
Introductory Concepts
5DV119 — Introduction to Database Management

Ume̊a University
Department of Computing Science

Stephen J. Hegner
hegner@cs.umu.se

http://www.cs.umu.se/~hegner

Introductory Concepts 20150117 Slide 1 of 15



Three Types of Information Systems

Information-retrieval systems (IR):

• Search large bodies of information which are not specifically
formatted as formal data bases.
• Web search engine
• Keyword search of a text base

• Typically read-only

Database management systems (DBMS):

• Relatively small schema

• Large body of homogeneous data

• Minor or no deductive capability

• Extensive formal update capability

• Shared use for both read and write

Knowledge-base systems (KBS):

• Relatively small body of heterogeneous information

• Significant deductive capability

• Typical use: support of an intelligent application

Introductory Concepts 20150117 Slide 2 of 15



Variations of the DBMS Model

Data warehouses:

• Data are relatively static (few updates)

• Emphasis upon complex retrieval and computation

Traditional database systems with structured data:

• Geographic database systems

• Support for multimedia content

• Support for XML content

• To study these models, it is necessary to have an understanding of the
basic models first.

• In this course, only traditional DBMSs will be studied.

• These variations will not be considered.

Introductory Concepts 20150117 Slide 3 of 15



Key Issues for Database-Management Systems
Efficiency issues:

• Databases can be very large.

• Efficient access must be provided even for very large databases.

Simplicity issues:

• Many potential users are not sophisticated programmers.
⇒ Simple means of access must be available.

• Complex application programs require complex access.
⇒ Means of more sophisticated access must also be available.

Multi-user issues:

Concurrency: Simultaneous access to the database by several users.

Access via views: Limited “windows” through which the appropriate
part of the database is viewed.

Authorization: Custom, assigned access privileges for each user.

Robustness issues:
• Deadlock and livelock must be avoided.
• A means of recovery from crashes, with minimal loss of data, must

be available.
Introductory Concepts 20150117 Slide 4 of 15



The Evolution of Data Models

Model Development Use Properties Analogy

File-management 1950s 1970s 1950s -
Low-level interaction. No data
independence.

Assembly language

Navigational 1950s 1960s 1960s -
Some data independence, but the model
invites dependence. Requires procedural
queries.

Procedural languages

Relational 1970s - Late 1980s -

Simple, easy to use for non-experts.
Strong data independence.
Standard nonprocedural query language
(SQL).
Excellent implementations exist.
Limited expressive capability.

Declarative languages

Object-oriented 1980s - 1990s -

Powerful expressive capability, but
require substantial expertise for use.
Popular in niche applications.
Standardization not imminent.

Object-oriented languages

Object-relational 1980s 1990s -

Attempt to integrate the simplicity of
the relational model with the advanced
features of the object-oriented approach.
The most recent SQL standard, as well
as many commercial systems, embody
such features.

?

Semi-structured 1990’s 2000’s -
Attempt to integrate data management
with markup languages, principally via
XML.

?

Introductory Concepts 20150117 Slide 5 of 15



Focus of the Course

• The course focuses upon the relational model for the following reasons:

• The relational model is by far the most widely used.

• It is not suitable for all applications, but there are many for
which it is.

• The relational model provides a flexible interface which has
components appropriate for users at all levels.

• A standard query language, SQL, is used with virtually all relational
database systems. Thus, applications have a high degree of
portability.

• The relational model provides strong data independence: the
external product is relatively independent of the internal
implementation.

Introductory Concepts 20150117 Slide 6 of 15



Multi-User Relational Database Systems
Open-Source Systems:

PostgreSQL: The most comprehensive open-source relational DBMS.

MySQL / MariaDB: Popular relational DBMSs for small systems.

• Widely used to support Web-based applications.

HyperSQL: An efficient DBMS written in Java.

• The default DBMS bundled with OpenOffice.org

SQLite: A compact DBMS written in C.

• The default DBMS bundled with LibreOffice.

The “big three” commercial relational DBMSs:

Oracle Database:

IBM DB2:

Microsoft SQL Server: (Windows only!)

Another commercial relational DBMS of interest:

Mimer SQL: Oriented towards embedded systems; based in Uppsala.

• The commercial systems listed have limited “free” versions.
• All except SQL Server run on many platforms, including Linux.
• Links may be found on the course Web page.

Introductory Concepts 20150117 Slide 7 of 15



Single-User Relational Database Systems

Microsoft Access: The original PC DBMS for Windows.

• Part of the Microsoft Office bundle.

• It will cost you $$$, ¿¿¿, or SeKSeKSeK.

