
5DV118 20092511 t:6 sl:1 Hegner UU

5DV118
Computer Organization and Architecture

Umeå University
Department of Computing Science

These slides are mostly taken verbatim, or with minor
changes, from those prepared by

Mary Jane Irwin (www.cse.psu.edu/~mji)

of The Pennsylvania State University
[Adapted from Computer Organization and Design, 4th Edition,

Patterson & Hennessy, © 2008, MK]

Stephen J. Hegner

Topic 7: Support for Parallelism

http://www.cse.psu.edu/~mji

5DV118 20092511 t:6 sl:2 Hegner UU

Key to the Slides

 The source of each slide is coded in the footer on the
right side:
 Irwin CSE331 = slide by Mary Jane Irwin from the course

CSE331 (Computer Organization and Design) at The
Pennsylvania State University.

 Irwin CSE431 = slide by Mary Jane Irwin from the course
CSE431 (Computer Architecture) at The Pennsylvania State
University.

 Hegner UU = slide by Stephen J. Hegner at Umeå University.

5DV118 20101203 t:7 sl:3 Irwin CSE431 PSU

The Big Picture: Where are We Now?
 Multiprocessor – a computer system with at least two

processors

 Can deliver high throughput for independent jobs via job-level
parallelism or process-level parallelism

 And improve the run time of a single program that has been
specially crafted to run on a multiprocessor - a parallel
processing program

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

5DV118 20101203 t:7 sl:4 Irwin CSE431 PSU

Multicores Now Common

 The power challenge has forced a change in the design
of microprocessors
 Since 2002 the rate of improvement in the response time of

programs has slowed from a factor of 1.5 per year to less than a
factor of 1.2 per year

 Today’s microprocessors typically contain more than one
core – Chip Multicore microProcessors (CMPs) – in a
single IC
 The number of cores is expected to double every two years

Product AMD
Barcelona

Intel
Nehalem

IBM Power
6

Sun Niagara
2

Cores per chip 4 4 2 8

Clock rate 2.5 GHz ~2.5 GHz? 4.7 GHz 1.4 GHz

Power 120 W ~100 W? ~100 W? 94 W

5DV118 20101203 t:7 sl:5 Irwin CSE431 PSU

Other Multiprocessor Basics
 Some of the problems that need higher performance can

be handled simply by using a cluster – a set of
independent servers (or PCs) connected over a local
area network (LAN) functioning as a single large
multiprocessor
 Search engines, Web servers, email servers, databases, …

 A key challenge is to craft parallel (concurrent) programs
that have high performance on multiprocessors as the
number of processors increase – i.e., that scale
 Scheduling, load balancing, time for synchronization, overhead

for communication

5DV118 20101203 t:7 sl:6 Irwin CSE431 PSU

Encountering Amdahl’s Law

 Speedup due to enhancement E is

Speedup w/ E = ----------------------
Exec time w/o E

Exec time w/ E

 Suppose that enhancement E accelerates a fraction F
(F <1) of the task by a factor S (S>1) and the remainder
of the task is unaffected

 ExTime w/ E = ExTime w/o E ×

 Speedup w/ E =

5DV118 20101203 t:7 sl:7 Irwin CSE431 PSU

Encountering Amdahl’s Law

 Speedup due to enhancement E is

Speedup w/ E = ----------------------
Exec time w/o E

Exec time w/ E

 Suppose that enhancement E accelerates a fraction F
(F <1) of the task by a factor S (S>1) and the remainder
of the task is unaffected

ExTime w/ E = ExTime w/o E × ((1-F) + F/S)

Speedup w/ E = 1 / ((1-F) + F/S)

5DV118 20101203 t:7 sl:8 Irwin CSE431 PSU

Example 1: Amdahl’s Law

 Consider an enhancement which runs 20 times faster
but which is only usable 25% of the time.

 Speedup w/ E =

 What if its usable only 15% of the time?

 Speedup w/ E =

 Amdahl’s Law tells us that to achieve linear speedup
with 100 processors, none of the original computation
can be scalar!

 To get a speedup of 90 from 100 processors, the
percentage of the original program that could be scalar
would have to be 0.1% or less

 Speedup w/ E =

 Speedup w/ E =

5DV118 20101203 t:7 sl:9 Irwin CSE431 PSU

Example 1: Amdahl’s Law

 Consider an enhancement which runs 20 times faster
but which is only usable 25% of the time.

Speedup w/ E = 1/(.75 + .25/20) = 1.31

 What if its usable only 15% of the time?

