Solutions to selected problems from "Övning2" from Spring 1996.

Please report any errors in these solutions to S. Hegner.
For convenience, things are translated into English. The schemata are presented with the (presumed) primary keys underlined.

ASSIGNMENT(ROOM, FAC ID, COURSEID, DATE) COURSE(COURSE_ID, COURSE_NAME, HOURS) TEACHER(FAC_ID, FAC_NAME, $\bar{P} O S I T I O N)$
1.The names of the teachers with no teaching assignments.
$X_{1} \leftarrow$ TEACHER $\bowtie A S S I G N M E N T$
$\mathrm{X}_{2} \leftarrow \pi_{\text {FAC_ID,FAC_NAME }}\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {FAC_ID,FAC_NAME }}($ TEACHER)
$\mathrm{X}_{4} \leftarrow \mathrm{X}_{3} \backslash \mathrm{X}_{2}$
$\mathrm{X}_{5} \leftarrow \pi_{\text {FAC_name }}\left(\mathrm{X}_{4}\right)$
\{t.FAC_NAME | TEACHER(t) ^
$\neg(\exists \mathrm{a})\left(\right.$ ASSIGNMENT $(\mathrm{a}) \wedge\left(\mathrm{a}\right.$. FAC_ID $=\mathrm{t} . \mathrm{FAC} _$ID $\left.\left.)\right)\right\}$
Domain calculus:
$\{x \mid(\exists y)(\exists z)(\operatorname{TEACHER}(z, x, y) \wedge$
$\neg(\exists \mathrm{w})(\exists \mathrm{u})(\exists \mathrm{v})($ ASSIGNMENT $(\mathrm{w}, \mathrm{z}, \mathrm{u}, \mathrm{v})))\}$
2. The names of the courses which are taught by both Kurt Klok and Kent Kall.

```
X 
X2}\leftarrow\mp@subsup{\sigma}{(FAC_NAME = "Kurt Klok")}{(X)
X 
X 
X 
X6}\leftarrow\mp@subsup{X}{4}{}\cap\mp@subsup{X}{5}{
X
```