• Even if you have a DreamSpark Premium (formerly MSDNAA)
account, you cannot get MS Access for free. /

• Runs only under MS Windows, of course.

• Support for SQL is not as extensive as in multi-user systems.

• No real support for transactions.

Kexi: “Microsoft Access for Linux”

• Built-in SQLite-based DB server.

• Can also use other servers such as PostgreSQL and MySQL.

• Not as mature a product as MS Access.

• ... but it is open source and free (LGPL).

• Can also be compiled for other systems.

• A link may be found on the course Web page.

Introductory Concepts 20150117 Slide 8 of 15



Database Systems to be Used in this Course

• Both PostgreSQL and MySQL will be used as instructional systems.

• Students will receive at least one database for each on the DB servers of
the department.

• If you have your own computer, each is easy to install under Linux, MS
Windows, and Mac OS.

• Some pointers for installation under Linux will be given later in the
course.

• All SQL and ODBC submissions for obligatory exercises should run under
both.

• You are free to (and encouraged to) try other DBMSs as well, but they
will not be used in the course.

Introductory Concepts 20150117 Slide 9 of 15



Database Access Models

SQL is the standard query language for the relational model.

• There are several access models which are built around SQL.

Direct SQL: Write and send SQL queries directly to the database
system.

Hosting SQL within a programming language.

• Both approaches will be considered in this course.

• In the hosting approach, a framework known as ODBC (Open Database
Connectivity) will be used.

• In ODBC, special statements to communicate with databases are
used in a host programming language.

• ODBC works in principle with a variety of programming languages.

• In this course, both C and Python will be used as host languages.

• These languages are very different, and so the ODBC usage is quite
different as well.

• Even students who know C but not Python may find it easier to
learn enough Python to use it instead of C for the exercises.

Introductory Concepts 20150117 Slide 10 of 15



Database System Architecture

• The earliest database systems used a one-level architecture.

• The user interacted directly with the storage model.

Analogy: assembly-language programming

Disadvantages:

• Impossible to use for non-experts.

• Difficult to use and error-prone even for experts.

• Evolution of storage model, or migration to a new architecture,
requires a total rebuild of all application programs.

• For this reason, multi-level architectures were introduced and
implemented.

Introductory Concepts 20150117 Slide 11 of 15



The Two-Level Architecture

• In the two-level architecture, the model
for internal storage is distinct from the
model which the applications (users) see.

Advantages:

• The internal model and/or target
architecture may be changed without
requiring a rebuild of applications.

Analogy: A high-level programming
language.

Disadvantages:

• All applications see a common
external model.

Internal
Storage
Model

External
Data

Model

App1 App2 · · · Appk

Internal/
External
mapping

Introductory Concepts 20150117 Slide 12 of 15



The Three-Level Architecture

• In the ANSI/SPARC three-level
architecture, there is an additional
conceptual model which separates
the internal and external models.

Additional advantages:

• Multiple external models may
be supported.

• New external models may be
introduced without requiring a
new interface to the storage
model.

Disadvantages:

• This model is unfortunately not
seen in real systems.

• It is a design ideal.
Internal
Storage
Model

Conceptual
Data

Model

External
Data

Model 1
· · ·

External
Data

Model n

App11 · · · App1k1 Appn1 · · · Appnkn

Internal/
Conceptual

mapping

Conceptual/
External

mappings

Introductory Concepts 20150117 Slide 13 of 15



Data Independence

Data independence refers to the idea that a more internal level of a database
system may be re-engineered, or moved to a different architecture,
without requiring a total rebuild of the more external layers.

• The ANSI/SPARC architecture provides two levels of data independence.

• It is often, however, something of an ideal, even with the systems of
today.

• Usually, in a relational system, both the conceptual schema and the
external schemata are relational.

• Still, the conceptual schema is often designed using a more general tool
than the relational model.

Introductory Concepts 20150117 Slide 14 of 15



Some Remarks on Terminology and Pronunciation

Database vs. Database (Management) System:

• A database is a (usually structured) collection of data.

• A database system or database management system (DBMS) is a
system for managing databases.

• In the popular literature, the word database is sometimes used as a
synonym for DBMS.

• This terminology is confusing and its use is to be discouraged.

• MySQL and PostgreSQL are DBMSs, not databases!

• Calling a DBMS a database is akin to calling JDK a Java program.

Pronunciation of SQL:

• In research circles, it is usually pronounced as the three letters S-Q-L.

• In trade groups, SQL is sometimes pronounced as See-Quel.

• This can lead to confusion with the older language SEQUEL,
which also has that pronunciation.

Introductory Concepts 20150117 Slide 15 of 15