Speedup w/ E = 1/(.85 + .15/20) = 1.17

 Amdahl’s Law tells us that to achieve linear speedup
with 100 processors, none of the original computation
can be scalar!

 To get a speedup of 90 from 100 processors, the
percentage of the original program that could be scalar
would have to be 0.1% or less

Speedup w/ E = 1/(.001 + .999/100) = 90.99

Speedup w/ E = 1 / ((1-F) + F/S)

5DV118 20101203 t:7 sl:10 Irwin CSE431 PSU

Example 2: Amdahl’s Law

 Consider summing 10 scalar variables and two 10 by
10 matrices (matrix sum) on 10 processors

Speedup w/ E =

 What if there are 100 processors ?

Speedup w/ E =

 What if the matrices are100 by 100 (or 10,010 adds in
total) on 10 processors?

Speedup w/ E =

 What if there are 100 processors ?

Speedup w/ E =

Speedup w/ E = 1 / ((1-F) + F/S)

5DV118 20101203 t:7 sl:11 Irwin CSE431 PSU

Example 2: Amdahl’s Law

 Consider summing 10 scalar variables and two 10 by
10 matrices (matrix sum) on 10 processors

Speedup w/ E = 1/(.091 + .909/10) = 1/0.1819 = 5.5

 What if there are 100 processors ?

Speedup w/ E = 1/(.091 + .909/100) = 1/0.10009 = 10.0

 What if the matrices are100 by 100 (or 10,010 adds in
total) on 10 processors?

Speedup w/ E = 1/(.001 + .999/10) = 1/0.1009 = 9.9

 What if there are 100 processors ?

Speedup w/ E = 1/(.001 + .999/100) = 1/0.01099 = 91

Speedup w/ E = 1 / ((1-F) + F/S)

5DV118 20101203 t:7 sl:12 Irwin CSE431 PSU

Scaling

 To get good speedup on a multiprocessor while keeping
the problem size fixed is harder than getting good
speedup by increasing the size of the problem.
 Strong scaling – when speedup can be achieved on a

multiprocessor without increasing the size of the problem
 Weak scaling – when speedup is achieved on a multiprocessor

by increasing the size of the problem proportionally to the
increase in the number of processors

 Load balancing is another important factor. Just a single
processor with twice the load of the others cuts the
speedup almost in half

5DV118 20101203 t:7 sl:13 Irwin CSE431 PSU

Multiprocessor/Clusters Key Questions

 Q1 – How do they share data?

 Q2 – How do they coordinate?

 Q3 – How scalable is the architecture? How many
processors can be supported?

5DV118 20101203 t:7 sl:14 Irwin CSE431 PSU

Shared Memory Multiprocessor (SMP)
 Q1 – Single address space shared by all processors
 Q2 – Processors coordinate/communicate through shared

variables in memory (via loads and stores)
 Use of shared data must be coordinated via synchronization

primitives (locks) that allow access to data to only one processor
at a time

 They come in two styles
 Uniform memory access (UMA) multiprocessors
 Nonuniform memory access (NUMA) multiprocessors

 Programming NUMAs is harder

 But NUMAs can scale to larger sizes and have lower
latency to local memory

5DV118 20101203 t:7 sl:15 Irwin CSE431 PSU

Summing 100,000 Numbers on 100 Proc. SMP

sum[Pn] = 0;
for (i = 1000*Pn; i< 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

 Processors start by running a loop that sums their subset of
vector A numbers (vectors A and sum are shared variables,
Pn is the processor’s number, i is a private variable)

 The processors then coordinate in adding together the
partial sums (half is a private variable initialized to 100
(the number of processors)) – reduction
repeat
synch(); /*synchronize first
if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];
half = half/2
if (Pn<half) sum[Pn] = sum[Pn] + sum[Pn+half]

until (half == 1); /*final sum in sum[0]

5DV118 20101203 t:7 sl:16 Irwin CSE431 PSU

An Example with 10 Processors

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

sum[P0]sum[P1]sum[P2] sum[P3]sum[P4]sum[P5]sum[P6] sum[P7]sum[P8] sum[P9]

half = 10

5DV118 20101203 t:7 sl:17 Irwin CSE431 PSU

An Example with 10 Processors

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

sum[P0]sum[P1]sum[P2] sum[P3]sum[P4]sum[P5]sum[P6] sum[P7]sum[P8] sum[P9]

