION

SELECT LName , FName , MInit , ’’, ’’, ’ ’

FROM Employee

WHERE Super_SSN IS NULL;

SQL — Part 1 20150120 Slide 30 of 46



Pattern Matching in SQL
• SQL has two features for pattern matching:

LIKE: uses a special syntax.

SIMILAR TO: uses regular expressions.

Query: Find all employees whose last names begin with the letter W.

• % is the wildcard symbol for LIKE.

• The following works in both PostgreSQL and MySQL:
SELECT LName , FName , MInit

FROM Employee

WHERE LName LIKE ’W%’;

• MySQL uses case-insensitive matching, and so the following works
as well.

SELECT LName , FName , MInit

FROM Employee

WHERE LName LIKE ’w%’;

• LIKE in PostgreSQL uses case-sensitive matching,

• Use ILIKE for case-insensitive matching.
SELECT LName , FName , MInit

FROM Employee

WHERE LName ILIKE ’w%’;SQL — Part 1 20150120 Slide 31 of 46



Pattern Matching in SQL Using SIMILAR TO

�

MySQL does not support SIMILAR TO, although it is part of the
SQL:1999 standard.

• Here are some examples which run under PostgreSQL:

Query: Find all employees whose last names begin with the letter W.

SELECT LName , FName , MInit

FROM Employee

WHERE LName SIMILAR TO ’W%’;

SELECT LName , FName , MInit

FROM Employee

WHERE LName SIMILAR TO ’W[a-z]*’;

• Underscore matches a single character with both SIMILAR TO and LIKE.

SELECT LName , FName , MInit

FROM Employee

WHERE LName SIMILAR TO ’W___’;

SQL — Part 1 20150120 Slide 32 of 46



Additional Examples of Pattern Matching

Query: Find the name and SSN of all employees whose SSN has 3 or 8 as
the third digit from the left.

SELECT LName , FName , MInit , SSN

FROM Employee

WHERE (SSN LIKE ’__3%’) OR (SSN LIKE ’__8%’);

• SIMILAR TO has a built-in disjunction operator:

SELECT LName , FName , MInit , SSN

FROM Employee

WHERE SSN SIMILAR TO ’__ (3|8)% ’;

• Tilde is the escape character for both operators.

Query: Find all last names containing the character %:

SELECT LName , FName , MInit , SSN

FROM Employee

WHERE LName LIKE ’%~%%’;

SQL — Part 1 20150120 Slide 33 of 46



Basic Update Operations in SQL

• There are three basic forms of update in SQL:

Insertion: Using the INSERT directive, new tuples may be added to a
relation.

Deletion: Using the DELETE directive, existing tuples may be removed
from a relation.

Modification: Using the UPDATE directive, the values in fields of existing
tuples may be changed.

A note on terminology:

• The word update has to distinct meanings, both of which are entrenched
in the database literature and practice.

1. In the general database literature, an update may refer to any
operation which changes of the state of a database.

2. In SQL, an update refers to a modification of an existing tuple or
tuples.

• It is necessary to resolve which of these two meanings is intended by
using context.

SQL — Part 1 20150120 Slide 34 of 46



The SQL INSERT Directive

• There are two basic forms of insertion:

• In the first, all fields for a single tuple are specified from left to right:

INSERT INTO Employee

VALUES (’Jane’, ’S’, ’User’, ’000112222 ’, ’1960 -01 -01’,

’13 Mockingbird , El Paso , TX’, ’F’, 90000.00 , NULL , 1);

• In the second, fields may be listed in any order and missing fields are
taken to be NULL:

INSERT INTO Employee (SSN , LName , FName , MInit , Sex , BDate ,

Address , Salary , DNo)

VALUES (’000112222 ’, ’User’, ’Jane’, ’S’, ’F’, ’1960 -01 -01’,

’13 Mockingbird , El Paso , TX’, 90000.00 , 1);

• In both cases, the insertion will fail if any integrity constraint would be
violated by the insertion.

• There is also a third form of insertion which involves views and which will
be considered later.

SQL — Part 1 20150120 Slide 35 of 46



The SQL DELETE Directive

• Deletion involves the use of a WHERE clause to identify the tuples to be
deleted.:

DELETE FROM Employee

WHERE SSN=’000112222 ’;

• In contrast to the INSERT directive, DELETE may remove several tuples at
once.