\{c.COURSE_NAME | COURSE(c) ^
$\left(\exists \mathrm{t}_{1}\right)\left(\exists \mathrm{t}_{2}\right)\left(\exists \mathrm{c}_{1}\right)\left(\exists \mathrm{c}_{2}\right)\left(\exists \mathrm{a}_{1}\right)\left(\exists \mathrm{a}_{2}\right)$
(TEACHER $\left(\mathrm{t}_{1}\right) \wedge \operatorname{TEACHER}\left(\mathrm{t}_{2}\right) \wedge$
$\operatorname{COURSE}\left(\mathrm{c}_{1}\right) \wedge \operatorname{COURSE}\left(\mathrm{c}_{2}\right) \wedge$
ASSIGNMENT $\left(a_{1}\right) \wedge$ ASSIGNMENT $\left(a_{2}\right) \wedge$
(t_{1}.FAC_NAME = "Kurt Klok") \wedge
(t_{2}.FAC_NAME = "Kent Kall") \wedge
(c.COURSE_ID = c c_{1}.COURSE_ID) \wedge
(c.COURSE_ID = c_{2}.COURSE_ID) \wedge
$\left(t_{1} . F A C _I D=a_{1} \cdot\right.$ FAC_ID $) \wedge$
$\left(t_{2} . F A C _I D=a_{2} . F A C _I D\right) \wedge$
$\left(\mathrm{c}_{1}\right.$. COURSE_ID $=\mathrm{a}_{1}$.COURSE_ID) \wedge
$\left(\mathrm{c}_{2}\right.$. COURSE_ID $=\mathrm{a}_{2}$. COURSE_ID) $\left.)\right\}$
\{c.COURSE_NAME | COURSE(c) ^
$\left(\exists \mathrm{t}_{1}\right)\left(\exists \mathrm{t}_{2}\right)\left(\exists \mathrm{a}_{1}\right)\left(\exists \mathrm{a}_{2}\right)$
(TEACHER $\left(\mathrm{t}_{1}\right) \wedge$ TEACHER $\left(\mathrm{t}_{2}\right) \wedge$
ASSIGNMENT $\left(a_{1}\right) \wedge \operatorname{ASSIGNMENT}\left(a_{2}\right) \wedge$
(t_{1}.FAC_NAME = "Kurt Klok") \wedge
(t_{2}.FAC_NAME $=$ "Kent Kall") \wedge
$\left(\mathrm{t}_{1} \cdot \mathrm{FAC}\right.$ ID $=\mathrm{a}_{1} \cdot \mathrm{FAC}$ ID $) \wedge$
$\left(\mathrm{t}_{2}\right.$. FAC_ID $=\mathrm{a}_{2}$.FAC_ID) \wedge
(c.COURSE_ID $=a_{1}$.COURSE_ID) \wedge
(c.COURSE_ID = a_{2}.COURSE_ID)) $\}$
3. The names and number of hours of courses which are held in room S115.
$\mathrm{X}_{1} \leftarrow$ ASSIGNMENT \bowtie COURSE
$\mathrm{X}_{2} \leftarrow \sigma_{(\mathrm{ROOM}}={ }^{\text {"S115") }}\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {COURSE_NAmE,HOURS }}\left(\mathrm{X}_{2}\right)$
\{(c.COURSE_NAME,c.HOURS)|COURSE(c) ^ $(\exists a)(A S S I G N M E N T(a) \wedge(a . R O O M=" S 115 ") \wedge$ c.COURSE_ID = a.COURSE_ID)\}
4. The names of courses which are taught by Bertil Bo.
$\mathrm{X}_{1} \leftarrow$ ASSIGNMENT \bowtie COURSE \bowtie TEACHER
$X_{2} \leftarrow \sigma_{(\text {FAC_NAME }}=$ "Bertil Bo") $\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {Course_name }}\left(\mathrm{X}_{2}\right)$
\{c.COURSE_NAME | COURSE(c) ^ $(\exists \mathrm{t})(\exists \mathrm{a})(\mathrm{TEACHER}(\mathrm{t}) \wedge$ ASSIGNMENT $(\mathrm{a}) \wedge$
(t.FAC_NAME = "Bertil Bo" ^
(t.FAC_ID = a.FAC_ID) \wedge
(c.COURSE_ID = a.COURSE_ID))\}
5. The dates and course ID's for systems courses.
$\mathrm{X}_{1} \leftarrow$ ASSIGNMENT \bowtie COURSE
$X_{2} \leftarrow \sigma_{\text {(COURSE_NAME }}=$ "Systems") $\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {DAte,Course_Id }}\left(\mathrm{X}_{2}\right)$
\{(a.DATE, a.COURSE_ID)|ASSIGNMENT(a) ^ $(\exists \mathrm{c})(\mathrm{COURSE}(\mathrm{c}) \wedge \mathrm{c}$.COURSE_NAME = "Systems" \wedge a.COURSE_ID = c.COURSE_ID)\}
6. The names of the teachers who teach all of the programming courses.

The following solution almost works, but fails when there is a course which no one is listed to teach.