P0

P0 P1 P2 P3 P4

half = 10

half = 5

P1 half = 2

P0
half = 1

5DV118 20101203 t:7 sl:18 Irwin CSE431 PSU

Process Synchronization
 Need to be able to coordinate processes working on a

common task

 Lock variables (semaphores) are used to coordinate or
synchronize processes

 Need an architecture-supported arbitration mechanism to
decide which processor gets access to the lock variable
 Single bus provides arbitration mechanism, since the bus is the

only path to memory – the processor that gets the bus wins

 Need an architecture-supported operation that locks the
variable
 Locking can be done via an atomic swap operation (on the MIPS

we have ll and sc one example of where a processor can
both read a location and set it to the locked state – test-and-set –
in the same bus operation)

5DV118 20101203 t:7 sl:19 Irwin CSE431 PSU

Spin Lock Synchronization

Read lock
 variable using ll

Succeed?

Try to lock variable using sc:
set it to locked value of 1

Unlocked?
 (=0?)

No

Yes

No Begin update of
shared data

Finish update of
shared data

Yes

.

.

.

 unlock variable:
set lock variable

to 0

Spin

atomic
operation

The single winning processor will succeed in
writing a 1 to the lock variable - all others
processors will get a return code of 0

Return
code = 0

5DV118 20101203 t:7 sl:20 Irwin CSE431 PSU

Review: Summing Numbers on a SMP

sum[Pn] = 0;
for (i = 1000*Pn; i< 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

/* each processor sums its
/* subset of vector A

 Pn is the processor’s number, vectors A and sum are
shared variables, i is a private variable, half is a private
variable initialized to the number of processors

repeat /* adding together the
/* partial sums

synch(); /*synchronize first
if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];
half = half/2
if (Pn<half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1); /*final sum in sum[0]

5DV118 20101203 t:7 sl:21 Irwin CSE431 PSU

An Example with 10 Processors

sum[P0] sum[P1] sum[P2] sum[P3]sum[P4]sum[P5]sum[P6]sum[P7] sum[P8] sum[P9]

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

P0 P1 P2 P3 P4

 synch(): Processors must synchronize before the
“consumer” processor tries to read the results from the
memory location written by the “producer” processor
 Barrier synchronization – a synchronization scheme where

processors wait at the barrier, not proceeding until every
processor has reached it

5DV118 20101203 t:7 sl:22 Irwin CSE431 PSU

Barrier Implemented with Spin-Locks

lock(arrive);
count := count + 1; /* count the processors as

 if count < n /* they arrive at barrier
then unlock(arrive)
else unlock(depart);

 n is a shared variable initialized to the number of
processors,count is a shared variable initialized to 0,
arrive and depart are shared spin-lock variables where
arrive is initially unlocked and depart is initially locked

lock(depart);
count := count - 1; /* count the processors as

 if count > 0 /* they leave barrier
then unlock(depart)
else unlock(arrive);

procedure synch()

5DV118 20101203 t:7 sl:23 Irwin CSE431 PSU

Spin-Locks on Bus Connected ccUMAs

 With a bus based cache coherency protocol (write
invalidate), spin-locks allow processors to wait on a local
copy of the lock in their caches
 Reduces bus traffic – once the processor with the lock releases

the lock (writes a 0) all other caches see that write and invalidate
their old copy of the lock variable. Unlocking restarts the race to
get the lock. The winner gets the bus and writes the lock back
to 1. The other caches then invalidate their copy of the lock and
on the next lock read fetch the new lock value (1) from memory.

 This scheme has problems scaling up to many
processors because of the communication traffic when
the lock is released and contested

5DV118 20101203 t:7 sl:24 Irwin CSE431 PSU

Aside: Cache Coherence Bus Traffic

Proc P0 Proc P1 Proc P2 Bus activity Memory

1 Has lock Spins Spins None

2 Releases
lock (0)

Spins Spins Bus services
P0’s invalidate

3 Cache miss Cache miss Bus services
P2’s cache miss

4 Waits Reads lock
(0)

Response to
P2’s cache miss

Update lock in
memory from P0

5 Reads lock
(0)

Swaps lock
(ll,sc of 1)

Bus services
P1’s cache miss

6 Swaps lock
(ll,sc of 1)

Swap
succeeds

Response to
P1’s cache miss

Sends lock
variable to P1

7 Swap fails Has lock Bus services
P2’s invalidate

8 Spins Has lock Bus services
P1’s cache miss

5DV118 20101203 t:7 sl:25 Irwin CSE431 PSU

Message Passing Multiprocessors (MPP)

 Each processor has its own private address space

 Q1 – Processors share data by explicitly sending and
receiving information (message passing)