DELETE FROM Employee

WHERE Address LIKE ’%El Paso%’;

DELETE FROM Employee

WHERE Sex=’M’;

• Deletion can never cause a violation of a PRIMARY KEY or UNIQUE

constraint, but it is possible for a FOREIGN KEY to be violated.

• The deletion is not executed if it would cause such a violation.

SQL — Part 1 20150120 Slide 36 of 46



The SQL UPDATE Directive

• Modification via UPDATE involves the use of a SET clause to identify the
changes and a WHERE clause to identify the tuples to be modified:

UPDATE Employee

SET Address ’123 Main , El Paso , TX’

WHERE SSN=’000112222 ’;

• UPDATE may modify several tuples at once.

UPDATE Employee

SET Salary = Salary + 10000

WHERE DNo=4;

• Modification can cause a violation of a PRIMARY KEY or UNIQUE constraint
only if it alters the value of a primary or candidate key.

• Other forms of constraint may be violated, however.

• The update is not executed if it would cause such a violation.

SQL — Part 1 20150120 Slide 37 of 46



Multiple Updates and Integrity Constraints

• By default, integrity constraints are checked after each INSERT, DELETE,
and UPDATE operation.

• This can lead to intermediate inconsistency problems.

Example: Add the new employee Jane S. User and have her work in and be
head of the newly added Security department.

INSERT INTO Employee

VALUES (’Jane’, ’S’, ’User’, ’000112222 ’, ’1960 -01 -01’,

’13 Mockingbird , El Paso , TX’, ’F’, 90000.00 , NULL , 6);

INSERT INTO Department

VALUES (’Security ’,6,’000112222 ’,’2011 -09 -01’);

• Regardless of which order these operations are executed, a violation of a
foreign-key constraint will result.

• In PostgreSQL and most other major systems, the solution involves two
steps:

• Use DEFERRABLE constraints.

• Use explicit transactions.
SQL — Part 1 20150120 Slide 38 of 46



Explicit Transactions 1

• The foreign key which references the Department relation is made
deferrable and is then deferred.

CREATE TABLE Employee

(<column declarations >

<constraints other than fkey_emp2 >);

CREATE TABLE Department

(<column declarations >

<constraints >);

ALTER TABLE Employee ADD CONSTRAINT

fkey_emp2 FOREIGN KEY (DNo) REFERENCES Department (DNumber)

DEFERRABLE INITIALLY DEFERRED;

• This means that it is not checked until the end of a transaction.

Notes:
• The constraint fkey emp2 is added using ALTER TABLE Employee

after the CREATE TABLE Department directive to avoid
forward-reference errors during table definition.

• The constraint fkey emp2 is made DEFERRABLE and set to be
INITIALLY DEFERRED to allow transactions to defer checking it until
commit time during update execution.

SQL — Part 1 20150120 Slide 39 of 46



Explicit Transactions 2

• In both PostgreSQL and MySQL BEGIN and COMMIT markers may be used
to identify the bounds of the transaction.

BEGIN;

INSERT INTO Employee

VALUES (’Jane’, ’S’, ’User’, ’000112222 ’, ’1960 -01 -01’,

’13 Mockingbird , El Paso , TX’, ’F’,

90000.00 , NULL , 6);

INSERT INTO Department

VALUES (’Security ’,6,’000112222 ’,’2011 -09 -01’);

COMMIT;

Note: If the constraint fkey emp2 already exists but is not DEFERRABLE or is
DEFERRABLE but not INITIALLY DEFERRED, this may be changed by
dropping the constraint and then adding it again with the desired
properties.

ALTER TABLE Employee DROP CONSTRAINT fkey_emp2;

ALTER TABLE Employee ADD CONSTRAINT fkey_emp2

FOREIGN KEY (DNo) REFERENCES Department (DNumber)

DEFERRABLE INITIALLY DEFERRED;
SQL — Part 1 20150120 Slide 40 of 46



Multiple Updates and Integrity Constraints in MySQL

• Unfortunately, MySQL does not support deferrable constraints.

• One way to deal with this problem is to drop the constraint and then
re-add it after the updates.

• Not a good practice for ordinary updates.

CREATE TABLE Employee
(...,
CONSTRAINT FKey_Emp1 FOREIGN KEY (Mgr_SSN)

REFERENCES Employee(SSN),
);

...