X $_{1} \leftarrow$ ASSIGNMENT \bowtie COURSE \bowtie TEACHER
$\mathrm{X}_{2} \leftarrow \sigma_{(\text {COURSE_NAME }}=$ "Programming ${ }^{\prime}\left(\mathrm{X}_{1}\right)$
$X_{3} \leftarrow \pi_{\text {FAC_ID,FAC_NAME,CoURSE_ID }}\left(\mathrm{X}_{2}\right)$
$\mathrm{X}_{4} \leftarrow \pi_{\text {course_ID }}\left(\mathrm{X}_{2}\right)$
$\mathrm{X}_{5} \leftarrow \mathrm{X}_{3} \div \mathrm{X}_{4}$
$\mathrm{X}_{6} \leftarrow \pi_{\text {FAC_NAME }}\left(\mathrm{X}_{5}\right)$
The following solution fixes that problem.
$X_{1} \leftarrow \sigma_{\left(C O U R S E _N A M E ~=~ " P r o g r a m m i n g "\right) ~}($ COURSE)
$X_{2} \leftarrow \pi_{\text {course_ID }}\left(X_{1}\right)$
$X_{3} \leftarrow$ ASSIGNMENT \bowtie TEACHER
$\mathrm{X}_{4} \leftarrow \pi_{\text {FAC_ID,FAC_NAME,COURSE_ID }}\left(\mathrm{X}_{3}\right)$
$X_{5} \leftarrow X_{4} \div X_{2}$
$X_{6} \leftarrow \pi_{\text {FAC_name }}\left(X_{5}\right)$
\{t.FAC_NAME | TEACHER(t) ^ $(\forall \mathrm{c})(((\mathrm{COURSE}(\mathrm{c}) \wedge$
$\left(c . C O U R S E _N A M E=\right.$ "Programming")) \Rightarrow ($\exists \mathrm{a})($ ASSIGNMENT(a) \wedge
(t.FAC_ID = a.FAC_ID) \wedge
(c.COURSE_ID = a.COURSE_ID))) \}

Here is the second schema, with presumed keys underlined. Note that SALE has no non-trivial key.

SALE(CUST_NO, ART_NO, QUANTITY, REBATE) CUSTOMER
 (CUST NO, CUST_NAME, ADDRESS, SALES) ARTICLE(ART_NO, ART_NAME, PRICE)

1. The article number and price of articles which have not been sold to anyone.
$X_{1} \leftarrow$ ARTICLE \bowtie SALE
$\mathrm{X}_{2} \leftarrow \pi_{\text {ART_No,price }}\left(\mathrm{X}_{1}\right)$
$X_{3} \leftarrow \pi_{\text {ART_NO,PRICE }}(A R T I C L E)$
$\mathrm{X}_{4} \leftarrow \mathrm{X}_{3} \backslash \mathrm{X}_{2}$
$\{($ a.ART_NO,a.PRICE $) \mid$ ARTICLE $(a) \wedge$
$\quad \neg(\exists \mathrm{s})\left(\right.$ SALE $\left.\left.(\mathrm{s}) \wedge\left(\mathrm{a} . A R T _N O=s . A R T _N O\right)\right)\right\}$
2. The names of customers to whom either article 12777 or 13222 has been sold.
$\mathrm{X}_{1} \leftarrow$ CUSTOMER \bowtie SALE
$X_{2} \leftarrow \sigma($ ART_no $=" 12777 " \vee$ ART_NO $=" 13222 ")\left(X_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {Cust_NAme }}\left(\mathrm{X}_{2}\right)$
\{c.CUST_NAME | CUSTOMER(c) ^
$(\exists s)\left(S A L E(s) \wedge\left(c . C U S T _N O=s . C U S T _N O\right) \wedge\right.$
$\left.\left.\left(\left(s . A R T _N O=" 12777 "\right) \vee\left(s . A R T _N O=" 13222 "\right)\right)\right)\right\}$
3. The name and sales of customers who have received a 2% rebate.
$\mathrm{X}_{1} \leftarrow$ CUSTOMER \bowtie SALE
$\left.\mathrm{X}_{2} \leftarrow \sigma_{(\text {REBATE }}=2 \%\right)\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {Cust_Name,Sales }}\left(\mathrm{X}_{2}\right)$
\{(c.CUST_NAME,c.SALES)|CUSTOMER(c) ^
$(\exists s)\left(S A L E(s) \wedge\left(c . C U S T _N O=s . C U S T _N O\right) \wedge\right.$
(s.REBATE = "2\%"))\}
4. The addresses of customers to whom articles 13222 and 12746 have been sold.
$\mathrm{X}_{1} \leftarrow$ CUSTOMER \bowtie SALE
$\mathrm{X}_{2} \leftarrow \sigma_{\text {(ART_NO }=13222)}\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{3} \leftarrow \sigma_{(\text {ART_NO }=12746)}\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{4} \leftarrow \pi_{\text {CUST_No,AdDRESS }}\left(\mathrm{X}_{2}\right)$
$\mathrm{X}_{5} \leftarrow \pi \pi_{\text {CUST_No,AdDRESS }}\left(\mathrm{X}_{3}\right)$
$\mathrm{X}_{6} \leftarrow \mathrm{X}_{4} \cap \mathrm{X}_{5}$
$\mathrm{X}_{7} \leftarrow \pi_{\text {ADDRESS }}\left(\mathrm{X}_{6}\right)$
\{(c.ADDRESS | CUSTOMER(c) ^
$\left(\exists \mathrm{s}_{1}\right)\left(\exists \mathrm{s}_{2}\right)\left(\operatorname{SALE}\left(\mathrm{s}_{1}\right) \wedge \operatorname{SALE}\left(\mathrm{s}_{2}\right) \wedge\right.$