 Q2 – Coordination is built into message passing
primitives (message send and message receive)

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory Memory Memory

5DV118 20101203 t:7 sl:26 Irwin CSE431 PSU

Summing 100,000 Numbers on 100 Proc. MPP

sum = 0;
for (i = 0; i<1000; i = i + 1)
sum = sum + Al[i]; /* sum local array subset

 Start by distributing 1000 elements of vector A to each of
the local memories and summing each subset in parallel

 The processors then coordinate in adding together the sub
sums (Pn is the number of processors, send(x,y) sends
value y to processor x, and receive() receives a value)

half = 100;
limit = 100;
repeat
half = (half+1)/2; /*dividing line

 if (Pn>= half && Pn<limit) send(Pn-half,sum);
 if (Pn<(limit/2)) sum = sum + receive();
 limit = half;
until (half == 1); /*final sum in P0’s sum

5DV118 20101203 t:7 sl:27 Irwin CSE431 PSU

An Example with 10 Processors

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

sum sum sum sum sum sum sum sum sum sum

half = 10

5DV118 20101203 t:7 sl:28 Irwin CSE431 PSU

An Example with 10 Processors

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

P0 P1 P2 P3 P4

half = 10

half = 5

half = 3

half = 2

sum sum sum sum sum sum sum sum sum sum

send

receive

P0 P1 P2

limit = 10

limit = 5

limit = 3

limit = 2

half = 1

P0 P1

P0

send

receive

send

receive

send

receive

5DV118 20101203 t:7 sl:29 Irwin CSE431 PSU

Pros and Cons of Message Passing

 Message sending and receiving is much slower than
addition, for example

 But message passing multiprocessors and much easier
for hardware designers to design
 Don’t have to worry about cache coherency for example

 The advantage for programmers is that communication is
explicit, so there are fewer “performance surprises” than
with the implicit communication in cache-coherent SMPs.
 Message passing standard MPI-2 (www.mpi-forum.org)

 However, its harder to port a sequential program to a
message passing multiprocessor since every
communication must be identified in advance.
 With cache-coherent shared memory the hardware figures out

what data needs to be communicated

http://www.mpi-forum.org/

5DV118 20101203 t:7 sl:30 Irwin CSE431 PSU

Networks of Workstations (NOWs) Clusters
 Clusters of off-the-shelf, whole computers with multiple

private address spaces connected using the I/O bus of
the computers
 lower bandwidth than multiprocessor that use the processor-

memory (front side) bus
 lower speed network links
 more conflicts with I/O traffic

 Clusters of N processors have N copies of the OS limiting
the memory available for applications

 Improved system availability and expandability
 easier to replace a machine without bringing down the whole

system
 allows rapid, incremental expandability

 Economy-of-scale advantages with respect to costs

5DV118 20101203 t:7 sl:31 Irwin CSE431 PSU

Commercial (NOW) Clusters

Proc Proc
Speed

Proc Network

Dell
PowerEdge

P4 Xeon 3.06GHz 2,500 Myrinet

eServer
IBM SP

Power4 1.7GHz 2,944

VPI BigMac Apple G5 2.3GHz 2,200 Mellanox
Infiniband

HP ASCI Q Alpha 21264 1.25GHz 8,192 Quadrics

LLNL
Thunder

Intel Itanium2 1.4GHz 1,024*4 Quadrics

Barcelona PowerPC 970 2.2GHz 4,536 Myrinet

5DV118 20101203 t:7 sl:32 Irwin CSE431 PSU

Multithreading on A Chip
 Find a way to “hide” true data dependency stalls, cache

miss stalls, and branch stalls by finding instructions (from
other process threads) that are independent of those
stalling instructions

 Hardware multithreading – increase the utilization of
resources on a chip by allowing multiple processes
(threads) to share the functional units of a single
processor
 Processor must duplicate the state hardware for each thread – a

separate register file, PC, instruction buffer, and store buffer for
each thread

 The caches, TLBs, BHT, BTB, RUU can be shared (although the
miss rates may increase if they are not sized accordingly)

 The memory can be shared through virtual memory mechanisms
 Hardware must support efficient thread context switching

5DV118 20101203 t:7 sl:33 Irwin CSE431 PSU

Types of Multithreading
 Fine-grain – switch threads on every instruction issue

 Round-robin thread interleaving (skipping stalled threads)
 Processor must be able to switch threads on every clock cycle
 Advantage – can hide throughput losses that come from both

short and long stalls
 Disadvantage – slows down the execution of an individual

thread since a thread that is ready to execute without stalls is
delayed by instructions from other threads