-- Unfortunately , MySQL does not use the standard syntax:
ALTER TABLE Employee DROP CONSTRAINT FKey_Emp1;

-- It uses this instead:
ALTER TABLE Employee DROP FOREIGN KEY FKey_Emp1;

INSERT INTO Employee
VALUES (’Jane’, ’S’, ’User’, ’000112222 ’, ’1960 -01 -01’,

’13 Mockingbird , El Paso , TX’, ’F’,
90000.00 , NULL , 6);

INSERT INTO Department
VALUES (’Security ’,6,’000112222 ’,’2011 -09 -01’);

ALTER TABLE Employee ADD CONSTRAINT FKey_Emp1
FOREIGN KEY (Mgr_SSN) REFERENCES Employee(SSN);

SQL — Part 1 20150120 Slide 41 of 46



Multiple Updates and Integrity Constraints in MySQL — 2

• A second way to deal with the problem of circular integrity constraints is
to do the update in stages which preserve integrity.

• It is ugly and creates incorrect intermediate data but it works.

• First insert Jane User into Employee using an existing department.

INSERT INTO Employee

VALUES (’Jane’, ’S’, ’User’, ’000112222 ’, ’1960 -01 -01’,

’13 Mockingbird , El Paso , TX’, ’F’,

90000.00 , NULL , 1);

• Now add the new Security department with Jane as head.

INSERT INTO Department VALUES (’Security ’,6,’000112222 ’,’2011 -09 -01’);

• Finally, move Jane to work in her new department.

UPDATE Employee SET DNo=6 WHERE SSN=’000112222 ’;

• This problem only arises when there are cycles in the foreign-key graph.

• In all other cases, the updates may be ordered to avoid intermediate
constraint violations.

SQL — Part 1 20150120 Slide 42 of 46



Cascading Updates

• By default, if an update would violate an integrity constraint, that update
fails and the database is not changed.

• However, it is possible to cascade DELETE and UPDATE directives with
respect to foreign-key constraints.

Example: Suppose that an Employee leaves the company (is deleted from
the Employee relation.)

• It then makes sense to delete all information about the dependents of
that employee as well.

• This may be accomplished via the ON DELETE CASCADE clause:

CREATE TABLE Dependent

(ESSN CHAR (9) NOT NULL ,

...

FOREIGN KEY (ESSN) REFERENCES Employee (SSN)

ON DELETE CASCADE );

SQL — Part 1 20150120 Slide 43 of 46



Cascading Updates — 2

• Cascading may also be applied to UPDATE (modification) directives.

Example: Suppose that the bureaucrats decide to change the project
numbers.

• It then makes sense to reflect those changes in the Works On relation as
well.

• This may be accomplished via the ON UPDATE CASCADE clause:

CREATE TABLE Works_On

(...

PNo INT NOT NULL ,

...

FOREIGN KEY (PNo) REFERENCES Project (PNumber)

ON UPDATE CASCADE );

SQL — Part 1 20150120 Slide 44 of 46



Cascading Updates —
�

�

Cascading deletions can be dangerous.

Example: Suppose that deletions on SSN for Employee cascade to Super SSN.

CREATE TABLE Employee

(...

SSN CHAR (9) NOT NULL ,

...

Super_SSN CHAR(9),

PRIMARY KEY (SSN),

FOREIGN KEY (Super_SSN) REFERENCES Employee (SSN)

ON DELETE CASCADE );

• This can lead to long chains of deletions.

Question: What happens if the big boss Borg is deleted?

Answer: All tuples in the Employee relation are deleted (ignoring foreign-key
constraints on other relations for the moment.)

• Clearly, cascading must be used with great care.

• Some systems, but not all, will detect and not allow recursive cascading.

SQL — Part 1 20150120 Slide 45 of 46



Avoiding Ambiguity in Query Answers

• Many examples in these slides were of the form “Find the employees who
...”.

• For simplicity, only the names of the employees were retrieved.

• However, this is a bit risky, since it is possible for two employees to have
the same name.

• It is always advisable to retrieve a key (e.g., SSN) as part of the answer.

• Use:

SELECT LName , FName , MInit , SSN , <other things >

FROM Employee <and other relations >

WHERE <condition >

• instead of:

SELECT LName , FName , MInit , <other things >

FROM Employee <and other relations >

WHERE <condition >

SQL — Part 1 20150120 Slide 46 of 46