$$
\begin{aligned}
& \text { (c.CUST_NO = s } 1 \text {.CUST_NO) } \wedge \\
& \text { (c.CUST_NO = } \mathrm{s}_{2} \text {.CUST_NO) } \wedge \\
& \left.\left.\left(s_{1} \cdot A R T _N O=" 13222 "\right) \wedge\left(s_{2} . A R T _N O=" 12746 "\right)\right)\right\}
\end{aligned}
$$

5. The names of customers to whom every article has been sold.
$\mathrm{X}_{1} \leftarrow$ CUSTOMER \bowtie SALE
$\mathrm{X}_{2} \leftarrow \pi_{\text {CUSt_No,Cust_NamE,ART_No }}\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {ART_no }}$ (ARTICLE)
$\mathrm{X}_{4} \leftarrow \mathrm{X}_{2} \div \mathrm{X}_{3}$
$\mathrm{X}_{5} \leftarrow \pi_{\text {Cust_name }}\left(\mathrm{X}_{4}\right)$
\{c.CUST_NAME | CUSTOMER(c) ^
$(\forall \mathrm{a})(\exists \mathrm{s})$ (ARTICLE(a) \Rightarrow (SALE $(\mathrm{s}) \wedge$
(a.ART_NO = s.ART_NO) \wedge
(c.CUST_NO = s.CUST_NO))) \}
6. The article number and quantity sold for articles which have been sold to customers in Stockholm. (No summary.)
$\mathrm{X}_{1} \leftarrow$ CUSTOMER \bowtie SALE
$X_{2} \leftarrow \sigma_{\text {(ADDRESS }}=$ "Stockholm") $\left(X_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {ARt_number, quantity }}\left(\mathrm{X}_{2}\right)$
\{(s.ART_NO,s.QUANTITY)|SALE(s) ^
($\exists \mathrm{c})$ (CUSTOMER(c) ^
(s.CUST_NO = c.CUST_NO) ^
(c.ADDRESS = "Stockholm"))\}

Here is the third and final schema, again with presumed keys underlined.

OWNERSHIP
(PERS_ID, REG_NR, USE, INSURANCE, PRICE) PERSON(PERS ID, NAME, ADDRESS, PROFESSION) AUTO(REG NR, BRAND, YEAR)