 Coarse-grain – switches threads only on costly stalls
(e.g., L2 cache misses)
 Advantages – thread switching doesn’t have to be essentially

free and much less likely to slow down the execution of an
individual thread

 Disadvantage – limited, due to pipeline start-up costs, in its
ability to overcome throughput loss

- Pipeline must be flushed and refilled on thread switches

5DV118 20101203 t:7 sl:34 Irwin CSE431 PSU

Multithreaded Example: Sun’s Niagara (UltraSparc T2)
 Eight fine grain multithreaded single-issue, in-order cores

(no speculation, no dynamic branch prediction)

Niagara 2

Data width 64-b

Clock rate 1.4 GHz

Cache
(I/D/L2)

16K/8K/4M

Issue rate 1 issue

Pipe stages 6 stages

BHT entries None

TLB entries 64I/64D

Memory BW 60+ GB/s

Transistors ??? million

Power (max) <95 W
8-

w
ay

 M
T

 S
P

A
R

C
 p

ip
e

8-
w

ay
 M

T
 S

P
A

R
C

 p
ip

e

8-
w

ay
 M

T
 S

P
A

R
C

 p
ip

e

8-
w

ay
 M

T
 S

P
A

R
C

 p
ip

e

8-
w

ay
 M

T
 S

P
A

R
C

 p
ip

e

8-
w

ay
 M

T
 S

P
A

R
C

 p
ip

e

8-
w

ay
 M

T
 S

P
A

R
C

 p
ip

e

8-
w

ay
 M

T
 S

P
A

R
C

 p
ip

e

 Crossbar

8-way banked L2$

Memory controllers

I/O
shared
funct’s

5DV118 20101203 t:7 sl:35 Irwin CSE431 PSU

Niagara Integer Pipeline

 Cores are simple (single-issue, 6 stage, no branch
prediction), small, and power-efficient

Fetch Thrd Sel Decode Execute Memory WB

I$

ITLB

Inst
bufx8

PC
logicx8

Decode

RegFile
x8

Thread
Select
Logic

ALU
Mul
Shft
Div

D$

DTLB
Stbufx8

Thrd
Sel
Mux

Thrd
Sel
Mux

Crossbar
Interface

Instr type
Cache misses
Traps & interrupts
Resource conflicts

From MPR, Vol. 18, #9, Sept. 2004

5DV118 20101203 t:7 sl:36 Irwin CSE431 PSU

Simultaneous Multithreading (SMT)

 A variation on multithreading that uses the resources of a
multiple-issue, dynamically scheduled processor
(superscalar) to exploit both program ILP and thread-
level parallelism (TLP)
 Most SS processors have more machine level parallelism than

most programs can effectively use (i.e., than have ILP)
 With register renaming and dynamic scheduling, multiple

instructions from independent threads can be issued without
regard to dependencies among them

- Need separate rename tables (RUUs) for each thread or need to be
able to indicate which thread the entry belongs to

- Need the capability to commit from multiple threads in one cycle

 Intel’s Pentium 4 SMT is called hyperthreading
 Supports just two threads (doubles the architecture state)

5DV118 20101203 t:7 sl:37 Irwin CSE431 PSU

Threading on a 4-way SS Processor Example

Thread A Thread B

Thread C Thread D

T
im

e →

Issue slots →
SMTFine MTCoarse MT

5DV118 20101203 t:7 sl:38 Irwin CSE431 PSU

Threading on a 4-way SS Processor Example

Thread A Thread B

Thread C Thread D

T
im

e →

Issue slots →
SMTFine MTCoarse MT

5DV118 20101203 t:7 sl:39 Irwin CSE431 PSU

Review: Multiprocessor Basics

of Proc

Communication
model

Message passing 8 to 2048

Shared
address

NUMA 8 to 256

UMA 2 to 64

Physical
connection

Network 8 to 256

Bus 2 to 36

 Q1 – How do they share data?

 Q2 – How do they coordinate?

 Q3 – How scalable is the architecture? How many
processors?

5DV118 20101203 t:7 sl:40 Irwin CSE431 PSU

Flynn’s Classification Scheme

 Now obsolete terminology except for . . .

 SISD – single instruction, single data stream
 aka uniprocessor - what we have been talking about all semester

 SIMD – single instruction, multiple data streams
 single control unit broadcasting operations to multiple datapaths

 MISD – multiple instruction, single data
 no such machine (although some people put vector machines in

this category)

 MIMD – multiple instructions, multiple data streams
 aka multiprocessors (SMPs, MPPs, clusters, NOWs)

5DV118 20101203 t:7 sl:41 Irwin CSE431 PSU

SIMD Processors

 Single control unit (one copy of the code)
 Multiple datapaths (Processing Elements – PEs) running

in parallel
 Q1 – PEs are interconnected (usually via a mesh or torus) and

exchange/share data as directed by the control unit
 Q2 – Each PE performs the same operation on its own local data

PE

PE

PE

PE PE

PE

PE

PE PE

PE

PE

PE PE

PE

PE

PE

Control

5DV118 20101203 t:7 sl:42 Irwin CSE431 PSU

Example SIMD Machines

Maker Year # PEs # b/
PE

Max
memory

(MB)

PE
clock
(MHz)

System
BW

(MB/s)

Illiac IV UIUC 1972 64 64 1 13 2,560

DAP ICL 1980 4,096 1 2 5 2,560

MPP Goodyear 1982 16,384 1 2 10 20,480

CM-2 Thinking
Machines

1987 65,536 1 512 7 16,384

MP-1216 MasPar 1989 16,384 4 1024 25 23,000

 Did SIMDs die out in the early 1990s ??

5DV118 20101203 t:7 sl:43 Irwin CSE431 PSU

Multimedia SIMD Extensions

 The most widely used variation of SIMD is found in
almost every microprocessor today – as the basis of
MMX and SSE instructions added to improve the
performance of multimedia programs
 A single, wide ALU is partitioned into many smaller ALUs that

operate in parallel

 There are now hundreds of SSE instructions in the x86 to
support multimedia operations

32 bit adder 16 bit adder 16 bit
adder

8 bit + 8 bit + 8 bit + 8 bit +

 Loads and stores are simply as wide as the widest ALU, so the
same data transfer can transfer one 32 bit value, two 16 bit
values or four 8 bit values

5DV118 20101203 t:7 sl:44 Irwin CSE431 PSU

Vector Processors

 A vector processor (e.g., Cray) pipelines the ALUs to get
good performance at lower cost. A key feature is a set of
vector registers to hold the operands and results.
 Collect the data elements from memory, put them in order into a

large set of registers, operate on them sequentially in registers,
and then write the results back to memory

 They formed the basis of supercomputers in the 1980’s and 90’s

 Consider extending the MIPS instruction set (VMIPS) to
include vector instructions, e.g.,
 addv.d to add two double precision vector register values
 addvs.d and mulvs.d to add (or multiply) a scalar register to

(by) each element in a vector register
 lv and sv do vector load and vector store and load or store an

entire vector of double precision data

5DV118 20101203 t:7 sl:45 Irwin CSE431 PSU

MIPS vs VMIPS DAXPY Codes: Y = a × X + Y
l.d $f0,a($sp) ;load scalar a
addiu r4,$s0,#512 ;upper bound to load to

loop: l.d $f2,0($s0) ;load X(i)
mul.d $f2,$f2,$f0 ;a × X(i)
l.d $f4,0($s1) ;load Y(i)
add.d $f4,$f4,$f2 ;a × X(i) + Y(i)
s.d $f4,0($s1) ;store into Y(i)
addiu $s0,$s0,#8 ;increment X index
addiu $s1,$s1,#8 ;increment Y index
subu $t0,r4,$s0 ;compute bound
bne $t0,$zero,loop ;check if done

5DV118 20101203 t:7 sl:46 Irwin CSE431 PSU

MIPS vs VMIPS DAXPY Codes: Y = a × X + Y
l.d $f0,a($sp) ;load scalar a
addiu r4,$s0,#512 ;upper bound to load to

loop: l.d $f2,0($s0) ;load X(i)
mul.d $f2,$f2,$f0 ;a × X(i)
l.d $f4,0($s1) ;load Y(i)
add.d $f4,$f4,$f2 ;a × X(i) + Y(i)
s.d $f4,0($s1) ;store into Y(i)
addiu $s0,$s0,#8 ;increment X index
addiu $s1,$s1,#8 ;increment Y index
subu $t0,r4,$s0 ;compute bound
bne $t0,$zero,loop ;check if done

l.d $f0,a($sp) ;load scalar a
lv $v1,0($s0) ;load vector X
mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
lv $v3,0($s1) ;load vector Y
addv.d $v4,$v2,$v3 ;add Y to a × X
sv $v4,0($s1) ;store vector result