1. The names and addresses of persons who do not own an automobile.
$\mathrm{X}_{1} \leftarrow$ OWNERSHIP \bowtie PERSON
$\mathrm{X}_{2} \leftarrow \pi_{\text {Pers_ID,Name,Adoress }}\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {PERS_ID,NAME,ADDREsS }}($ PERSON $)$
$\mathrm{X}_{4} \leftarrow \mathrm{X}_{3} \backslash \mathrm{X}_{2}$
$\mathrm{X}_{5} \leftarrow \pi_{\text {nameaddress }}\left(\mathrm{X}_{4}\right)$
\{(p.NAME,p.ADDRESS)|PERSON(p) ^
$\neg(\exists \mathrm{o})($ OWNERSHIP(o) ^
(p.PERS_ID = o.PERS_ID))\}
2. The names of persons who own either a Volvo or a Mercedes.
$\mathrm{X}_{1} \leftarrow$ OWNERSHIP \bowtie PERSON \bowtie AUTO
$\mathrm{X}_{2} \leftarrow \sigma_{\text {(BRAND }}=$ "Volvo" v Brand $=$ "Mercedes) $\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {NAME }}\left(\mathrm{X}_{2}\right)$
\{p.NAME | PERSON(p) ^ ($\exists \mathrm{o})(\exists \mathrm{a})($ OWNERSHIP(o) ^ AUTO(a) \wedge
(p.PERS_ID = o.PERS_ID) \wedge
(o.REG_NR = a.REG_NR) ^
$((a . B R A N D=$ "Volvo") $\vee(a . B R A N D=$ "Mercedes")) $\}$
3. The model year and brand of automobiles which have full insurance.
$\mathrm{X}_{1} \leftarrow$ OWNERSHIP \bowtie AUTO
$X_{2} \leftarrow \sigma_{\text {(INSURANCE }}=$ "full) $\left(X_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {YEAR,BRAND }}\left(\mathrm{X}_{2}\right)$
\{(a.YEAR,a.BRAND)|AUTO(a) ^
($\exists \mathrm{o}$)(OWNERSHIP(o) ^
(a.REG_NR = o.REG_NR) \wedge
(o.INSURANCE = "Full")) \}
4. The names and addresses of persons who own the vehicles with registration KAF-094 or GEL-175.
$\mathrm{X}_{1} \leftarrow$ OWNERSHIP \bowtie PERSON
$X_{2} \leftarrow \sigma_{(\text {REG_NR }}=$ "KAF-094 \vee REG_NR $=$ "GEL-175) $\left(X_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {Name,AdDRESs }}\left(\mathrm{X}_{2}\right)$
\{(p.NAME,p.ADDRESS)|PERSON(p) ^
($\exists \mathrm{o})$ (OWNERSHIP(o) ^
(p.PERS_ID = o.PERS_ID) \wedge
$\left(\left(o . R E G _N O=\right.\right.$ "KAF-094") \vee
(o.REG_NO = "GEL-175"))) \}
5. The names and addresses of persons who own a 1970 model-year vehicle.
$\mathrm{X}_{1} \leftarrow$ OWNERSHIP \bowtie PERSON \bowtie AUTO
$\mathrm{X}_{2} \leftarrow \sigma_{(\text {YEAR }=" 1970 ")}\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {Name, Address }}\left(\mathrm{X}_{2}\right)$
\{(p.NAME,p.ADDRESS)|PERSON(p) ^ ($\exists \mathrm{o})(\exists \mathrm{a})$ (OWNERSHIP(o) ^AUTO(a) \wedge (o.REG_NR = a.REG_NR) ^ (p.PERS_ID = o.PERS_ID) \wedge (a.YEAR = "1970"))\}
6. The registration numbers and model years for vehicles which are owned by students.
$\mathrm{X}_{1} \leftarrow$ OWNERSHIP \bowtie PERSON \bowtie AUTO
$\mathrm{X}_{2} \leftarrow \sigma_{\text {(PROFESSION }}=$ "Student") $\left(\mathrm{X}_{1}\right)$
$\mathrm{X}_{3} \leftarrow \pi_{\text {Reg_no,year }}\left(\mathrm{X}_{2}\right)$
\{(a.REG_NO,a.YEAR)|AUTO(a) ^ $(\exists \mathrm{o})(\exists \mathrm{p})($ OWNERSHIP $(\mathrm{o}) \wedge$ PERSON $(\mathrm{p}) \wedge$
(a.REG_NO = o.REG_NO) ^
(o.PERS_ID = p.PERS_ID) ^
(p.PROFESSION = "Student"))\}