5DV118 20101203 t:7 sl:47 Irwin CSE431 PSU

Vector verus Scalar
 Instruction fetch and decode bandwidth is dramatically

reduced (also saves power)
 Only six instructions in VMIPS versus almost 600 in MIPS for 64

element DAXPY

 Hardware doesn’t have to check for data hazards within
a vector instruction. A vector instruction will only stall for
the first element, then subsequent elements will flow
smoothly down the pipeline. And control hazards are
nonexistent.
 MIPS stall frequency is about 64 times higher than VMIPS for

DAXPY

 Easier to write code for data-level parallel app’s
 Have a known access pattern to memory, so heavily

interleaved memory banks work well. The cost of latency
to memory is seen only once for the entire vector

5DV118 20101203 t:7 sl:48 Irwin CSE431 PSU

Example Vector Machines

Maker Year Peak perf. # vector
Processors

PE
clock
(MHz)

STAR-100 CDC 1970 ?? 113 2

ASC TI 1970 20
MFLOPS

1, 2, or 4 16

Cray 1 Cray 1976 80 to 240
MFLOPS

80

Cray Y-MP Cray 1988 333
MFLOPS

2, 4, or 8 167

Earth
Simulator

NEC 2002 35.86
TFLOPS

8

 Did Vector machines die out in the late 1990s ??

5DV118 20101203 t:7 sl:49 Irwin CSE431 PSU

Graphics Processing Units (GPUs)

 GPUs are accelerators that supplement a CPU so they
do not need to be able to perform all of the tasks of a
CPU. They dedicate all of their resources to graphics
 CPU-GPU combination – heterogeneous multiprocessing

 Programming interfaces that are free from backward
binary compatibility constraints resulting in more rapid
innovation in GPUs than in CPUs
 Application programming interfaces (APIs) such as OpenGL and

DirectX coupled with high-level graphics shading languages
such as NVIDIA’s Cg and CUDA and Microsoft’s HLSL

 GPU data types are vertices (x, y, z, w) coordinates and
pixels (red, green, blue, alpha) color components

 GPUs execute many threads (e.g., vertex and pixel
shading) in parallel – lots of data-level parallelism

5DV118 20101203 t:7 sl:50 Irwin CSE431 PSU

Typical GPU Architecture Features
 Rely on having enough threads to hide the latency to

memory (not caches as in CPUs)
 Each GPU is highly multithreaded

 Use extensive parallelism to get high performance
 Have extensive set of SIMD instructions; moving towards

multicore

 Main memory is bandwidth, not latency driven
 GPU DRAMs are wider and have higher bandwidth, but are

typically smaller, than CPU memories

 Leaders in the marketplace (in 2008)
 NVIDIA GeForce 8800 GTX (16 multiprocessors each with 8

multithreaded processing units)
 AMD’s ATI Radeon and ATI FireGL
 Watch out for Intel’s Larrabee

5DV118 20101203 t:7 sl:51 Irwin CSE431 PSU

Supercomputer Style Migration (Top500)

 Uniprocessors and SIMDs disappeared while Clusters
and Constellations grew from 3% to 80%. Now it is 98%
Clusters and MPPs.

Nov data
http://www.top500.org/

Cluster – whole computers
interconnected using their
I/O bus

Constellation – a cluster
that uses an SMP
multiprocessor as the
building block

http://www.top500.org/
http://www.top500.org/

5DV118 20101203 t:7 sl:52 Irwin CSE431 PSU

Review: Shared Memory Multiprocessors (SMP)
 Q1 – Single address space shared by all processors
 Q2 – Processors coordinate/communicate through shared

variables in memory (via loads and stores)
 Use of shared data must be coordinated via synchronization

primitives (locks) that allow access to data to only one processor
at a time

 They come in two styles
 Uniform memory access (UMA) multiprocessors
 Nonuniform memory access (NUMA) multiprocessors

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

5DV118 20101203 t:7 sl:53 Irwin CSE431 PSU

Message Passing Multiprocessors (MPP)

 Each processor has its own private address space

 Q1 – Processors share data by explicitly sending and
receiving information (message passing)

 Q2 – Coordination is built into message passing
primitives (message send and message receive)

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory Memory Memory

5DV118 20101203 t:7 sl:54 Irwin CSE431 PSU

Communication in Network Connected Multi’s

 Implicit communication via loads and stores
 hardware designers have to provide coherent caches and

process (thread) synchronization primitive (like ll and sc)
 lower communication overhead
 harder to overlap computation with communication
 more efficient to use an address to remote data when needed

rather than to send for it in case it might be used

 Explicit communication via sends and receives
 simplest solution for hardware designers
 higher communication overhead
 easier to overlap computation with communication
 easier for the programmer to optimize communication

5DV118 20101203 t:7 sl:55 Irwin CSE431 PSU

IN Performance Metrics
 Network cost

 number of switches
 number of (bidirectional) links on a switch to connect to the

network (plus one link to connect to the processor)
 width in bits per link, length of link wires (on chip)

 Network bandwidth (NB) – represents the best case
 bandwidth of each link * number of links

 Bisection bandwidth (BB) – closer to the worst case
 divide the machine in two parts, each with half the nodes and

sum the bandwidth of the links that cross the dividing line

 Other IN performance issues
 latency on an unloaded network to send and receive messages
 throughput – maximum # of messages transmitted per unit time
 # routing hops worst case, congestion control and delay, fault

tolerance, power efficiency

5DV118 20101203 t:7 sl:56 Irwin CSE431 PSU

Bus IN

 N processors, 1 switch (), 1 link (the bus)
 Only 1 simultaneous transfer at a time

 NB = link (bus) bandwidth * 1
 BB = link (bus) bandwidth * 1

Processor
 node

Bidirectional
network switch

5DV118 20101203 t:7 sl:57 Irwin CSE431 PSU

Ring IN

 If a link is as fast as a bus, the ring is only twice as fast
as a bus in the worst case, but is N times faster in the
best case

 N processors, N switches, 2 links/switch, N links
 N simultaneous transfers

 NB = link bandwidth * N
 BB = link bandwidth * 2

5DV118 20101203 t:7 sl:58 Irwin CSE431 PSU

Fully Connected IN

 N processors, N switches, N-1 links/switch,
(N*(N-1))/2 links

 N simultaneous transfers
 NB = link bandwidth * (N * (N-1))/2
 BB = link bandwidth * (N/2)2

5DV118 20101203 t:7 sl:59 Irwin CSE431 PSU

Crossbar (Xbar) Connected IN

 N processors, N2 switches (unidirectional), 2 links/switch,
N2 links

 N simultaneous transfers
 NB = link bandwidth * N
 BB = link bandwidth * N/2

5DV118 20101203 t:7 sl:60 Irwin CSE431 PSU

Hypercube (Binary N-cube) Connected IN

 N processors, N switches, logN links/switch, (NlogN)/2
links

 N simultaneous transfers
 NB = link bandwidth * (NlogN)/2
 BB = link bandwidth * N/2

2-cube 3-cube

5DV118 20101203 t:7 sl:61 Irwin CSE431 PSU

2D and 3D Mesh/Torus Connected IN

 N simultaneous transfers
 NB = link bandwidth * 4N or link bandwidth * 6N
 BB = link bandwidth * 2 N1/2 or link bandwidth * 2 N2/3

 N processors, N switches, 2, 3, 4 (2D torus) or 6 (3D
torus) links/switch, 4 N/2 links or 6 N/2 links

5DV118 20101203 t:7 sl:62 Irwin CSE431 PSU

IN Comparison

 For a 64 processor system

Bus Ring Torus 6-cube Fully
connected

Network
bandwidth

1

Bisection
bandwidth

1

Total # of
switches

1

Links per
switch

Total # of
links (bidi)

1

5DV118 20101203 t:7 sl:63 Irwin CSE431 PSU

IN Comparison

 For a 64 processor system

Bus Ring 2D
Torus

6-cube Fully
connected

Network
bandwidth

1

Bisection
bandwidth

1

Total # of
switches

1

Links per
switch

Total # of
links (bidi)

1

64

 2

64

 2+1

64+64

256

 16

 64

 4+1

128+64

192

 32

 64

 6+7

192+64

2016

1024

 64

 63+1

2016+64

5DV118 20101203 t:7 sl:64 Irwin CSE431 PSU

“Fat” Trees

C DA B

 Trees are good structures. People in CS use them all the
time. Suppose we wanted to make a tree network.

 Any time A wants to send to C, it ties up the upper links,
so that B can't send to D.
 The bisection bandwidth on a tree is horrible - 1 link, at all times

 The solution is to 'thicken' the upper links.
 Have more links as you work towards the root of the tree

increases the bisection bandwidth

 Rather than design a bunch of N-port switches, use pairs
of switches

5DV118 20101203 t:7 sl:65 Irwin CSE431 PSU

Fat Tree IN

 N processors, log(N-1) * logN switches, 2 up + 4 down =
6 links/switch, N * logN links

 N simultaneous transfers
 NB = link bandwidth * NlogN
 BB = link bandwidth * 4

